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ABSTRACT 

Intermediate products in network DEA interconnect the divisions that make up DMUs, while carry-over 

activities are responsible for establishing connections across multiple periods in dynamic DEA. These 

variables offer managers more detailed insights into inefficiencies within the organizations in different 

periods. A major challenge in performance evaluation is the dual role of these measures. Intermediate 

measures act as outputs for one division and inputs for another, creating a conflict that hinders managers 

from accurately assessing inefficiencies related to these measures. This paper proposes a novel approach 

to address this conflict in multi-divisional production systems by utilizing Stackelberg game theory. By 

employing this theory, we decompose the system's overall efficiency into leader’s and follower’s 

efficiencies, providing a more detailed evaluation of performance. Our model makes a significant 

contribution to the literature by developing a dynamic network DEA model. This model resolves conflicts 

arising from the dual role of connecting measures and establishes a Stackelberg-game dynamic between 

periods and divisions, ensuring continuity of flows. Additionally, in real-world problems, some data change 

proportionally (radially), while others change non-proportionally (non-radially). This paper applies a 

hybrid model, combining both radial and non-radial approaches, for efficiency evaluation. To verify the 

proposed model, we assess the performance of 14 petrochemical units over two years. The results show 

that the intermediate measures linking the followers to the leader need to be fully controlled by the 

leader. 

Keywords: Dynamic Network DEA, Stackelberg Game theory, Intermediate measures, Carry-over activities, 

Hybrid DEA model. 

1. Introduction 

Data Envelopment Analysis (DEA), introduced by Charnes et al. in 1978, serves as a robust methodology 

for assessing the efficiency of peer decision-making units (DMUs), which utilize the same multiple inputs 

to generate the same multiple outputs. Traditional DEA models view DMUs as black boxes, neglecting 

their internal structures (Färe and Grosskopf, 2000). Consequently, these models do not provide detailed 

insights for decision makers to pinpoint inefficiencies within DMUs arising from interactions among 

various production stages (Avkiran, 2009). To remedy this, researchers have developed Network DEA 

models, which evaluate efficiency scores by considering the internal structures of DMUs. This approach 

involves defining intermediate measures that capture the interactions between different production 

stages. Intermediate products, generated in one stage and utilized in subsequent stages, function both as 

outputs and inputs, leading to a dual role that can complicate efficiency measurement. The early stage 

strives to maximize its output for efficiency, while the later stage aims to minimize its input, creating a 

potential conflict. Scholars have proposed various solutions to this issue. Kao and Hwang (2008) combined 

the efficiency scores of two stages using a multiplicative (geometric) method, whereas Chen et al. (2009) 

used a weighted additive model. Generally, differences in these models stem from the assumptions about 

including intermediate measures in the constraints. Kao (2018) classified links into three types: 

independent, relational, and cooperative. The cooperative type is further divided into scenarios where 



the goal is either set at the current level or optimally determined. Kao (2019) redefined the relational case 

from Kao (2018) as non-cooperative and also discussed the cooperative case, which aligns with the 

continuity condition introduced by Tone and Tsutsui (2009). This concept has been widely adopted in 

subsequent studies to develop network DEA models for efficiency measurement, including works by 

Rasinojehdehi and Valami (2023) and Lu et al. (2016). Hassanzadeh and Mostafaee (2018) explored six 

scenarios related to link control among different stages for evaluating intermediate measures in Network 

DEA. These scenarios include control by the earlier stage, the later stage, both stages in a non-cooperative 

manner, both stages in a cooperative manner, no stage in a cooperative manner, and no stage in a non-

cooperative manner. Tone and Tsutsui (2009) referred to the scenarios where both stages control the link 

cooperatively as free links and where no stage controls the link cooperatively as fixed links. Additionally, 

Rasinojehdehi et al. (2023) proposed a Network SBM model that endogenously determines the role of 

intermediate measures to optimize the objective function. 

Network DEA is particularly noteworthy for its ability to investigate inefficiency sources within DMUs. 

However, incorporating dynamic aspects into network systems poses significant challenges. While 

network modeling offers a theoretical framework for analyzing the internal structure of DMUs, dynamic 

modeling elucidates the connections between periods through carry-over activities. Dynamic Network 

DEA (DNDEA) models address the complexity of efficiency evaluation by integrating multiple dynamic 

stages linked through network structures in each period. This approach involves comparing a series of 

static models (Chao et al., 2018), allowing for a comprehensive analysis. It enables the observation of 

changes in overall efficiency, dynamic adjustments in divisional efficiency, potential improvements, and 

efficiency estimates derived from a holistic assessment that considers interactions between periods and 

divisions (Torres & Ramos, 2024). The innovative DNDEA approach provides a deeper insight into the 

traditionally opaque processes of DMUs, capturing interactions across different time periods. 

The seminal study by Chen (2009) marks a pioneering advancement in the research area of DNDEA. This 

development integrates dynamic effects into the network structure to assess the efficiency of subunits 

and the overall system. Subsequently, scholars and researchers have conducted numerous theoretical 

studies, leading to a wide range of practical applications across various sectors such as healthcare 

(Mirmozaffari and kamal, 2023), banking (Chaoqun et al., 2024), transportation (Losa et al., 2020; 

Rasinojehdehi et al., 2023; Liu et al., 2024), education (Tran, 2021; Bagherzadeh Valami & Raeinojehdehi, 

2016), research and development (Nojehdehi, 2011; Tatlari et al., 2023; Lim & Kim, 2022), and energy 

(Alizadeh et al., 2020). 

One of the most renowned models in the DNDEA literature is the one proposed by Tone and Tsutsui 

(2014). They developed their model based on the Slack-Based Measure (SBM) approach, building upon 

their earlier Network SBM (NSBM) and dynamic SBM models from 2009 and 2010, respectively (Tone & 

Tsutsui, 2009, 2010). Their models assume the continuity of link flows between divisions and periods. 

Lozano (2015) extends this framework by relaxing the intermediate product constraints of the NSBM free 

link model, allowing for more intermediate products to be produced internally than consumed. 

Hinojosa et al. (2016) classify DEA models into different categories, such as game theory, relational, 

weighted additive efficiency decomposition, slack-based network measure, slack-based inefficiency 

measure, dynamic network, and the Malmquist index approach. Additionally, DEA network models have 

various extensions and variations, some utilizing the envelope model and others the multiplier model. 

These models differ in their approaches to handling the overall efficiency index and the relationships 



between processes. A literature review by Alves and Meza (2023) indicates that game theory-based DEA 

methods have been less extensively explored in DEA research. 

Game theory, originating from the revolutionary work of John von Neumann and Oskar Morgenstern 

(1944), was further extended by inspiring work of John Forbes Nash (1950), who mathematically 

formulated strategic interactions among rational decision-makers (DMs). Game theory has applications 

across various social science domains and is extensively utilized in decision-making problems. Myerson 

(1998) defined game theory as the study of mathematical models for strategic interactions among rational 

decision-makers (DMs). Here, we review several studies that integrate game theory with DEA. 

Liang et al. (2008) proposed a two-stage DEA model using concepts from both noncooperative and 

cooperative games, illustrated with a manufacturer and retailer scenario. Yu and Rakshit (2023) combined 

DEA and game theory in the airline industry to evaluate input and output targets. Their model facilitates 

impartial and rational negotiation between inputs and outputs, aiming to achieve fair and optimal 

solutions for both. 

Shi et al. (2020) proposed a novel parallel fuzzy DEA model for assessing efficiency in parallel systems with 

two components, leveraging Stackelberg game theory. Their model decomposes the system's efficiency 

into a series of sub-system efficiency scores, simplifying the process by avoiding the need for α-cuts. They 

implemented this model to evaluate the performance of chemistry departments at UK universities. 

Tavana and Khalili-Damghani (2014) presented a novel two-stage Stackelberg DEA model incorporating 

uncertainty within a two-stage network production process. The aim of their study is to measure both 

system and stages’ efficiency in parallel networks under a fuzzy environment, utilizing Stackelberg game 

theory. Specifically, their model explores the leader-follower dynamics between process efficiencies. 

Zare et al. (2018) introduced a hybrid model combining DEA and game theory to enhance performance 

measurement in healthcare centers. Their approach integrates input and output variables related to 

healthcare efficiency, identified through a comprehensive literature review and internal organizational 

data. Expert input is utilized to weight and prioritize these indicators. The model's applicability and 

effectiveness are demonstrated through a case study, which provides valuable insights into the efficiency 

levels of regional healthcare centers. This hybrid model offers a refined method for assessing and 

improving performance and productivity in healthcare management systems. 

Ma et al. (2020) presented additive centralized and Stackelberg DEA models for evaluating two-stage 

systems with shared resources. Their approach addresses the inefficiency in traditional DEA models by 

considering the internal structure of decision-making units (DMUs). The proposed models evaluate 

efficiency in cooperative and non-cooperative game settings, highlighting the impact of strategic decisions 

on resource allocation. Through a case study in the banking sector, they demonstrated the model's ability 

to decompose and measure efficiency more accurately. 

Lim and Song (2024) introduced a "pre-mortem Stackelberg game approach" as an alternative to 

traditional decentralized network DEA models, addressing the issue of infeasibility in such models. By 

incorporating non-radial slacks, the proposed approach optimally adjusts intermediate products and 

improves follower efficiency. An empirical study on a Korean life insurance company demonstrated that 

the model provides accurate efficiency measures, even when conventional DEA models fail. This method 



enhances the use of non-cooperative game theory in network DEA, especially under variable returns to 

scale (VRS) assumptions. 

Tabasi et al. (2019) enhanced DEA by introducing multistage DEA, which accounts for internal relations 

between DMUs. They compare efficiencies derived from Nash, Centralized, and Stackelberg games, 

finding that Centralized and Stackelberg games yield higher efficiencies than Nash. They also integrate 

fuzzy and grey theory to handle real-world data uncertainties, with their case study focusing on Iran 

Khodro Company. 

In this paper, we introduce a novel dynamic network DEA model that integrates game theory to assess 

the overall, period, and divisional efficiency scores of multi divisional network systems. This study makes 

three significant contributions to the literature. The first is the development of an efficiency measurement 

framework that combines dynamic network DEA with Stackelberg game theory, a relatively 

underexplored area in DEA research. The second contribution is addressing the dual role of intermediate 

measures and carry-over activities, incorporating their inefficiencies into the efficiency measurement 

process. The third contribution is the development of a novel hybrid DNDEA model that incorporates data 

changing both radially and non-radially. 

The remainder of this paper is organized as follows: Section 2 presents foundational concepts to enhance 

understanding of the proposed model. Section 3 introduces the hybrid DNDEA model. In Section 4, we 

validate the model with a numerical example from the petrochemical industry. Finally, Section 5 concludes 

the paper. 

2. Preliminaries  

In this section, we review the key preliminaries necessary for this research. 

2.1 hybrid DEA model 

According to the literature, the DEA models proposed by the scholars and researchers are divided into 

two main categories; radial and non-radial. Radial models, such as the CCR model (Charnes et al. 1978) 

with CRS assumption and the BCC model (Banker et al. 1984) with VRS assumption, suffer from a 

significant limitation: they do not consider non-radial input or output slacks. In contrast, non-radial 

models, including the SBM model (Tone 2001), the additive model (Charnes et al. 1985), the Russell 

measure model (Russel 1985), and the Enhanced Russell Measure (ERM), (Pastor et al1999), fail to account 

for the radial characteristics of inputs or outputs. To address these shortcomings, Tone (2004) introduced 

a hybrid measure of efficiency that integrates these models into a unified framework. It is important to 

understand the differences in input and output characterization. Radial inputs or outputs change 

proportionally, while non-radial inputs or outputs change disproportionately. For instance, consider 

(𝑥1, 𝑥2, . . . , 𝑥𝑚) as radial inputs and (𝑥𝑚+1, 𝑥𝑚+2, . . . , 𝑥𝑛) as non-radial inputs. 

Radial inputs are those that change proportionately, represented as (𝛼𝑥1, 𝛼𝑥2, . . . , 𝛼𝑥𝑚) with 𝛼 ≥  0. In 

contrast, non-radial inputs are those that change non-proportionately, with each input adjusting based 

on its slack. As described by Tone (2004), for representing the hybrid measure, it is assumed that the input 

and output data matrices are 𝑋 ∈  𝑅+
𝑚×𝑛 and 𝑌 ∈  𝑅+

𝑠×𝑟, where 𝑛, 𝑚, and 𝑠 denote the number of DMUs, 

inputs, and outputs, respectively. The input matrix 𝑋 can be divided into radial and non-radial 

components, 𝑋𝑅 ∈  𝑅+
𝑚1×𝑛

 and 𝑋𝑁𝑅 ∈  𝑅+
𝑚2×𝑛

, with  𝑚 = 𝑚1 + 𝑚2. Similarly, the output matrix 𝑌 is 

divided into radial and non-radial components, 𝑌𝑅 ∈  𝑅+
𝑠1×𝑛

 Y   and 𝑌𝑁𝑅 ∈  𝑅+
𝑠2×𝑛

, with 𝑠 = 𝑠1 + 𝑠2, as 

equation (1): 

                       𝑋 =  (𝑋𝑅 , 𝑋𝑁𝑅)𝑇 and 𝑌 =  (𝑌𝑅 , 𝑌𝑁𝑅)𝑇                                     (1) 



It is important to note that the input and output data must be positive, i.e., 𝑋 >  0 and 𝑌 >  0. The 

production possibility set (PPS) P is defined as equation (2): 

 

                      𝑃 =  {(𝑥, 𝑦) | 𝑥 ≥  𝑋𝜆, 𝑦 ≤  𝑌𝜆, 𝜆 ≥  0, 𝜆 ∈  𝑅𝑛}                  (2) 

 

Consider a specific DMU under evaluation, denoted as 𝑝, with the inputs and outputs represented as 

(𝑥𝑝
𝑅 , 𝑥𝑝

𝑁𝑅, 𝑦𝑝
𝑅 , 𝑦𝑝

𝑁𝑅) ∈ 𝑃. Given the distinct characteristics of inputs and outputs, we have the relationships 

presented in equation (3): 

𝜃𝑥𝑝
𝑅 = 𝑋𝑅𝜆 + 𝑠𝑅−

𝑥𝑝
𝑁𝑅 = 𝑋𝑁𝑅𝜆 + 𝑠𝑁𝑅−

𝜙𝑦𝑝
𝑅 = 𝑌𝑅𝜆 − 𝑠𝑅+

𝑦𝑝
𝑁𝑅 = 𝑌𝑁𝑅𝜆 − 𝑠𝑁𝑅+

                             (3) 

Given the conditions 𝜃 ≤  1, 𝜑 ≥  1, and 𝜆, 𝑠𝑅−, 𝑠𝑁𝑅−, 𝑠𝑅+, 𝑠𝑁𝑅+ ≥ 0., the input slacks are denoted by 

the vectors 𝑠𝑅− ∈ 𝑅𝑚1  and 𝑠𝑁𝑅− ∈ 𝑅𝑚2, which correspond to the surplus in radial and non-radial inputs, 

respectively. Similarly, the output slacks are represented by the vectors 𝑠𝑅+ ∈ 𝑅𝑠1 and 𝑠𝑁𝑅+ ∈ 𝑅𝑠2, 

corresponding to the shortages in radial and non-radial outputs, respectively. As referenced in Tone 

(2004), the hybrid model is presented in equations (4) – (9): 

 

𝜌𝑝 = min

1 − (
𝑚1
𝑚

) (1 − 𝜃) −
1
𝑚

∑  
𝑚2
𝑖=1  

𝑠𝑖
𝑁𝑅−

𝑥𝑖𝑝
𝑁𝑅

1 + (
𝑠1
𝑠 ) (𝜙 − 1) −

1
𝑠

∑  
𝑠2
𝑟=1  

𝑠𝑖
𝑁𝑅+

𝑦𝑟𝑝
𝑁𝑅

 

(4) 

 s.t.                                     𝜃𝑥𝑝
𝑅 ≥ 𝜆𝑋𝑅 (5) 

𝑥𝑝
𝑁𝑅 = 𝜆𝑋𝑁𝑅 + 𝑠𝑁𝑅− (6) 

𝜙𝑦𝑝
𝑅 ≤ 𝜆𝑌𝑅 (7) 

𝑦𝑝
𝑁𝑅 = 𝜆𝑌𝑁𝑅 − 𝑠𝑁𝑅+ (8) 

𝜃 ≤ 1, 𝜙 ≥ 1, 𝜆, 𝑠𝑁𝑅−, 𝑠𝑁𝑅+ ≥ 0 (9) 
 

 

The objective function (4) is denoted as 𝜌𝑝, which is unit invariant, meaning it remains unchanged 

regardless of the measurement units of the data. It's important to note that the objective function is not 

directly influenced by 𝑠𝑅−and 𝑠𝑅+, reflecting the free disposability of these radial slacks. Let 

(𝜃∗,  𝜑∗, 𝜆∗, 𝑠∗𝑁𝑅−, 𝑠∗𝑁𝑅+) be an optimal solution for the model, presented in equations (4-9). According 

to Tone (2004), a DMU is considered hybrid-efficient if and only if 𝜌𝑝
∗ = 1. This condition is met when, 

𝜃∗ =  1,  𝜑∗ =  1, and 𝑠∗𝑁𝑅− = 0, 𝑠∗𝑁𝑅+ = 0. 

This section reviewed the fundamentals of hybrid DEA models. In the next section, we introduce our novel 

hybrid DNDEA model. 

2.2 Stackelberg Game and Its Justification in DNDEA 

The Stackelberg model, first introduced by Heinrich Freiherr von Stackelberg in 1934, is an economic 

strategy game that depicts a competitive scenario in which a leading firm and a following firm make 



sequential decisions regarding market quantity. Building on this framework, Chen and Cruz (1972) and 

Simaan and Cruz (1973) extended the original static, two-person, non-cooperative, nonzero-sum 

Stackelberg game to a dynamic game format, incorporating asymmetric information. Later, Shimizu and 

Aiyoshi (1981) generalized the concept into a bi-level Stackelberg game, proposing the interior penalty 

method, also known as the barrier method, to solve nonlinear min-max optimization problems based on 

the Stackelberg game. Game theory serves as a widely recognized analytical tool for studying interactions 

among multiple participants and has applications across a variety of fields. Games are typically categorized 

by characteristics such as cooperation, simultaneity, information availability, symmetry, and sum type. In 

this paper, we concentrate on the Stackelberg game, a non-cooperative, sequential game model with 

perfect information. In Stackelberg games, players act in a specific order, where the player moving first is 

known as the leader, and the one moving subsequently is the follower. The leader’s strategy is typically 

made with the expectation of how the follower will respond. In turn, the follower’s actions are determined 

based on the leader’s decisions.  

The justification for using Stackelberg game theory within the DNDEA framework lies in its ability to model 

complex decision-making processes, which are common in large multi-divisional systems. Real-world 

organizations often feature a dominant division (e.g., production or operations) that drives decision-

making, while other divisions adjust their strategies in response. This structure creates interdependencies 

between divisions, which can be effectively captured using Stackelberg game theory. Additionally, the 

dynamic nature of efficiency changes over time in multi-period systems necessitates the use of Dynamic 

Network DEA, ensuring that both cross-divisional and inter-temporal interactions are fully accounted for. 

In this section, we reviewed the fundamental concepts necessary for this study. In the next section, we 

apply these concepts to present our novel model. 

 

3. The proposed model  

In this section, we propose a novel framework for evaluating the efficiency of a multi-divisional production 

systems in a dynamic environment. For simplicity, we assume that the division 1 (𝐷𝑖𝑣 1) acts as the leader 

and the other divisions as the followers. The leader in the 1st division optimizes its efficiency and 

determines the role of intermediate measures using binary here-and-now variables in the mixed integer 

linear programming approach described in equations (10) – (33). Once the roles of intermediates in the 

first stage are established, we assess the overall score by fixing the leader’s score and the optimal 

configuration of intermediate measures and carry-overs determined from the leader’s division. 

Assume there are 𝑛 DMUs indexed by 𝑗 =  1, … , 𝑛  across  𝑡 =  1 … , 𝑇 time periods. At each period, the 

DMUs have 𝐾 divisions indexed by 𝑘, (𝑘 = 1, 2, . . , 𝐾), utilize 𝑚𝑘 external inputs, consisting of 𝑚𝑘1radial 

inputs and 𝑚𝑘2 non-radial inputs, where 𝑚1𝑘 + 𝑚2𝑘 = 𝑚𝑘. Additionally, at each period, 𝐷𝑖𝑣 𝑘 of the 

DMUs produce 𝑠𝑘 external outputs, including 𝑠1𝑘  radial outputs and 𝑠2𝑘 non-radial outputs, where 

𝑠1𝑘+𝑠2𝑘 = 𝑠𝑘. 

Let  𝑥𝑖𝑗𝑡
𝑘𝑅 ,(𝑖 = 1, … , 𝑚1𝑘) , and 𝑥𝑖𝑗𝑡

𝑘𝑁𝑅 ,(𝑖 = 1, … , 𝑚2𝑘), represent radial and non-radial inputs, respectively, 

for the 𝐷𝑖𝑣 𝑘 of the 𝑗𝑡ℎ DMU at time t. Similarly, 𝑦𝑟𝑗𝑡
𝑘𝑅  (𝑟 = 1, … , 𝑠1𝑘), and 𝑦𝑟𝑗𝑡

𝑘𝑁𝑅 , (𝑟 = 1, … , 𝑠2𝑘) , denote 

radial and non-radial outputs for the 𝐷𝑖𝑣 𝑘 of the 𝑗𝑡ℎ DMU at time t. 𝑧𝑑𝑗𝑡
𝑁𝑅(𝑘,ℎ)

, (𝑑 = 1, … , 𝑑1
(𝑘,ℎ))  and 

𝑧𝑑𝑗𝑡
𝑁𝑅(𝑘,ℎ)

,  (𝑑 = 1, … , 𝑑2
(𝑘,ℎ))  denote, respectively, radial and non-radial intermediate measures between 

𝐷𝑖𝑣 𝑘 and 𝐷𝑖𝑣 ℎ for the 𝑗𝑡ℎ DMU at time t. 



𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘𝑔𝑅

, (𝑐 = 1, … , 𝑛1𝑔𝑘)  and 𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘𝑏𝑅 , (𝑐 = 1, … , 𝑛1𝑔𝑘) , denote respectively, good and bad radial 

carry-overs of 𝐷𝑖𝑣 𝑘 between period t and period t+1, where 𝑛1𝑔𝑘 + 𝑛1𝑏𝑘 = 𝑛1𝑘 and 𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘𝑔𝑁𝑅

,

(𝑐 = 1, … , 𝑛2𝑔𝑘)  and 𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘𝑏𝑁𝑅 , (𝑐 = 1, … , 𝑛2𝑏𝑘) , denote respectively, good and bad non-radial carry-

overs of  𝐷𝑖𝑣 𝑘 from period t to period t+1 , where  and 𝑛2𝑏𝑘 + 𝑛2𝑔𝑘 = 𝑛𝑛𝑘. the model for evaluating the 

leader’s efficiency is outlined in equations (10) to (33). 

𝜒𝑝
∗𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑀𝑖𝑛 𝜒𝑝

𝑙𝑒𝑎𝑑𝑒𝑟 =

∑ 𝑊𝑡𝑇
𝑡=1 [1−

𝑚11
𝑚1

(1−𝜃𝑡1)−
𝑛1𝑏1
𝑛𝑏1

(1−𝜙𝑡1)−
𝑑1

(ℎ,1)

𝑑(ℎ,1)
(1−𝜎1𝑡)−

1

𝑚𝑘
∑  

𝑚2
𝑖=1

𝑠
𝑖𝑝𝑡
−𝑘,𝑁𝑅

𝑥𝑖𝑜𝑡
𝑁𝑅 −

1

𝑛𝑏𝑘
∑  

𝑛2𝑏1
𝑖=1

𝑠
𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑏𝑁𝑅−𝑘 −

1

𝑑2
(ℎ,1)

∑  
𝑑2

(ℎ,1)

𝑖=1

𝑠𝑑𝑝𝑡
−𝑁𝑅

𝑧𝑑𝑝𝑡
𝑁𝑅 ]

∑ 𝑊𝑡𝑇
𝑡=1 [1−

𝑠11
𝑠1

(1−𝜌𝑡1)−
𝑛1𝑔1
𝑛𝑔1

(1−𝜓𝑡1)−
𝑑1
d

(1−𝜏1𝑡)−
1

𝑚1
∑  

𝑚21
𝑖=1

𝑠
𝑖𝑝𝑡
−𝑘,𝑁𝑅

𝑥𝑖𝑜𝑡
𝑁𝑅 −

1

𝑛𝑔1
∑  

𝑛2𝑔1
𝑖=1

𝑠
𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑏𝑁𝑅−𝑘 −

1

𝑑2
(1,ℎ) ∑  

𝑑2
(1,ℎ)

𝑖=1

𝑠𝑑𝑝𝑡
−𝑁𝑅

𝑧𝑑𝑝𝑡
𝑁𝑅 ]

         (10) 

s.t.                   𝜃𝑡𝑘𝑥𝑖𝑝𝑡
𝑅 ≥ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,𝑘𝑥𝑖𝑗𝑡

𝑅  (𝑖 = 1, … , 𝑚1𝑘 , ∀𝑡, ∀k) (11) 

𝑥𝑖𝑝𝑡
𝑘,𝑁𝑅 − 𝑠𝑖𝑝𝑡

−𝑘,𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑥𝑖𝑗𝑡
𝑘,𝑁𝑅  (𝑖 = 1, … , 𝑚2𝑘 , ∀𝑡, ∀k) 

(12) 

𝜌𝑡𝑘𝑦𝑟𝑝𝑡
𝑘,𝑅 ≤ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,𝑘𝑦𝑟𝑗𝑡

𝑘,𝑅  (𝑟 = 1, … , 𝑠1𝑘 , ∀𝑡, ∀k) 

(13) 

𝑦𝑟𝑝𝑡
𝑘,𝑁𝑅 + 𝑠𝑟𝑝𝑡

+𝑘,𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑦𝑛𝑡
𝑘,𝑁𝑅  (𝑟 = 1, … , 𝑠2𝑘 , ∀𝑡, ∀k) 

(14) 

𝜓𝑡𝑘𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑔𝑅

≤ ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝑔𝑅

  (𝑐 = 1, … , 𝑛1𝑔𝑘 , ∀𝑡, ∀k) 

(15) 

𝜙𝑡𝑘𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘𝑏𝑅 ≥ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝑔𝑅
  (𝑐 = 1, … , 𝑛1𝑏𝑘, ∀𝑡, ∀k) 

(16) 

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑔𝑁𝑅

+ 𝑠𝑐𝑝(𝑡,𝑡+1)
+𝑘,𝑔𝑁𝑅

= ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝑔𝑁𝑅

  (𝑐 = 1, … , 𝑛2𝑔𝑘 , ∀𝑡, ∀k) 

(17) 

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑏𝑁𝑅 − 𝑠𝑐𝑝(𝑡,𝑡+1)

−𝑘,𝑏𝑁𝑅 = ∑
𝑛

 𝜆𝑗
𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝑏𝑁𝑅  (𝑐 = 1, … , 𝑛2𝑏𝑘 , ∀𝑡, ∀k) 
(18) 

∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝛼 = ∑  𝑛

𝑗=1 𝜆𝑗
𝑡+1,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝛼   (𝑐 = 1, … , 𝑛2𝑏𝑘 , ∀𝑡, ∀k) 
(19) 

𝜏𝑡𝑘𝑧𝑑𝑝𝑡
𝑅(𝑘,ℎ)

≤ ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑑𝑗𝑡
𝑅   (𝑑 = 1, … , 𝑑1

(𝑘,ℎ), ∀𝑡) 
(20) 

𝑀(1 − 𝛿ℎ𝑡) + 𝜎𝑡ℎ𝑧𝑑𝑝𝑡
𝑅(𝑘,ℎ)

≥ ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,ℎ𝑧𝑑𝑗𝑡
𝑅(𝑘,ℎ)

  (𝑑 = 1, … , 𝑑1
(𝑘,ℎ), ∀𝑡) 

(21) 

0 ≤ 𝜎𝑘𝑡 ≤ 𝛿𝑘𝑡 ∀𝑡 (22) 

𝜏𝑘𝑡 ≥ 1 − 𝑀𝛿𝑘𝑡 ∀𝑡 (23) 

𝑧𝑑
𝑁𝑅(𝑘,ℎ)

− 𝑠𝑑𝑝𝑡
−𝑁𝑅 = ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,ℎ𝑧𝑑𝑗𝑡

𝑁𝑅(𝑘,ℎ)
  (𝑑 = 1, … , 𝑑2

(𝑘,ℎ), ∀𝑡) (24) 

                           𝑠𝑑𝑝𝑡
−𝑁𝑅 ≤ 𝑀𝜉2𝑡   (𝑑 = 1, … , 𝑑2

(𝑘,ℎ), ∀𝑡) (25) 

       𝑧𝑑
𝑁𝑅 ≤ 𝑧𝑑𝑝𝑡

𝑁𝑅(𝑘,ℎ)
− 𝑀(1 − 𝜉𝑘𝑡) (𝑑 = 1, … , 𝑑2

(𝑘,ℎ), ∀𝑡) (26) 

                            𝑧𝑑
𝑁𝑅(𝑘,ℎ)

≤ 𝑧𝑑𝑝𝑡
𝑁𝑅(𝑘,ℎ)

+ 𝑀(1 − 𝜉𝑘𝑡) (𝑑 = 1, … , 𝑑2
(𝑘,ℎ), ∀𝑡) (27) 

𝑧𝑑
𝑁𝑅(𝑘,ℎ)

+ 𝑠𝑑𝑝𝑡
+𝑁𝑅(𝑘,ℎ)

= ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑑𝑗𝑡
𝑁𝑅(𝑘,ℎ)

  (𝑑 = 1, … , 𝑑2
(𝑘,ℎ), ∀𝑡) (28) 

𝑠𝑑𝑝𝑡
+𝑁𝑅(𝑘,ℎ)

≤ 𝑀(1 − 𝜉𝑘𝑡) (𝑑 = 1, … , 𝑑2
(𝑘,ℎ), ∀𝑡) (29) 

𝑧𝑝𝑑
𝑁𝑅(𝑘,ℎ)

≥ 𝑧𝑑𝑝𝑡
𝑁𝑅(𝑘,ℎ)

− 𝑀𝜉𝑘𝑡 (𝑑 = 1, … , 𝑑2
(𝑘,ℎ), ∀𝑡) (30) 

𝑧𝑝𝑑𝑡
𝑁𝑅(𝑘,ℎ)

≤ 𝑧𝑝𝑑𝑝𝑡
𝑁𝑅(𝑘,ℎ)

+ 𝑀𝜉𝑘𝑡 (𝑑 = 1, … , 𝑑2
(𝑘,ℎ), ∀𝑡) (31) 



∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑑𝑗𝑡
𝛽(𝑘,ℎ)

= ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,ℎ𝑧𝑑𝑗𝑡
𝛽(𝑘,ℎ)

  (𝑑 = 1, … , d(𝑘,ℎ), ∀𝑡) 

(32) 

𝜉𝑘𝑡, 𝛿𝑘𝑡 ∈ {0,1}, 𝑧𝑑
𝑁𝑅: 𝑓𝑟𝑒𝑒, 𝑧𝑝𝑑

𝑁𝑅: 𝑓𝑟𝑒𝑒, 𝑠𝑖𝑝𝑡
−𝑘,𝑁𝑅 ≥ 0, 𝑠𝑟𝑝𝑡

+𝑘,𝑁𝑅 ≥ 0, 𝑠𝑐𝑝(𝑡,𝑡+1)
+𝑘,𝑔𝑁𝑅

≥ 0, 𝑠𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅 ≥ 0, 𝑠𝑑𝑝𝑡

−𝑁𝑅 ≥ 0, 𝑠𝑑𝑝𝑡
+𝑁𝑅 ≥ 0, 𝜆𝑗

𝑡,𝑘 ≥ 0, ∀𝑡, ∀d, ∀i, ∀c (33) 

 

Equation (10) represents the objective function, which evaluates the leader's score. Equations (11) and 

(12) define the constraints for radial and non-radial external inputs, respectively. Equations (13) and (14) 

outline the constraints for radial and non-radial external outputs. Equations (15)-(19) describe the 

constraints related to carry-over activities, with Equation (19) ensuring the continuity of carry-overs from 

one period to the next. The symbol 𝛼 stands for radial good, radial bad, non-radial good, and non-radial 

bad carry-overs. 

 Equations (20) to (32) deal with constraints related to intermediate measures. Specifically, constraint (20) 

considers the radial intermediate measure 𝑧𝑑𝑗𝑡
𝑅(𝑘,ℎ)

 as an output from the 𝐷𝑖𝑣𝑘, while constraint (21) 

considers it as an input to the follower. 

The here-and-now binary variable 𝜉𝑘𝑡 determines whether 𝑧𝑑𝑗𝑡
𝑅(𝑘,ℎ)

 is treated as an input to the 𝐷𝑖𝑣ℎ or an 

output from the 𝐷𝑖𝑣𝑘. When 𝛿𝑘𝑡 = 0, 𝑧𝑑𝑗𝑡
𝑅(𝑘,ℎ)

 is considered a radial output from the 𝐷𝑖𝑣𝑘, making 

constraint (21) redundant. Conversely, when 𝛿𝑘𝑡 = 1, 𝑧𝑑𝑗𝑡
𝑅(𝑘,ℎ)

is considered a radial input to the 𝐷𝑖𝑣ℎ, 

making constraint (20) redundant. Similarly, constraints (24) through (31) address the non-radial 

intermediate measure 𝑧𝑑𝑗𝑡
𝑁𝑅(𝑘,ℎ)

. The binary variable 𝜉𝑘𝑡 determines the role of the non-radial intermediate 

measure 𝑧𝑑𝑗𝑡
𝑁𝑅(𝑘,ℎ)

. Constraints (32) keeps the continuity of linking flow from the leader’s division to the 

follower’s division. The symbol 𝛽 stands for radial and non-radial intermediate measures. 

After obtaining the leader scores and the optimal values of the here-and-now variables, the next step is 

to use the leader's efficiency as constraints and fix the role of intermediate measures using the optimal 

values of the here-and-now variables when evaluating the overall system's efficiency (𝜒𝑝
𝑜𝑣𝑒𝑟𝑎𝑙𝑙). To do this, 

we solve the model outlined in equations (34) – (52). 

𝜒𝑝
∗𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑀𝑖𝑛 𝜒𝑝

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =

∑ 𝑊𝑡𝑇
𝑡=1 ∑ 𝑊𝑘[1−

𝑚1𝑘
𝑚𝑘

(1−𝜃𝑡𝑘)−
𝑛1𝑏𝑘
𝑛𝑏𝑘

(1−𝜙𝑡𝑘)−
𝑑1
d

(1−𝜎𝑡)−
1

𝑚𝑘
∑  

𝑚2
𝑖=1

𝑠𝑖𝑝𝑡
−𝑘,𝑁𝑅

𝑥𝑖𝑜𝑡
𝑁𝑅 −

1

𝑛𝑏𝑘
∑  

𝑛2𝑏
𝑖=1

𝑠
𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑏𝑁𝑅−𝑘 −

1

𝑑
∑  

𝑛2𝑏
𝑖=1

𝑠𝑑𝑝𝑡
−𝑁𝑅

𝑧𝑑𝑝𝑡
𝑁𝑅 ]𝐾

𝑘=1

∑ 𝑊𝑡𝑇
𝑡=1 ∑ 𝑊𝑘[1−

𝑠1𝑘
𝑠𝑘

(1−𝜌𝑡𝑘)−
𝑛1𝑔𝑘
𝑛𝑔𝑘

(1−𝜓𝑡𝑘)−
𝑑1
d

(1−𝜏𝑡)−
1

𝑚𝑘
∑  

𝑚2𝑘
𝑖=1

𝑠
𝑖𝑝𝑡
−𝑘,𝑁𝑅

𝑥𝑖𝑜𝑡
𝑁𝑅 −

1

𝑛𝑔𝑘
∑  

𝑛2𝑔𝑘
𝑖=1

𝑠
𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑏𝑁𝑅−𝑘 −

1

𝑑
∑  

𝑑2
𝑖=1

𝑠𝑑𝑝𝑡
−𝑁𝑅

𝑧𝑑𝑝𝑡
𝑁𝑅 ]𝐾

𝑘=1

 (34) 

s.t.  𝜃𝑡𝑘𝑥𝑖𝑝𝑡
𝑅 ≥ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡𝑘𝑥𝑖𝑗𝑡

𝑅  (𝑖 = 1, … , 𝑚1𝑘, ∀𝑡, ∀k) (35) 

𝑥𝑖𝑝𝑡
𝑘,𝑁𝑅 − 𝑠𝑖𝑝𝑡

−𝑘,𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑥𝑖𝑗𝑡
𝑘,𝑁𝑅  (𝑖 = 1, … , 𝑚2𝑘 , ∀𝑡, ∀k) (36) 

𝜌𝑡𝑘𝑦𝑟𝑝𝑡
𝑘,𝑅 ≤ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,𝑘𝑦𝑟𝑗𝑡

𝑘,𝑅  (𝑟 = 1, … , 𝑠1𝑘 , ∀𝑡, ∀k) (37) 

𝑦𝑟𝑝𝑡
𝑘,𝑁𝑅 + 𝑠𝑟𝑝𝑡

+𝑘,𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑦𝑛𝑡
𝑘,𝑁𝑅  (𝑟 = 1, … , 𝑠2𝑘 , ∀𝑡, ∀k) (38) 

𝜓𝑡𝑘𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑔𝑅

≤ ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝑔𝑅

  (𝑐 = 1, … , 𝑛1𝑔𝑘 , ∀𝑡, ∀k) (39) 

𝜙𝑡𝑘𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘𝑏𝑅 ≥ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝑔𝑅
  (𝑐 = 1, … , 𝑛1𝑏𝑘 , ∀𝑡, ∀k) (40) 

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑔𝑁𝑅

+ 𝑠𝑐𝑝(𝑡,𝑡+1)
+𝑘,𝑔𝑁𝑅

= ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝑔𝑁𝑅

  (𝑐 = 1, … , 𝑛2𝑔𝑘 , ∀𝑡, ∀k) (41) 

𝑧𝑐𝑝(𝑡,𝑡+1)
𝑘,𝑏𝑁𝑅 − 𝑠𝑐𝑝(𝑡,𝑡+1)

−𝑘,𝑏𝑁𝑅 = ∑
𝑛

 𝜆𝑗
𝑡𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝑏𝑁𝑅  (𝑐 = 1, … , 𝑛2𝑏𝑘 , ∀𝑡, ∀k) 
(42) 

∑  𝑛
𝑗=1 𝜆𝑗

𝑡,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)
𝑘,𝛼 = ∑  𝑛

𝑗=1 𝜆𝑗
𝑡+1,𝑘𝑧𝑐𝑗(𝑡,𝑡+1)

𝑘,𝛼   (𝑐 = 1, … , 𝑛2𝑏𝑘 , ∀𝑡, ∀k) 
(43) 

𝜏𝑡𝑧𝑑𝑝𝑡
𝑅 ≤ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,1𝑧𝑑𝑗𝑡

𝑅   (𝑑 ∈ {1, … , 𝑑1|𝜉1𝑑𝑡
∗ = 0}, ∀𝑡) (44) 

𝜎𝑡𝑧𝑑𝑝𝑡
𝑅 ≥ ∑  𝑛

𝑗=1 𝜆𝑗
𝑡,2𝑧𝑑𝑗𝑡

𝑅   (𝑑 ∈ {1, … , 𝑑1|𝜉1𝑑𝑡
∗ = 1}, ∀𝑡) (45) 



0 ≤ 𝜎𝑡 ≤ 1 ∀𝑡 (46) 

𝜏𝑡 ≥ 1 ∀𝑡 (47) 

𝑧𝑑𝑝
𝑁𝑅 − 𝑠𝑑𝑝𝑡

−𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,1𝑧𝑑𝑗𝑡
𝑅   (𝑑 ∈ {1, … , 𝑑2|𝜉2𝑑𝑡

∗ = 1}, ∀𝑡) (48) 

𝑧𝑑𝑝
𝑁𝑅 + 𝑠𝑑𝑝𝑡

+𝑁𝑅 = ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,2𝑧𝑑𝑗𝑡
𝑅   (𝑑 ∈ {1, … , 𝑑2|𝜉2𝑑𝑡

∗ = 0}, ∀𝑡) (49) 

∑  𝑛
𝑗=1 𝜆𝑗

𝑡,1𝑧𝑑𝑗𝑡
𝛽

= ∑  𝑛
𝑗=1 𝜆𝑗

𝑡,2𝑧𝑑𝑗𝑡
𝛽

  (𝑑 = 1, … , d, ∀𝑡)  (50) 

𝜒𝑝
𝑙𝑒𝑎𝑑𝑒𝑟 = 𝜒𝑝

∗𝑙𝑒𝑎𝑑𝑒𝑟    (51) 

𝑧𝑑
𝑁𝑅: 𝑓𝑟𝑒𝑒, 𝑧𝑝𝑑

𝑁𝑅: 𝑓𝑟𝑒𝑒, 𝑠𝑖𝑝𝑡
−𝑘,𝑁𝑅 ≥ 0, 𝑠𝑟𝑝𝑡

+𝑘,𝑁𝑅 ≥ 0, 𝑠𝑐𝑝(𝑡,𝑡+1)
+𝑘,𝑔𝑁𝑅

≥ 0, 𝑠𝑐𝑝(𝑡,𝑡+1)
−𝑘,𝑏𝑁𝑅 ≥ 0, 𝑠𝑑𝑝𝑡

−𝑁𝑅 ≥ 0, 𝑠𝑑𝑝𝑡
+𝑁𝑅 ≥ 0, 𝜆𝑗

𝑡,𝑘 ≥ 0, 

∀𝑡, ∀d, ∀i, ∀c 

(52) 

 

Note that the model presented in equations (34) – (52) has no binary variables, and in equation (51), the 

leader's score is fixed at the optimal value obtained from the previous stage. The followers score can be 

obtained from replacing the optimal solution of the model (34) – (52) into equation (53). The symbol * 

denotes the optimal value of the variable.  

𝜒𝑝
∗𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

=

∑ 𝑊𝑡𝑇
𝑡=1 [1−

𝑚12
𝑚2

(1−𝜃𝑡2
∗)−
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𝑛𝑏1
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d
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𝑡)−

1
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∑  
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1
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𝑁𝑅 ]

          (53) 

In this section, we introduced a hybrid model within dynamic network DEA to assess the efficiency of a 

multi divisional production system in a dynamic environment. By incorporating the leader-follower 

relationship from the Stackelberg game, we evaluated the overall efficiency, as well as the efficiency of 

the leader and the follower. In the next section, we will verify the proposed model with a numerical 

example. 

4. Numerical Example:  

The petrochemical industry, as the primary sector of the oil industry, is a leading force in Iran's industrial 

landscape. The products derived from this industry are among the most significant components of non-

oil exports, playing a crucial role in the nation's economic prosperity. Given the significance of the 

petrochemical industry and the scarcity and non-renewable nature of the raw materials used, evaluating 

the performance of companies operating in this sector is crucial. Therefore, in this section, we will assess 

the performance of petrochemical companies listed on the stock exchange, using the proposed model. 

The efficiency of 14 petrochemical units will be evaluated based on the proposed hybrid DNDEA model.   



 

 

Figure 1. The network structure of petrochemical units 

Figure 1 illustrates the network structure used in the efficiency analysis of the petrochemical units. The 

network is divided into three main divisions: Human Resources, Production, and Sales, with each handling 

specific inputs, intermediates, outputs, and carry-over activities. Human Resources Division manages 

external inputs such as the number of personnel (NPE), which impacts overall operational efficiency. 

Additionally, wages (WG) are treated as an intermediate measure, connecting the Human Resources and 

Production divisions. The employee satisfaction rate (ESR) is a carry-over activity, reflecting how employee 

engagement and satisfaction influence long-term performance. Production Division is responsible for 

converting inputs into outputs and intermediates. The raw material cost (RM) is an external input that 

plays a crucial role in production efficiency. Production volume (PV) acts as an intermediate measure, 

influencing both the internal performance of the division and the final outputs of the Sales division. 

Furthermore, waste reduction percentage (WRP) is treated as a carry-over activity, emphasizing the 

division's focus on minimizing waste and improving efficiency across periods. Sales Division handles the 

final outputs of the system, including sales volume (SV) and net profit (NPR), which are external outputs 

reflecting the efficiency of both production and sales efforts. The customer satisfaction rate (CSR), a carry-

over activity, highlights the ongoing impact of production and sales on customer satisfaction over time. 

Carry-over Activities ESR, CSR, and WRP represent long-term activities that carry over across periods, 

influencing the future performance of the divisions. These activities provide continuity in the analysis, 

ensuring that efficiency improvements are not limited to a single period. The flow of inputs, intermediates, 

and outputs across divisions is visualized by the arrows in the figure. Effective management of these flows, 

along with the carry-over activities, is critical to improving the overall efficiency of the petrochemical 

units. 

In Table 1, we present the Key Performance Indicators (KPIs) used for the efficiency analysis of our 

operational processes. These criteria are based on insights from experts in petrochemical units. Each 

criterion is categorized according to its role within the production framework, whether it is an input, 
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intermediate product, carry-over, or output. Additionally, the criteria are distinguished by their nature, 

indicating whether they are radial (R) or non-radial (NR).   

Table 1. Key criteria used for the efficiency analysis 

Criteria Abbreviation Role 
Radial (R) or 
non-radial 

(NR) 

Number of personnel NPE Input NR 
Employee satisfaction rate ESR Input R 

Wage WG Intermediate product NR 
Raw material cost RM Input NR 

Energy Cost EC Input NR 
Waste Reduction Percentage WRP Carry-over R 

Production Volume PV Intermediate product NR 
Customer Satisfaction Rate CSR Carry-over R 

Sale volume SV Output NR 
Net Profit NPR Output NR 

 

the criteria used for efficiency assessment are divided into radial and non-radial measures. This distinction 
is essential for understanding the model's hybrid approach to data changes, as some criteria vary 
proportionally (radial) while others change non-proportionally (non-radial). 

• Radial Criteria: These are measures that change proportionally. In this study, the waste reduction 
percentage (WRP), employee satisfaction rate (ESR), and customer satisfaction rate (CSR) are 
treated as radial carry-over activities, meaning their influence on the system is considered to 
adjust proportionally over time. For instance, improvements or declines in these metrics reflect 
proportional changes in the efficiency of the divisions. 

• Non-Radial Criteria: These represent measures that change non-proportionally. Inputs like the 
number of personnel (NPE) and raw material cost (RM) are non-radial external inputs, while wage 
(WG) and production volume (PV) are non-radial intermediate measures. Similarly, sales volume 
(SV) and net profit (NPR) are non-radial external outputs. These measures reflect changes that do 
not scale proportionally, and the model accounts for the different rates at which these inputs and 
outputs adjust. 

By combining radial and non-radial criteria, the model ensures a more comprehensive efficiency 
evaluation, capturing both proportional and non-proportional changes in the performance of the 
petrochemical units. 

Table 2 and Table 3 provide a detailed statistical summary of KPIs, capturing the minimum, maximum, 

mean, and standard deviation values for each criterion in the years 1400 and 1401, respectively. 

 Table 2. Descriptive statistics of the criteria in the year 1400 

Criterion Min Max Mean 
Standard 

deviation 

Energy Cost (Million Rials) 163095 27452354 9923337.64 10166762.732 

Raw Material Costs (Million Rials) 4536276 611499056 130348296.50 173125932.866 



Wages and Salaries Cost (Million Rials) 368629 10490210 2816691.36 2738148.421 

Net Profit (Million Rials) 679604 263632351 78073922.79 72814944.847 

Sales Volume (Operating Income) 5643364 752376245 208968170.29 207560791.737 

Production Volume (Tons) 73236 5381591 2164709.50 1668683.724 

Number of Personnel 232 3229 883.71 733.821 

Customer Satisfaction Rate 35.5% 76.2% 68.9% 20.9% 

Employee satisfaction rate 75.5% 86.2% 80.4% 13.9% 

Waste Reduction Percentage 2.5% 5.6% 3.9% 1.7% 

 

 

 

 

 

 

 

Table 3. Descriptive statistics of the criteria in the year 1401 

Criterion Min Max Mean 
Standard 

deviation 

Energy Cost (Million Rials) 195714 32119254.2 10915671 10675100.87 

Raw Material Costs (Million Rials) 5534256.7 746028848 1.59E+08 211213638.1 

Wages and Salaries Cost (Million Rials) 376001.58 11749035.2 2591356 3888170.758 

Net Profit (Million Rials) 965037.68 268904998 87442794 95387577.75 

Sales Volume (Operating Income) 6884904.1 759900007 2.28E+08 259450989.7 

Production Volume (Tons) 89347.92 6565541.02 2640946 2035794.143 

Number of Personnel 259.84 3687.518 1042.778 770.51205 

Customer Satisfaction Rate 25.5% 81.2% 72.9% 26.9% 

Employee satisfaction rate 55.5% 74.2% 60.8% 10.1% 

Waste Reduction Percentage 2.5% 4.9% 3.5% 1.9% 

According to experts in petrochemical company structures, the production division is the leader, while 

Human Resource and Sale division follow. This is because production drives the business, setting the pace 

and output capacity. Other divisions, like Human Resource and Sale, must align their strategies to support 

and optimize production. As discussed earlier, the first stage is to evaluate the leader’s score and 

determine the values of the here-and-now variables to reveal the role of intermediate measures. To 

achieve this, the model (10)- (33) must be solved. The results obtained from of the first stage are 

presented in Table 4. 

Table 4. The leader’s score and the optimal role of intermediate measures. 

1st Stage  Leader’s score Intermediate measure’s Role 



DMU 
Production division 

efficiency  
Wage (WG) Production Volume (PV) 

DMU1 0.73 Input to production Output from Production 
DMU2 0.88 Output from Human Resource Output from Production 
DMU3 0.68 Output from Human Resource Input to Sale  
DMU4 0.67 Input to production Input to Sale 
DMU5 0.47 Input to production Output from Production 
DMU6 1.00 Input to production Output from Production 
DMU7 0.46 Input to production Output from Production 
DMU8 1.00 Input to production Output from Production 
DMU9 1.00 Input to production Input to Sale 

DMU10 0.38 Input to production Input to Sale  
DMU11 1.00 Output from Human Resource Input to Sale  
DMU12 0.91 Output from Human Resource Output from Production 
DMU13 0.14 Output from Human Resource Output from Production 
DMU14 0.71 Output from Human Resource Output from Production 
Average 0.72 Output from Human Resource Output from Production 

Table 4. represents the optimal role of intermediate measures for evaluating the leader’s score. The roles 

of intermediate measures, Wage and Production Volume, underscore the critical importance of 

production efficiency. It is evident that most roles are categorized as "Input to production" and "Output 

from Production," highlighting their direct connection to the production division. Consequently, leaders 

must focus on controlling these intermediate measures to enhance their scores by reducing inputs and 

increasing outputs. The results indicate that DMU6, DMU8, and DMU11 achieve perfect scores in the 

production division. In contrast, DMU13 has the lowest score, indicating significant room for 

improvement.  

By applying the results from the first stage and determining the optimal values of the here-and-now 

variables, we proceed to the second stage to derive the overall and divisional scores, as presented in Table 

5. 

Table 5. Overall score of the Petrochemical units. 

2nd stage Human Resource 
division efficiency 
(follower’s score)  

Sale division efficiency 
(follower’s score)  

Overall efficiency 
DMU 

DMU1 0.30 1.00 0.68 
DMU2 0.12 0.31 0.48 
DMU3 0.42 0.49 0.53 
DMU4 0.27 0.55 0.50 
DMU5 1.00 1.00 0.82 
DMU6 0.56 0.28 0.61 
DMU7 0.58 0.61 0.55 
DMU8 1.00 0.06 0.69 
DMU9 0.43 0.33 0.59 

DMU10 0.21 1.00 0.56 
DMU11 0.33 0.23 0.52 
DMU12 0.29 1.00 0.76 
DMU13 0.17 1.00 0.43 
DMU14 0.32 0.33 0.49 



Average 0.43 0.58 0.59 

 

Table 5. presents the efficiency scores of the human resource and sale divisions, along with the overall 

efficiency for each DMU. DMU5 stands out with perfect scores of 1.00 in both the human resource and 

sale divisions, resulting in the highest overall efficiency of 0.82. In contrast, DMU2 and DMU13 exhibit the 

lowest overall efficiencies of 0.48 and 0.43, respectively. The average scores across all DMUs are 0.72 for 

production efficiency, 0.43 for human resource efficiency, 0.58 for sale efficiency, and 0.59 for overall 

efficiency. This suggests that, on average, DMUs perform better in the production division than in the 

other divisions. Figure 2 illustrates the results. 

Figure 2. overall and divisional scores of the petrochemical units 

 

Table 6. overall and divisional period efficiencies of the petrochemical units 

Division Production Sale  Human Resource Overall efficiency 

Year 1400 1401 1400 1401 1400 1401 1400 1401 
DMU1 0.63 0.80 1.00 1.00 0.31 0.29 0.61 0.73 
DMU2 0.98 0.81 0.25 0.35 0.1 0.13 0.59 0.41 
DMU3 0.58 0.75 0.39 0.56 0.49 0.37 0.51 0.54 
DMU4 0.6 0.72 0.65 0.48 0.35 0.22 0.58 0.45 
DMU5 0.31 0.58 1.00 1.00 1 1.00 0.71 0.89 
DMU6 1 1.00 0.35 0.23 0.55 0.57 0.69 0.56 
DMU7 0.4 0.50 0.69 0.56 0.65 0.53 0.51 0.58 
DMU8 1 1.00 0.04 0.07 1 1.00 0.74 0.66 
DMU9 1 1.00 0.29 0.36 0.37 0.47 0.69 0.52 

DMU10 0.3 0.43 1.00 1.00 0.19 0.22 0.55 0.40 
DMU11 1 1.00 0.35 0.15 0.39 0.29 0.63 0.45 
DMU12 0.88 0.93 1.00 1.00 0.21 0.34 0.81 0.73 
DMU13 0.11 0.16 1.00 1.00 0.24 0.12 0.49 0.39 



DMU14 0.65 0.75 0.38 0.30 0.25 0.37 0.52 0.40 
Average  0.67 0.75 0.60 0.58 0.44 0.42 0.61 0.54 

 

 The analysis of overall efficiency across the years 1400 and 1401 presented in Table 6 reveals a decline 

from an average score of 0.61 to 0.54. While some DMUs like DMU1 and DMU5 improved their efficiency, 

moving from 0.61 to 0.73 and 0.71 to 0.89 respectively, others such as DMU2 and DMU13 show significant 

drops. This indicates a need for better resource management and operational practices. Despite 

improvements in production efficiency, declines in sales and human resource management suggest areas 

requiring attention. 

Figure 3 compares the average scores across divisional and overall scores for the years 1400 and 1401. In 

the Production division, there is a noticeable improvement from an average score of 0.67 in 1400 to 0.75 

in 1401, indicating enhanced production efficiency. The Sale division shows a slight decrease in the 

average score, dropping from 0.60 in 1400 to 0.58 in 1401, suggesting a minor decline in sales 

performance. The Human Resource division experiences a small reduction in the average score from 0.44 

in 1400 to 0.42 in 1401, pointing to a marginal decrease in HR efficiency.  

 

Figure 3 comparison of the average scores for the years 1400 and 1401 

5. Conclusion  

 This study introduces a novel framework for evaluating the performance of DMUs by integrating 

Stackelberg game theory into a dynamic network DEA model. This approach effectively addresses the 

challenges posed by intermediate measures in multi-divisional systems. By adopting a leader-follower 

dynamic, where a specific division is designated as the leader, the framework allows for a more nuanced 

efficiency assessment. The process begins with optimizing the leader’s efficiency, followed by configuring 

intermediate measures, which then influences the evaluation of the entire system’s efficiency. 



 To verify the proposed model, it was applied to Iran’s petrochemical industry, focusing on 14 units across 

three key divisions: Human Resources, Production, and Sales. The Production division, identified as the 

leader, demonstrated a significant impact on overall efficiency through its management of intermediate 

measures such as wages and production volume. This application underscored the pivotal role of the 

Production division in enhancing system efficiency and provided strategic insights for optimizing 

performance by aligning these measures with the organization’s broader goals. The study also uncovered 

significant variations in efficiency across the DMUs, with some achieving high scores while others 

exhibited considerable inefficiencies. Despite improvements in production efficiency, a decline in overall 

efficiency between the years 1400 and 1401 was observed, particularly due to decreases in sales and 

human resource efficiency, highlighting the need for better resource management and operational 

practices. 

This paper makes three significant contributions. First, it introduces a comprehensive efficiency 

measurement framework that combines dynamic network DEA with game theory, specifically the 

Stackelberg model, addressing a critical gap in the DEA literature. Second, it provides a practical tool for 

managers and decision-makers to identify and mitigate inefficiencies within complex multi-divisional and 

multi-period systems, thereby improving overall system performance. Third, it proposes a novel hybrid 

DNDEA model that considers both radial and non-radial data changes in efficiency evaluation. 

Future research could extend this framework to other industries and sectors, explore more complex 

scenarios involving multiple leaders or multi-stage game dynamics, and validate the model’s effectiveness 

in real-world settings to refine approaches for performance evaluation in dynamic, networked 

environments. 

While the proposed dynamic network DEA model incorporating Stackelberg game theory provides a novel 

approach for assessing efficiency in multi-divisional systems, it is important to acknowledge certain 

limitations. First, the application of this model to only 14 petrochemical units may limit the generalizability 

of the findings. Expanding the dataset to include more diverse industries or sectors would provide a more 

comprehensive evaluation of its robustness. Second, the model’s reliance on historical data assumes that 

external factors remain relatively constant, which might not hold true in rapidly changing environments. 

Future studies could explore adaptive models that incorporate real-time data and dynamic market 

conditions to improve the accuracy of efficiency assessments. Lastly, the assumption of a fixed leader-

follower structure may oversimplify interactions within organizations. Future research could investigate 

more complex multi-leader or cooperative scenarios to capture a wider range of organizational dynamics. 
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