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This paper proposes a novel approach for identifying the location of voltage flicker 
sources in active distribution networks. The method is based on measuring and 
sampling bus voltages, from which a voltage flicker detection index is extracted 
using information related to voltage amplitude and frequency variations. The 
extraction of this index relies on the S-transform, a time–frequency analysis 
technique that effectively captures non-stationary characteristics of voltage signals 
and enables accurate detection of flicker phenomena. The derived flicker index is 
subsequently utilized to train an artificial neural network (ANN) designed to identify 
the location of the polluting load within the network. In the proposed framework, the 
input to the neural network consists of the measured voltage flicker indices at 
selected buses, while the output represents the flicker occurrence status of all buses 
in the system. This structure allows the neural network to intelligently map flicker 
measurements to their corresponding source locations. The effectiveness of the 
proposed method is evaluated using a standard 14-bus distribution network. Voltage 
flicker disturbances are simulated using the EMTP/ATP software to generate realistic 
flicker scenarios under various operating conditions. The simulation results 
demonstrate that the proposed approach can accurately identify buses or network 
areas containing flicker-producing loads. Moreover, the results indicate that by 
optimally selecting measurement locations, reliable flicker source localization can 
be achieved with a relatively small number of voltage measurements. This 
significantly reduces measurement requirements, computational burden, and system 
complexity, making the method suitable for practical implementation in active 
distribution networks. Overall, the proposed S-transform–based flicker detection 
combined with neural network classification provides an effective and intelligent 
solution for locating voltage flicker sources, contributing to improved power quality 
monitoring and mitigation strategies in modern distribution systems. 
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1. Introduction 

The discussion of evaluating power quality and 
improving its related specifications is one of the topics 
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that has been discussed in recent years due to the 
increasing growth of power electronic devices and non-
linear loads in power networks. One of the most 
unwanted power quality phenomena in distribution 
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networks is the "voltage flicker" phenomenon. 
According to the definition of the International 
Electrotechnical Commission (IEC), voltage flicker 
refers to periodic or random voltage fluctuations with an 
amplitude of ±10% and a frequency between 0.5 and 25 
Hz [1]. In addition to the problems that this phenomenon 
creates for various equipment such as electronic 
controllers, protective devices, etc., with the effect it has 
on the light of the lamps, it causes their light to vibrate, 
which is easily felt and causes dissatisfaction of the 
customers. Using high-power fluctuating loads in the 
power grid, such as impulse loads, can cause voltage 
fluctuations and flicker, which may damage electrical 
equipment. This type of power quality disturbance 
cannot be ignored and has attracted more and more 
attention [2-6]. Considering the competition in 
electricity markets, eliminating or reducing the effects 
of this phenomenon is very important. The first step in 
this field is to determine the location where the polluting 
load affects the network so that by identifying the source 
of flicker production and installing appropriate 
equipment or by upgrading the network, it is possible to 
eliminate or reduce these disturbances. Accurate 
detection of voltage fluctuations and flickering is the 
basis of assessing their risks and effectively dealing with 
them. Voltage flicker signal tracking and amplitude 
modulation wave detection are the main problems of 
voltage flicker signal detection. 
In recent years, some innovative research results on 
voltage flicker signal characteristics and flicker location 
detection have been published [7-19]. In [7], the 
demodulation characteristics of energy operators were 
studied, and a fast and accurate flicker location signal 
extraction method was developed based on the 
improved k-value energy operator. In [8] a hybrid 
approach was presented to evaluate voltage fluctuations 
using an algorithm based on synchronization 
transformation. First, the characteristics of the voltage 
fluctuations were shown through the exact extraction of 
the measured voltages by Hilbert transform, then the 
synchronization transforms and an unsupervised 
clustering method was applied to determine the number 
of frequency components and the corresponding 
frequencies. In [9], an improved Teager energy operator 
error correction factor was developed to reduce the 
errors of online extraction of voltage flicker location. In 
[11], a method to detect flicker parameters based on the 
Teager-Kaiser energy operator and Blackman-Harris 
triple spectrum line interpolation was proposed. To 
detect time-varying signals, the time-frequency analysis 
method is suitable and approved, and the use of wavelet 

transform in this field has become a research topic [12-
14]. Furthermore, the short-time Fourier transform is a 
classical time-frequency linear analysis method. Its 
result is directly related to the signal spectrum and has a 
good application in diagnosing power quality 
disturbances [15, 16]. In [17], a method was presented 
that by knowing the impedance of the short circuit and 
measuring the current, the feeder where the polluting 
load is located is detected.  
In [18, 19], a method was introduced that determines the 
direction of the source causing the flicker relative to the 
measurement point by measuring the voltage and 
current and calculating a parameter called flicker power. 
Despite the simplicity of this method, in large networks, 
determining the location of the polluting load requires 
multiple measurements, on the other hand, since the 
phenomenon of voltage flicker is usually a periodic 
phenomenon and not a permanent one, it will take a lot 
of time to find the location of flicker generation. 
In this paper, a method is presented, in which the voltage 
in a limited number of network buses is analyzed using 
a neural network, and the bus or the area where the 
polluting load is located is detected. The index that was 
used to train the neural network is the index obtained 
from the S transformation. This transformation is 
derived from the wavelet transformation, in which a 
coefficient is used to correct the phase, and by it, the 
amplitude and frequency spectra of the signal can be 
obtained. The S-transform of a signal containing 
disturbance provides contours that are very similar to the 
disturbance waveform. In [20-23], this feature was used 
to identify and separate different power quality 
phenomena. In these references, various indices such as 
the standard deviation of frequency-time contours, 
amplitude factor, etc. have been used, but no suitable 
index has been presented for flicker evaluation. In this 
article, using a new index obtained from the "time-
domain" contour, the location of the polluting load in the 
network is detected. The structure of the article is as 
follows: Section 2 introduces the S-Transform and its 
related equations. In Section 3, the model employed to 
simulate voltage flicker is presented, in the following, 
the introduced model will be examined utilizing S 
transformation and the used index will be explained. In 
Section 4, the neural network and how to train it is 
expressed. The simulation results of the mentioned 
method are presented in Section 5. Finally, conclusions 
are given in Section 6. 

2. The generalized wavelet transform: S-transform 
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The Fourier transform of the signal h(t) is defined as 
follows: 
 

 
(1) 

𝐻(𝑓) = න ℎ(𝑡)𝑒ି௜ଶగ௙௧𝑑𝑡
ାஶ

ିஶ

 

If the signal h(t) is multiplied by the window function 
g(t), the resulting spectrum will be as follows: 

(2) 
𝐻(𝑓) = න ℎ(𝑡)𝑔(𝑡)𝑒ି௜ଶగ௙௧𝑑𝑡

ାஶ

ିஶ

 

The continuous S-Transform is obtained by defining the 
special window function in the form of the following 
normalized Gaussian function: 

(3) 
𝑔(𝑡) =

1

𝜎√2𝜋
𝑒ି൫௧మ/ଶఙమ൯ 

Where the width of the window σ is proportional to the 
frequency response and is chosen as follows: 

(4) 
𝜎(𝑡) =

1

𝑎 + 𝑏|𝑓|
 

If in Equation (4), b=0, then H(f) represents the short-
time Fourier transform and if a=0, it represents the S-
Transform. The sample values for b are chosen between 
0.333 and 5 to achieve different levels of frequency 
accuracy. For low frequencies, large values of b are 
chosen and small values of b are selected for high 
frequencies to obtain proper frequency accuracy. By 
substituting Equations (3) and (4) in Equation (2), the 
continuous S-Transform of the signal h(t) is obtained as 
follows: 

(5) 
𝑆(𝜏, 𝑓) = න ℎ(𝑡)𝑔(𝑡 − 𝜏, 𝑓)𝑒ି௜ଶగ௙௧𝑑𝑡

ାஶ

ିஶ

 

As it is clear from Equation (5), the S transformation of 
a signal h(t) is a function with two parameters, 
frequency (f) and time shift (τ), and this Equation shows 
the time-frequency feature of the transformation. The S 
transformation of the signal h(t) is a complex matrix 
according to these two parameters, which can be shown 
as follows: 

(6) 𝑆(𝜏, 𝑓) = 𝐴(𝜏, 𝑓)𝑒௜ఝ(ఛ,௙) 

In this Equation, A(τ,f) is the amplitude of the S 
spectrum, and φ(τ,f) is its phase. The discrete S-
transform can be calculated in a similar way using the 
fast Fourier transform (FFT) and the convolution 

theorem. The discrete Fourier transform of the sampled 
signal h(KT) for K=0, 1, ..., N-1 is equal to: 

(7) 
𝐻 ቂ

𝑛

𝑁𝑇
ቃ =

1

𝑁
෍ ℎ(𝐾𝑇)𝑒ି௜(

ଶ௡గ௞
ே

)

ேିଵ

௄ୀ଴

 

The S transformation of the signal h(KT) is defined as 
follows, considering f≈n/NT and τ≈jT: 

(8) 𝑆 ቀ𝑗𝑇,
𝑛

𝑁𝑇
ቁ

=
1

𝑁
෍ 𝐻 ൤

𝑚 + 𝑛

𝑁𝑇
൨ 𝐺(𝑚, 𝑛)𝑒௜(

ଶ௡గ௝
ே

)

ேିଵ

௠ୀ଴

 

Where G(m,n) is equal to: 

(9) 
𝐺(𝑚, 𝑛) = 𝑒

ି(
ଶగమ௠మఈమ

௡మ )
 

and for α we have: 

(10) 𝛼 = 1/𝑏 

In Equation (8), N is equal to the total number of 
samples and j, m, n=0, 1, ..., N-1. The output of S 
transformation is a complex matrix whose rows are 
frequency values and its columns represent the time 
values of the signal, so each column represents the local 
spectrum of the corresponding time. 
 

3. Voltage Flicker 

The presence of high-power fluctuating loads such as 
impulse loads can cause voltage fluctuations and flicker, 
which may damage electrical equipment. This type of 
power quality disturbance cannot be ignored and has 
attracted a lot of attention, which has been modeled in 
the following.   

 
3.1. Thermodynamic analysis 

Accurate modeling of flicker to test the proposed 
algorithms is a complicated process. In a simplified 
form, flicker can be modeled as a signal with a 
modulated amplitude along with a series of harmonic 
components. The modulated signal is equivalent to the 
sum of the sinusoidal components with random 
amplitude and frequency. First, for the simplicity of the 
proposed method, signal harmonics are omitted, and 
then in the next steps, their effect on the mentioned 
method is investigated. Mathematically, if the 
harmonics are ignored, the flicker signal can be modeled 
as follows:  
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(11) 
ℎ(𝑡) = ൭𝐴଴ + ෍(𝐴௜(𝑡) cos(𝜔௜𝑡

ெ

௜ୀଵ

+ ∅௜))൱ cos(𝜔଴𝑡 + ∅଴) 

Where A0, ω0, and ∅0 are the amplitude, frequency, and 
phase angle of the fundamental signal, respectively, and 
Ai is the amplitude of the voltage flicker with frequency 
ωi and phase ∅i. Equation (11) in the discrete state can 
be expressed in the following form: 

(12) 
ℎ(𝑛) = ൭𝐴଴ + ෍(𝐴௜(𝑛) 𝑐𝑜𝑠(𝜔௜𝑛

ெ

௜ୀଵ

+ ∅௜))൱ 𝑐𝑜𝑠(𝜔଴𝑛 + ∅଴) 

This equation will be used to simulate the load that 
creates a flicker in the power network. 

3.2 Investigation of voltage flicker in S-transformation 

According to the proposed model for flicker in Section 
3.1, the waveform of a signal infected with flicker with 
a fluctuation amplitude of 10% and a frequency of 5 Hz 
changes was shown in Fig. 1. The three-dimensional 
representation of matrix S along with the "time-
amplitude" contour is given in Figs. 2 and 3. It should 
be noted that other contours, including "time-frequency" 
and "amplitude-frequency" contours, can be obtained 
from the matrix S, which is presented in [20-22]. 

 
Fig. 1:  Flicker-infected sinusoidal waveform with 5 Hz 

frequency changes and 10% amplitude fluctuations 

 

 
Fig. 2: The "time-amplitude " contour of the matrix S 

 

 
Fig. 3: 3D representation of matrix S 

 
 
Since the flicker phenomenon contains low frequencies, 
for a better analysis of the signal in the frequency 
domain, the α used in this article is chosen as 0.27. As 
can be seen, there is a close relationship between the 
"time-amplitude" contour and the fluctuations caused by 
voltage flicker. In the flicker phenomenon, the 
frequency of fluctuations is variable and random 
depending on the working point of the load, and on the 
other hand, the "time-amplitude" contour according to 
Equation (5) is both dependent on the frequency and 
dependent on the amplitude, so to eliminate the effect of 
changes a new index is used in the output of the S 
transformation, which is defined as follows:  

 
 

(13) 
 
  

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑙𝑖𝑐𝑘𝑒𝑟 𝑖𝑛𝑑𝑒𝑥

= max
௜

൬max
௝

ห𝑆௜,௝ห൰

− min
௜

൬max
௝

ห𝑆௜,௝ห൰ 

Where S(i,j) is the element of the i-th row and j-th 
column of the complex transformation matrix. This 
index is calculated for the voltage samples in the time 
interval of flicker occurrence and then the index vector 
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is normalized to its maximum and the obtained index is 
used as an input for neural network training. 
 
3.3 Choosing the number and location of measuring 
devices in voltage flicker detection 

To determine the optimal number and location of 

measurements in the network, voltage measurements are 

performed as follows: during the simulation, they are 

performed on all buses of the network. To identify the 

most sensitive network buses in terms of voltage flicker 

detection, the introduced index is calculated for all 

measurements. After that, the standard deviation of the 

obtained indices is calculated for each measurement in 

different simulation modes, and the sensitive buses are 

arranged in descending order of standard deviation. 

Based on this, at each step, the input is added to the 

neural network, and flicker detection is checked for the 

polluting bus using the neural network. Adding 

measurements as input to the neural network continues 

until the polluting bus is correctly detected. In this way, 

the number and optimal location of measurements are 

determined. 

4. Neural network 

 To intelligently identify the location of the polluting 

source according to the index obtained in Section 3.3, a 

multilayer perceptron (MLP) neural network is used as 

shown in Fig. 4. The number of neural network inputs is 

equal to the number of measurements in the network, 

and the number of outputs is equal to the number of 

network buses. The Marquardt-Levenberg error back-

propagation algorithm was employed to train the neural 

network, and gradient descent with momentum weights 

and biases was used to update the weights. The transfer 

function of neural network nodes was selected as the 

logarithmic sigmoid function in the first step and the 

hyperbolic tangent sigmoid function in the next steps. 

The outputs of the network are considered zero and one 

in the training phase, and the bus where the source of the 

flicker is located is indicated by one. To detect the 

polluting bus, the output of the neural network is 

examined. If there is only one maximum greater than 0.5 

among the outputs, that bus is selected as a polluting 

one, but if the output of more than one bus is greater than 

0.5, then those buses are also selected as suspicious 

ones. Therefore, in a large network, the investigation to 

find the polluting bus is limited to two or three buses, 

and in this situation, the main location of flicker 

occurrence can be easily identified by the methods 

presented in [17, 18]. 

 
Fig. 4: Selected neural network 

 

5. Simulation results 

To show the effectiveness of the proposed method in 
this article, a sample 14-bus network was selected 
according to Fig. 5 and simulated in EMTP/ATP 
software, the required information of the network 
parameters is given in [25]. To model the flicker in the 
network, a resistance bank whose resistance changes 
according to Equation (12) has been used. The selected 
model is based on the model that is considered for 
electric arc furnaces, which are the main cause of flicker 
in power grids [23, 24]. According to the method 
presented in Section 3.3, buses 1, 3, and 4 were selected 
for measuring and sampling the voltage. 

The used neural network is a two-layer perceptron 
network with 3 neurons in the input layer and 16 neurons 
in the hidden layer. To train the neural network, flicker 
is simulated in three different amplitudes of 2%, 5%, 
and 10% in different buses of the system and for the 
oscillation frequency of 8 Hz and is trained by the 
obtained indices of the neural network. Since the effect 
of frequency in the change of "time-amplitude" contour 
has been eliminated according to the discussion in 
Section 3.2, there is no need to train the neural network 
for different frequencies, and the simulated results prove 
the truth of this.  
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Fig. 5: The 14-bus network under study 

 
In 14-bus network, the indices obtained for neural 
network training in three different voltage fluctuation 
modes are given in Table 1. The network test results for 
flicker modes with 2%, 6%, and 8% amplitude at 8 Hz 
frequency are given in Table 2. As can be seen, when 
the polluting load is located in buses 1, 2, 3, 4, 13, and 
14, the proposed algorithm is fully capable of 
identifying the polluting bus. If the polluting load is 
located in other buses, then the algorithm shows some 
other buses as candidates for the polluting bus in 
addition to the actual polluting one. These cases occur 
when the buses of the network are located at a close 
distance from each other (such as buses 8 and 9) or in 
cases where there is symmetry in the network (such as 
buses 11 and 12 compared to bus 10). In these cases, 
according to the mentioned contents, some buses are 
identified as polluting ones.  

 

 

 

Table 1: Calculated indices for neural network training 
Num 

of 
pollu
ting 
bus 

Mea
sure 

Amplitude  
Num 

of 
pollu
ting 
bus  

Mea
sur  

Amplitude  

2%  5% 10%  2%  5%  10%  

1  

V1  0.893  0.893 0.900  

8  

V1  0.692  0.691 0.695  

V3  0.902  0.902 0.908  V3  0.772  0.771 0.773  

V4  1  1 1  V4  1  1 1  

2  

V1  1  1 1  

9  

V1  0.799  
0.799

7 
0.808  

V3  0.996  0.996 0.996  V3  0.937  0.937 0.938  

V4  0.985  0.985 0.986  V4  1  1 1  

3  

V1  0.688  0.687 0.695  

10  

V1  0.688  0.688 0.699  

V3  0.768  0.768 0.773  V3  0.768  0.768 0.776  

V4  1  1 1  V4  1  1 1  

4  

V1  0.815  0.816 0.826  

11  

V1  0.696  0.692 0.696  

V3  1  1 1  V3  0.771  0.772 0.774  

V4  0.857  0.858 0.866  V4  1  1 1  

5  

V1  0.693  0.692 
0.698

1  

12  

V1  0.694  0.692 0.694  

V3  0.772  0.771 0.775  V3  0.773  0.771 
0.772

3  

V4  1  1 1  V4  1  1 1  

6  

V1  0.602  0.603 0.617  

13  

V1  0.693  0.691 0.692  

V3  0.639  0.641 
0.653

7  
V3  0.772  0.771 0.771  

V4  1  1 1  V4  1  1 1  

7  

V1  0.694  0.692 0.694  

14  

V1  0.694  0.692 0.694  

V3  0.7723  0.772 0.772  V3  0.773  0.772 0.772  

V4  1  1 1  V4  1  1 1  

 

Tables 2: The output of the trained neural network for different 
flicker amplitudes at a frequency of 8 Hz 

Oscillat
ion 

frequen
cy 

Polluti
ng bus 

Amplitude of flicker 
oscillations  Oscill

ation 
freque

ncy  

Poll
uting 
bus  

Amplitude of flicker 
oscillations  

2%  6%  8%  2%  6%  8%  

Selected bus in the 
ANN output  

Selected bus in the 
ANN output  

Flicker 
with 8 

Hz 
oscillatio

ns 

1  1  1  1  

Flicker 
with 
8% 

oscillat
ions  

8  8  8, 9  8, 9  

2  2  2  2  9  8, 9  9  8, 9  

3  3  3  3  10  
10, 11, 

12  
10, 

11, 12  

10, 
11, 
12  

4  4  4  4  11  
10, 11, 

12  
10, 

11, 12  

10, 
11, 
12  

5  5  5, 6, 7  5, 6, 7  12  10, 11, 
12  

10, 
11, 12  

10, 
11, 
12  

6  5, 6  6  5, 6  13  13  13  13  

7  7  6, 7  7  14  14  14  14  

 
 
To show the effectiveness of the method in covering 
different flicker frequencies, the aforementioned 
network was also tested for flicker with different 
amplitudes and frequencies of 4 and 15 Hz, the results 
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of which are given in Tables 3 and 4, respectively. Also, 
to check the robustness of the algorithm to the 
harmonics that exist in the network along with flicker, 
the flicker source was modeled in the network along 
with a harmonic current source that contains 3rd and 5th 
harmonics with amplitudes of 20% and 15% of the rated 
current of the flicker source.  

Table 3: The output of the trained neural network for different 
flicker amplitudes at a frequency of 4 Hz 

Oscill
ation 

freque
ncy 

Polluti
ng bus 

Amplitude of 
flicker 

oscillations Oscill
ation 

freque
ncy 

Pollu
ting 
bus 

Amplitude of 
flicker 

oscillations 

2% 6% 8% 2% 6% 8% 

Selected bus in 
the ANN 

output 

Selected bus in 
the ANN output 

Flicke
r with 
4 Hz 

oscilla
tions 

1  1  1  1  

Flicke
r with 

4% 
oscilla
tions  

8  8  8, 9  8, 9  

2  2  2  2  9  8, 9  9  8, 9  

3  3  3  3  10  
10, 
12  

10, 
11, 
12  

10, 
11, 
12  

4  4  4  4  11  
10, 
11  

10, 
11, 
12  

10, 
12  

5  5  5, 6  5, 6  12  
10, 
12  

10, 
11, 
12  

10, 
11, 
12  

6  5, 6  6  5, 6  13  13  13  13  

7  7  6, 7  7  14  14  14  14  

 
Table 4: The output of the trained neural network for different 
flicker amplitudes at a frequency of 15 Hz 

Oscil
latio

n 
frequ
ency 

Polluti
ng bus 

Amplitude of 
flicker 

oscillations 
Oscil
latio

n 
frequ
ency 

Pollu
ting 
bus 

Amplitude of 
flicker oscillations 

2% 6% 8% 2% 6% 8% 

Selected bus in 
the ANN output 

Selected bus in the 
ANN output 

Flick
er 

with 
15 
Hz 

oscil
latio
ns 

1 1 1 1 

Flick
er 

with 
15% 
oscill
ation

s 

8 8 8 8, 9 

2 2 2 2 9 8, 9 9 8, 9 

3 3 3 3 10 
10, 
12 

11, 
12 

10, 
11, 
12 

4 4 4 4 11 
10, 
11 

10, 
11, 
12 

10, 
12 

5 5 5, 6 
5, 

6, 7 
12 

10, 
11, 
12 

10, 
11, 
12 

10, 
11, 
12 

6 5, 6 6 5, 6 13 13 13 13 

7 7 6, 7 7 14 14 14 14 

The obtained indices were tested in the trained neural 
network and the results are shown in Table 5. It can be 
seen that the proposed method can detect the bus or area 
of flicker in different situations.  

Table 5: The output of the trained neural network for different 
flicker amplitudes at the frequency of 8 Hz along with harmonics 

Oscillation 
frequency 

Polluting 
bus 

Amplitude of flicker oscillations 

1% 2% 4% 6% 8% 10% 

Selected bus in the ANN output 

Flicker 
with 8 Hz 

oscillations 
along with 
harmonics  

1  1  1  1  1  1  1  
2  3  3  3  3  3  3  

5  5  5  5  
5, 
6, 
7  

5, 
6, 
7  

5  

7  7  7  7  6,7  7  7  

  

5. Conclusion  

The purpose of this article is to provide a method to 
identify the location of the load causing flicker in 
distribution networks. In this method, by sampling the 
network voltage in the appropriate buses and using the 
neural network, it is possible to determine the location 
of the flicker. When the buses are close to each other or 
there is symmetry in the network, the proposed method 
can limit the choice to a few buses in a wide network. 
Also, the simulation results show that the selected index 
has little sensitivity to the harmonics that generally exist 
along with flicker, and it can be applied in actual 
distribution networks that often have harmonics. 
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