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Abstract 

There are numerous Data Envelopment Analysis (DEA) applications where the data is not 

accurate. In many real-world scenarios, data is inaccurate. One type of inaccurate data is grey data, 

which exists between the fully defined boundaries of structured and unstructured data. This article 

employs the Nash Bargaining approach for evaluation and target setting. We combine grey data 

DEA scores with the Nash Bargaining problem to find an equilibrium point between the minimum 

and maximum efficiency values for each DMU. Based on the bargaining method, the equilibrium 

point is determined for each of the DMUs as a weighted average or relative equilibrium point 

between the minimum and maximum efficiency. The proposed approach has been validated on 

different datasets according to grey data. 

Keywords: Data Envelopment Analysis, Grey Data, Nash Bargaining, Grey Data Envelopment 

Analysis. 
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1. Introduction 

Game theory was presented in 1944 with the publication of the book “Theory of Games and 

Economic Behavior” [1] by John von Neumann and Oskar Morgenstern. Game theory has been 

expanded with the publication of articles by Nash and Shapley, which included both cooperative 

and non-cooperative game theories. Game theory addresses competition and cooperation among 

intelligent and rational decision-makers (DMs) through mathematical models. Game theory 

includes two types of games: non-cooperative, which illustrates competition, and cooperative, 

which illustrates collaboration. The Nash bargaining problem represents one of the earliest and 

most influential results in cooperative game theory. Considering the fact that two rational and 

intelligent players exist along with a set of possible allocations, one unique allocation must be 

chosen among them. The Nash bargaining theory evidently provides an elegant approach to 

solving this problem. 

To evaluate and enhance the relative efficiency of a set of homogenous operational units known 

as Decision-Making Units (DMU), the non-parametric Data Envelopment Analysis (DEA) is 

employed. These DMUs consume inputs to generate outputs, which may be either desirable or 

undesirable (Cooper et al., 2006). Based on assumptions, convex technologies such as CRS1 or 

VRS2, or non-convex technologies such as FDH3 can be utilized to calculate the efficiency. The 

observed distance between the DMU and the efficiency frontier indicates the relative 

efficiency of a DMU (Cooper et al., 2006). 

DEA is beneficial from another perspective as well. DEA provides an efficient operational target 

point, that is an efficient model/image, for each DMU. The generated targets depend on the specific 

DEA model applied, but they are almost always chosen to dominate the projected DMU. There 

are a lot of methods for determining DEA targets. All methods that calculate efficiency scores also 

calculate targets. A drawback is that, since they seek the maximum potential improvement, they 

might be far from the observed DMU. To solve this issue, various methods have been proposed to 

calculate the minimum distance to the efficient frontier (for instance, see Fukuyama et al., 2014). 

Data can be categorized into two classes of structured and unstructured. Structured data are well-

organized and can be easily searched through basic algorithms. They follow a precise plan, 

meaning that they are stored in a predefined frameworks which usually consist of rows and 

columns. Unstructured data lacks a predefined framework or organization. They are often text-

 
1 Constant Returns to Scale 
2 Variable Returns to Scale 
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heavy, but they can include data such as dates, numbers, and facts, which cannot be easily 

organized with a structured approach. 

Grey data refers to a type of data that exists between the clearly specified boundaries of structured 

and unstructured data. It is not as organized as structured data, such as database tables, but it is 

also not as free-form and disorganized as unstructured data, like text documents or social media 

posts. Grey data, also known as uncertain data, refers to information that is inaccurate, incomplete, 

or uncertain. This type of data exists between well-known categories (white data) and completely 

unknown categories (black data). Grey data are particularly related to situations where data is 

obtained from subjective judgments, estimates, or measurements that are not entirely precise. Grey 

data possess features such as being semi-structured, uncertainty, flexibility, and broad information 

coverage, and it can be derived from various sources such as emails, reports, notes, text messages, 

and surveys. Grey data has applications in various contexts such as engineering, economics and 

finance, environmental sciences, healthcare, etc. Here are some examples of grey data: emails, 

sensor data, unorganized web data, spreadsheets, etc. In DEA, grey data can be employed to handle 

uncertain or inaccurate inputs and outputs. For instance, Yang and Chen (2006) suggested a hybrid 

method combining AHP and grey relational analysis for supplier evaluation and selection. Chen 

et al. (2016) employed the DEA and grey model to evaluate the productivity in the agriculture 

industry of Vietnam. Boga (2019) utilized a hybrid DEA approach based on grey relational 

analysis to conduct a study on egg performance. Toninelli chose his thesis topic "Data 

Envelopment Analysis: Uncertainty, Undesirable Outputs, and Application in the Global Cement 

Industry," exploring its use and applications. Wang et al. (2020) utilized a combined grey model 

and DEA to evaluate efficiency in e-commerce markets to support better decision-making. 

Ghazizadeh et al. (2019) used grey system theory and a multi-stage DEA model for the Malmquist 

Productivity Index to assess the performance of the electricity supply chain in Iran. Wang et al. 

(2024) employed DEA-Grey integration to improve operational efficiency in industrial systems 

(blockchain markets as a service). 

In this article, Nash Bargaining is utilized to evaluate efficiency and target setting with grey data. 

This is done by modeling the problem as a bargaining problem and calculating the Nash Bargaining 

result (which is unique and Pareto optimal).  

 

2. Prerequisites 

2.1. The Classic Data Envelopment Analysis Model 

Assume that n units exist (DMUj, j = 1, 2, …, n) that consume m inputs (xi, i = 1, 2, …, m) and 

generate s outputs (yr, r = 1, 2, …, s). The relative efficiency of each DMU is determined by the 

following model: 

𝜃𝑘 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑘

𝑠

𝑟=1

 

𝑡ℎ𝑒 𝑡ℎ𝑒 𝑠. 𝑡 
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∑ 𝑣𝑖𝑥𝑖𝑘

𝑚

𝑖=1

= 1 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1, 2, … , 𝑛                                (1) 

𝑣𝑖 ≥ 0, (𝑖 = 1, 2, … , 𝑚), 𝑢𝑟 ≥ 0, (𝑟 = 1, 2, … , 𝑠)  
 

In this model, vi denotes the input weights, and ur denotes the output weights. DMUk is only 

efficient if in the above model 𝜃𝑘 = 1.  

 

2.2. The Grey Numbers Theory 

The grey numbers theory was suggested by Deng in 1982 and it has been applied in various 

contexts. In this theory, a grey system is defined as a system containing unknown data, which is 

denoted by grey numbers and grey variables. 

Definition: Imagin X is a reference set, then the grey set G of the reference set is defined as: 

{
�̄�𝐺(𝑥): 𝑥 → [0,1]

�̱�𝐺(𝑥): 𝑥 → [0,1]
         (2) 

 

�̄�𝐺(𝑥) ≥ �̱�𝐺(𝑥), 𝑥 ∈ 𝑋, 𝑋 = ℝ    ،�̄�𝐺(𝑥), and �̱�𝐺(𝑥) are the upper and lower membership functions 

of G, respectively. If �̄�𝐺(𝑥) = �̱�𝐺(𝑥), then the grey set G is a fuzzy set. Meaning that the grey 

theory also encompasses the fuzzy conditions. In general, a grey number is represented as ⊗G, 

where: 

⊗ 𝐺 = 𝐺 {
�̄�
�̱� 

Definition: A grey number with a lower bound and no upper bound is defined as: 

⊗ 𝐺 = [𝐺, ∞)         (3) 

Definition: A grey number with a upper bound and no lower bound is defined as: 
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⊗ 𝐺 = (−∞, 𝐺]     (4) 

Definition: A grey number with lower and upper bounds is referred to as the grey number and is 

defined as: 

⊗ 𝐺 = [�̱�, �̄�]         (5) 

A grey number can be demonstrated as: 

[�̱�, �̄�] = �̱� + (�̄� − �̱�) ∗ 𝛼, 0 ≤ 𝛼 ≤ 1 

Mathematical operations on two grey numbers ⊗ 𝐺1 = [�̱�1, �̄�1] and ⊗ 𝐺2 = [�̱�2, �̄�2] is defined 

as follows: 

⊗ 𝐺1 +⊗ 𝐺2 = [�̱�1 + �̱�2, �̄�1 + �̄�2] 

⊗ 𝐺1 −⊗ 𝐺2 = [�̱�1 − �̱�2, �̄�1 − �̄�2] 

⊗ 𝐺1 ×⊗ 𝐺2 = [𝑚𝑖𝑛(�̱�1�̱�2, �̱�1�̄�2, �̄�1�̱�2, �̄�1�̄�2) , 𝑚𝑎𝑥(�̱�1�̱�2, �̱�1�̄�2, �̄�1�̱�2, �̄�1�̄�2)] 

⊗ 𝐺1 ÷⊗ 𝐺2 = [�̱�1, �̄�1] × [
1

�̄�2

,
1

�̱�2
] 

The length of a grey number is defined as 𝐿(⊗ 𝐺) = [�̄� − �̱�]. 

 

2.2.1. Linear Programming Model with Grey Parameters 

 Assume that 𝑋 = [𝑥1𝑥2, . . . , 𝑥𝑛]𝑡, 𝐶 = [𝑐1(⊗), 𝑐2(⊗), . . . , 𝑐𝑛(⊗)]𝑡, 𝑏 =

[𝑏1(⊗), 𝑏2(⊗), . . . , 𝑏𝑛(⊗)]𝑡 , and 

𝐴(⊗) = [

𝑎11(⊗) 𝑎12(⊗) . . . 𝑎1𝑛(⊗)

𝑎21(⊗) 𝑎22(⊗) . . . 𝑎2𝑛(⊗)
. . . . . . . . . . . .

𝑎𝑚1(⊗) 𝑎𝑚2(⊗) . . . 𝑎𝑚𝑛(⊗)

] 

�̱�𝑗 ≥ 0, 𝑐𝑗 ∈ [�̱�𝑗, �̄�𝑗], �̱�𝑗 ≥ 0, 𝑏𝑗 ∈ [�̱�𝑗 , �̄�𝑗], �̱�𝑖𝑗 ≥ 0, 𝑎𝑖𝑗 ∈ [�̱�𝑖𝑗, �̄�𝑖𝑗], 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛 

Therefore, the following model is a linear programming problem with grey parameters, where X 

is a grey vector: 

max 𝐶(⊗)𝑋 
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𝑠. 𝑡 

𝐴(⊗)𝑋 = 𝑏(⊗)                               (6) 

𝑋 ≥ 0 

 

2.2.2. Grey Data Envelopment Analysis 

Assume there is n decision-making units, each consuming m inputs and generating s outputs. The 

relative efficiency of each unit is obtained by solving the following model: 

𝑚𝑎𝑥 𝜃𝑘 = ∑ 𝑢𝑟[�̱�𝑟𝑘, �̄�𝑟𝑘]

𝑠

𝑟=1

 

𝑠. 𝑡 

∑ 𝑣𝑖[�̱�𝑖𝑗 , �̄�𝑖𝑗]

𝑚

𝑟=1

− ∑ 𝑢𝑟[�̱�𝑟𝑗, �̄�𝑟𝑗]

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖[�̱�𝑖𝑘, �̄�𝑖𝑘]

𝑚

𝑟=1

= 1

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚                                      (7)

 

𝑥𝑖𝑗 = [�̱�𝑖𝑗 , �̄�𝑖𝑗] 𝑎𝑛𝑑 𝑦𝑟𝑗 = [�̱�𝑟𝑗, �̄�𝑟𝑗] are grey inputs and outputs, respectively. Xij and yij are inputs 

and outputs used by the j-th unit and 𝑢𝑟 , 𝑟 = 1,2, . . . , 𝑠, 𝑎𝑛𝑑 𝑣𝑖 , 𝑖 = 1,2, . . . , 𝑚 are output and input 

weights, respectively. 

An efficiency score spectrum can be obtained by solving the DEA model for best-case scenarios 

and worst-case scenarios in grey distances. This spectrum reflects the uncertainty in input and 

output data. This approach guarantees the efficiency analysis remains realistic and instructive, 

even when dealing with incorrect or incomplete data. 

Maximum efficiency for DMUk is obtained when it generates the most outputs by using the least 

inputs, while other DMUs generate the least outputs by using the most inputs. The mathematical 

model for the maximum efficiency of DMUk is as follows (best-case scenario): 

max �̅�𝑘 = ∑ 𝑢𝑟�̄�𝑟𝑘

𝑠

𝑟=1
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𝑠. 𝑡 

∑ 𝑣𝑖�̄�𝑖𝑗

𝑚

𝑟=1

− ∑ 𝑢𝑟�̱�𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖�̱�𝑖𝑘

𝑚

𝑟=1

= 1 

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚                                      (8) 

Minimum efficiency for DMUk is obtained when it generates the most outputs by using the least 

inputs, while other DMUs generate the least outputs by using the most inputs. The mathematical 

model for the maximum efficiency of DMUk is as follows (worst-case scenario): 

max 𝜃𝑘 = ∑ 𝑢𝑟�̱�𝑟𝑘

𝑠

𝑟=1

 

𝑠. 𝑡 

∑ 𝑣𝑖�̱�𝑖𝑗

𝑚

𝑟=1

− ∑ 𝑢𝑟�̄�𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖�̄�𝑖𝑘

𝑚

𝑟=1

= 1 

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚                                      (9) 

The efficiency of DMUk is denoted as 𝜃𝑘 = [�̱�𝑘 , �̄�𝑘]. There are three classes of DMU efficiency: 

1. 𝐸∗ = {𝐷𝑀𝑈𝑗|�̱�𝑗 ≥ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is efficient. 

2. 𝐸 = {𝐷𝑀𝑈𝑗|�̱�𝑗 ≤ 1, �̄�𝑗 ≥ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is relatively efficient. 

3. 𝐹 = {𝐷𝑀𝑈𝑗|�̄�𝑗 ≤ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is inefficient. 

There are different ranking methods for grey data. One of these methods is known as the Average 

Method, which is defined as: 

[�̱�𝑗 , �̄�𝑗] ≤ [�̱�𝑙 , �̄�𝑙] ⇔
�̱�𝑗 + �̄�𝑗

2
≤

�̱�𝑙 + �̄�𝑙

2
 

Where 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 is equal to the efficiency of each unit, considering the average of each input and 

each output in representing the grey number. That is: 
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𝑥𝑘
𝑎𝑣𝑒 =

�̱�𝑖𝑘 + �̱�𝑖𝑘

2
, 𝑦𝑘

𝑎𝑣𝑒 =
�̄�𝑟𝑘 + �̱�𝑟𝑘

2
 

Each of 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 values are obtained using these inputs and outputs. 

 

 

2.3. Nash Bargaining Method 

We denote the set of all individuals as N = {1, 2, …, n}. A bargaining problem consists of a set of 

N players, each possessing a real-valued utility function; a utility space, in which each point is a 

vector 𝒖 ∈ 𝑅𝑁, and its members represent the utilities of each player according to specific 

agreements among them. A feasible set 𝑆 ⊂ 𝑅𝑁 contains the vectors corresponding to all possible 

agreements between the players. This feasible set is assumed to be closed, bounded, convex, and 

comprehensive. There is a disagreement (failure) point 𝒅 ∈ 𝑆, where the components of d represent 

the utility of each player in case of a disagreement. If a player chooses not to bargain with another 

player, the disagreement point reflects the possible payoff pairs. It is assumed that there is at least 

one point in S that dominates d, meaning ∃𝒖 ∈ 𝑆: 𝒖 > 𝒅. This indicates that there exists a feasible 

agreement in which all players gain higher utility than if they fail to reach an agreement. Nash 

argued that a rational solution must meet the following four criteria: 

1. Pareto efficiency 

2. Invariance to Affine Transformation 

3. Independence of irrelevant options 

4. Symmetry 

According to Nash, the solution to the Nash Bargaining problem is obtained by solving the 

following optimization model:  

𝑚𝑎𝑥 ∏(𝑢𝑟 − 𝑑𝑟)

𝑟∈𝑁

 

𝑠. 𝑡 

𝒖 ∈ 𝑆                                      (10) 

𝒖 ≥ 𝒅 
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The maximization objective function is the product of the utility gain of all players (according to 

the difference point). The solution to the Nash Bargaining problem can be specified through 

various sets of properties that are uniquely identified.  

Integrating the Nash Bargaining method in DEA includes formulating the efficiency evaluation as 

a bargaining problem between several DMUs. The goal is to find a solution that maximizes the 

bargaining of each DMU by considering the inaccuracies in the data. In this method, the difference 

point can be the efficiency scores received by DMUs under certain basic conditions or existing 

conditions.  

 

2.4. Formulating the Proposed Nash Bargaining Problem 

We combine the DEA scores with the Nash Bargaining problem. This method strives to find an 

equilibrium point among the minimum and maximum efficiency values of each DMU. In our 

approach, we consider the difference point as the efficiency of players without bargaining. For 

each DMU, the equilibrium point has been determined based on the bargaining method as either a 

weighted average or relative equilibrium point among the minimum and maximum efficiency. 

The Nash Bargaining solution aims to maximize the product of usefulness against the difference 

points. Therefore, the problem can be stated as follows: 

𝑀𝑎𝑥 ∏(𝐸𝑘 − 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

)

𝑛

𝑘=1

 

𝑠. 𝑡 

�̱�𝑘 ≤ 𝐸𝑘 ≤ �̄�𝑘                                    (11) 

Where Ek is the negotiated efficiency and it is within the [�̱�𝑘, �̄�𝑘] interval. 

If necessary, grey data can be converted to usable data for DEA models using statistical techniques 

and Machine Learning. 

When there are lost or uncertain values in the problem, their values depend on several factors: the 

model’s complexity, ease of implementation, prediction accuracy, and value of existing data. 
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Averaging methods, linear regression, decision tree, and neural networks are some of the suitable 

approaches to address this issue. 

 

 

 

 

3. Practical Example 

Let us consider a service company as an example. This company has 20 decision-making units, 

three grey inputs, and two grey outputs (customer satisfaction being one of these grey outputs).  

Inputs include: 

Operation Costs ($K): Denotes the total operating costs, presented as a range to account for 

uncertainty or variations in the costs (in thousands of dollars). 

Labor Hours (K): Denotes the total number of work hours spent, presented as a range to take into 

account the possible fluctuations (in thousands of hours). 

Service Facilities (Unit): Denotes the number of service facilities or operational units involved, 

presented as a range to reflect potential alterations in service availability. 

 

Outputs include: 

Service Deliveries (Unit): Measures the number of completed service deliveries, provided as an 

interval to account for discrepancies or estimations. 

Customer Satisfaction (Score): Represents the level of customer satisfaction, reported as a score 

range to reflect variations in customer feedback or survey outcomes. 

 

Table 1. Specifications of grey inputs and grey outputs. 
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DMU I1(Operating 

Costs) 

I2(Labor 

Hours) 

I3(Service 

Facilities) 

O1(Service 

Deliveries) 

O2(Customer 

Satisfaction) 

DMU1 (87.49, 119.01) (52.44, 

79.90) 

(47.26, 62.47) (216.15, 

237.92) 

(97.36, 122.65) 

DMU2 (94.64, 111.97) (50.69, 

88.19) 

(36.62, 51.27) (206.36, 

222.20) 

(102.67, 

120.72) 

DMU3 (83.12, 103.12) (55.18, 

83.25) 

(36.22, 56.50) (204.56, 

228.54) 

(91.81, 126.71) 

DMU4 (81.16, 117.32) (56.23, 

80.40) 

(44.59, 62.75) (216.36, 

237.21) 

(96.42, 113.73) 

DMU5 (92.02, 114.16) (60.93, 

73.70) 

(47.74, 59.44) (200.14, 

230.21) 

(90.82, 121.82) 

DMU6 (81.53, 107.44) (58.19, 

80.36) 

(42.60, 55.23) (202.92, 

234.83) 

(97.74, 127.22) 

DMU7 (97.69, 114.24) (61.08, 

73.44) 

(37.64, 61.08) (201.49, 

230.63) 

(95.83, 112.99) 

DMU8 (88.31, 110.77) (52.05, 

89.61) 

(46.80, 57.88) (203.36, 

238.70) 

(91.70, 120.82) 

DMU9 (85.61, 109.96) (59.23, 

71.24) 

(47.08, 63.61) (208.92, 

232.99) 

(102.44, 

113.95) 

DMU10 (85.71, 101.23) (67.95, 

80.74) 

(37.22, 61.73) (211.62, 

239.55) 

(93.21, 127.85) 

DMU11 (89.45, 116.36) (60.55, 

72.21) 

(42.11, 59.48) (202.73, 

239.99) 

(90.96, 116.73) 

DMU12 (98.83, 105.27) (61.63, 

77.52) 

(40.21, 67.65) (200.17, 

223.53) 

(96.52, 114.24) 

DMU13 (92.82, 110.64) (66.04, 

81.93) 

(40.58, 60.32) (210.63, 

223.75) 

(98.38, 127.46) 
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DMU14 (92.34, 109.25) (52.53, 

74.07) 

(42.92, 63.32) (217.28, 

228.14) 

(97.95, 122.33) 

DMU15 (96.35, 108.68) (66.34, 

88.42) 

(41.07, 60.83) (215.78, 

237.47) 

(91.64, 123.69) 

DMU16 (90.63, 110.28) (68.54, 

83.98) 

(47.47, 65.34) (201.08, 

230.16) 

(103.82, 

118.92) 

DMU17 (91.31, 105.36) (52.93, 

87.61) 

(41.15, 64.18) (212.78, 

224.35) 

(92.89, 118.98) 

DMU18 (89.97, 102.59) (67.79, 

82.64) 

(37.34, 51.73) (217.48, 

237.21) 

(100.04, 

112.42) 

DMU19 (92.28, 116.96) (64.13, 

84.06) 

(38.92, 59.12) (200.21, 

221.85) 

(98.57, 121.38) 

DMU20 (82.47, 100.49) (63.65, 

86.48) 

(47.18, 62.04) (210.63, 

234.86) 

(92.92, 122.74) 

The aforementioned models are utilized for this dataset. The obtained results are presented in Table 

2. 

Table 2. Results obtained from the models. 

 �̱�𝑘 �̄�𝑘 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 𝐸𝑘 Ranking Average 

Calculation 

Ranking 

(Average) 

DMU1 0.63593 1.62652 0.98816 0.63593 16 1.13123 9 

DMU2 0.65328 1.84225 1.00000 0.65328 14 1.24777 3 

DMU3 0.67910 1.85714 1.00000 0.67910 11 1.26812 2 

DMU4 0.64929 1.49578 1.00000 0.62929 15 1.07254 18 

DMU5 0.62571 1.48675 0.93407 0.48675 5 1.05623 19 

DMU6 0.65500 1.68052 1.00000 0.65500 13 1.31776 1 

DMU7 0.62743 1.54099 0.97136 0.62743 19 1.08421 14 

DMU8 0.63462 1.61426 0.96132 0.63462 18 1.12444 10 

DMU9 0.67203 1.48781 1.00000 0.67203 12 1.07992 15 
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DMU10 0.71525 1.71532 1.00000 1.71532 1 1.21529 4 

DMU11 0.63499 1.51827 0.98956 0.63499 17 1.07663 17 

DMU12 0.65101 1.50323 0.91430 1.50323 4 1.07712 16 

DMU13 0.65240 1.61024 0.95115 1.61024 2 1.13132 8 

DMU14 0.68789 1.69569 1.00000 0.68789 10 1.19179 5 

DMU15 0.67931 1.54935 0.94180 1.54935 3 1.11433 12 

DMU16 0.62958 1.36908 0.93152 0.62958 9 0.99933 20 

DMU17 0.69098 1.67802 0.95984 0.69098 8 1.18450 6 

DMU18 0.73797 1.57833 1.00000 0.73797 6 1.15815 7 

DMU19 0.59656 1.58955 0.92668 0.59656 20 1.09306 13 

DMU20 0.71714 1.54096 1.00000 0.71714 7 1.12905 11 

 

In this table, the focus is on minimum (pessimistic) and maximum (optimistic) efficiency, and the 

equilibrium efficiency is calculated using the average. It is observed that based on the equilibrium 

average, units 2, 3, 4, 6, 9, 10, 14, 18, and 20 are relatively efficient. The Negotiated Efficiency 

column includes efficiency scores for each DMU after applying the Nash Bargaining method, 

considering grey data in inputs and outputs. These scores are fair and efficient, reflecting the 

uncertainty in input and output data. By reviewing the ranking columns, we notice the differences 

between the methods, indicating the advantages of our proposed method. This example illustrates 

how grey data can be managed in a service company using DEA and bargaining methods. This 

approach enables you to accurately assess the efficiency and performance of various units despite 

data uncertainty, leading to more informed decision-making. 

The Nash bargaining problem aims to maximize the profit for each party involved. For DEA with 

grey data, efficiency scores are calculated for each DMU based on the ratio of weighted outputs to 

weighted inputs. The grey intervals indicate the uncertainty in measurements, and the Nash 

bargaining problem guarantees that the chosen efficiency score balances this uncertainty to 

maximize profit or efficiency for both inputs and outputs. This approach symmetrically considers 

the contribution (output) and resource usage (input) of each DMU during the negotiation process, 

without favoring one DMU over another based on whether it is a provider of inputs or a consumer 
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of outputs. Dependent transformations include scaling and achieving feasible agreements (inputs 

and outputs). The Nash bargaining solution is consistent with changes in scale or shifts in the input 

and output distances, without altering the relative efficiency scores obtained from the negotiation 

process. Modifications in unrelated options (such as the addition or removal of DMUs without 

directly impacting the negotiation) do not affect the negotiated efficiency score. The focus is on 

negotiating between pairs of DMUs to determine efficient allocation based on the given grey 

distance data, therefore, the specifications of the Nash solution hold. 

 

4. Conclusion 

It is obvious that the conventional DEA method is not valid when there is a lack of certain data. 

The proposed method in this article involves formulating a bargaining problem with the Grey Data 

Envelopment Analysis model. The main contribution of this article is indeed the application of a 

bargaining method. Incorporating the bargaining method into the DEA model with grey data can 

improve the process of evaluating the efficiency of decision-making units. More accurate and 

comprehensive results can be obtained by using statistical techniques and machine learning to 

convert grey data into usable data and employing optimization algorithms for solving the 

bargaining model. This approach guarantees robust analysis by integrating uncertainty directly 

into the DEA framework, combined with the Nash bargaining method to guarantee a fair and 

optimal allocation of efficiency scores. The presented example shows how to manage grey data in 

a service company using DEA and bargaining methods. Despite the uncertainty of the data, this 

approach allows us to accurately evaluate the efficiency and performance of various units and 

adopt better decisions. Additionally, Nash’s proposed solution is not only Pareto optimized (i.e. 

efficient), but also possesses other specifications of Nash’s solution. 

file:///C:/Users/West/Downloads/enConflictofinterest(1).docx 
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