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Article info Abstract
Keywords: This paper proposes a novel approach for identifying the location of voltage flicker
S-Transform sources in active distribution networks. The method is based on measuring and
Artificial Neural Network sampling bus voltages, from which a voltage flicker detection index is extracted
Distribution Network using information related to voltage amplitude and frequency variations. The
Voltage Flicker extraction of this index relies on the S-transform, a time—frequency analysis
Power Quality technique that effectively captures non-stationary characteristics of voltage signals
and enables accurate detection of flicker phenomena. The derived flicker index is
Article history: subsequently utilized to train an artificial neural network (ANN) designed to identify
Received: 21 Aug 2024 the location of the polluting load within the network. In the proposed framework, the
Accepted: 26 Aug 2024 input to the neural network consists of the measured voltage flicker indices at

selected buses, while the output represents the flicker occurrence status of all buses
in the system. This structure allows the neural network to intelligently map flicker
measurements to their corresponding source locations. The effectiveness of the
proposed method is evaluated using a standard 14-bus distribution network. Voltage
flicker disturbances are simulated using the EMTP/ATP software to generate realistic
flicker scenarios under various operating conditions. The simulation results
demonstrate that the proposed approach can accurately identify buses or network
areas containing flicker-producing loads. Moreover, the results indicate that by
optimally selecting measurement locations, reliable flicker source localization can
be achieved with a relatively small number of voltage measurements. This
significantly reduces measurement requirements, computational burden, and system
complexity, making the method suitable for practical implementation in active
distribution networks. Overall, the proposed S-transform—based flicker detection
combined with neural network classification provides an effective and intelligent
solution for locating voltage flicker sources, contributing to improved power quality
monitoring and mitigation strategies in modern distribution systems.

1. Introduction that has been discussed in recent years due to the
increasing growth of power electronic devices and non-
linear loads in power networks. One of the most
unwanted power quality phenomena in distribution

The discussion of evaluating power quality and
improving its related specifications is one of the topics
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networks is the '"voltage flicker" phenomenon.
According to the definition of the International
Electrotechnical Commission (IEC), voltage flicker
refers to periodic or random voltage fluctuations with an
amplitude of £10% and a frequency between 0.5 and 25
Hz [1]. In addition to the problems that this phenomenon
creates for various equipment such as electronic
controllers, protective devices, etc., with the effect it has
on the light of the lamps, it causes their light to vibrate,
which is easily felt and causes dissatisfaction of the
customers. Using high-power fluctuating loads in the
power grid, such as impulse loads, can cause voltage
fluctuations and flicker, which may damage electrical
equipment. This type of power quality disturbance
cannot be ignored and has attracted more and more
attention [2-6]. Considering the competition in
electricity markets, eliminating or reducing the effects
of this phenomenon is very important. The first step in
this field is to determine the location where the polluting
load affects the network so that by identifying the source
of flicker production and installing appropriate
equipment or by upgrading the network, it is possible to
eliminate or reduce these disturbances. Accurate
detection of voltage fluctuations and flickering is the
basis of assessing their risks and effectively dealing with
them. Voltage flicker signal tracking and amplitude
modulation wave detection are the main problems of
voltage flicker signal detection.

In recent years, some innovative research results on
voltage flicker signal characteristics and flicker location
detection have been published [7-19]. In [7], the
demodulation characteristics of energy operators were
studied, and a fast and accurate flicker location signal
extraction method was developed based on the
improved k-value energy operator. In [8] a hybrid
approach was presented to evaluate voltage fluctuations
using an algorithm based on synchronization
transformation. First, the characteristics of the voltage
fluctuations were shown through the exact extraction of
the measured voltages by Hilbert transform, then the
synchronization transforms and an unsupervised
clustering method was applied to determine the number
of frequency components and the corresponding
frequencies. In [9], an improved Teager energy operator
error correction factor was developed to reduce the
errors of online extraction of voltage flicker location. In
[11], a method to detect flicker parameters based on the
Teager-Kaiser energy operator and Blackman-Harris
triple spectrum line interpolation was proposed. To
detect time-varying signals, the time-frequency analysis
method is suitable and approved, and the use of wavelet
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transform in this field has become a research topic [12-
14]. Furthermore, the short-time Fourier transform is a
classical time-frequency linear analysis method. Its
result is directly related to the signal spectrum and has a
good application in diagnosing power quality
disturbances [15, 16]. In [17], a method was presented
that by knowing the impedance of the short circuit and
measuring the current, the feeder where the polluting
load is located is detected.

In [18, 19], a method was introduced that determines the
direction of the source causing the flicker relative to the
measurement point by measuring the voltage and
current and calculating a parameter called flicker power.
Despite the simplicity of this method, in large networks,
determining the location of the polluting load requires
multiple measurements, on the other hand, since the
phenomenon of voltage flicker is usually a periodic
phenomenon and not a permanent one, it will take a lot
of time to find the location of flicker generation.

In this paper, a method is presented, in which the voltage
in a limited number of network buses is analyzed using
a neural network, and the bus or the area where the
polluting load is located is detected. The index that was
used to train the neural network is the index obtained
from the S transformation. This transformation is
derived from the wavelet transformation, in which a
coefficient is used to correct the phase, and by it, the
amplitude and frequency spectra of the signal can be
obtained. The S-transform of a signal containing
disturbance provides contours that are very similar to the
disturbance waveform. In [20-23], this feature was used
to identify and separate different power quality
phenomena. In these references, various indices such as
the standard deviation of frequency-time contours,
amplitude factor, etc. have been used, but no suitable
index has been presented for flicker evaluation. In this
article, using a new index obtained from the "time-
domain" contour, the location of the polluting load in the
network is detected. The structure of the article is as
follows: Section 2 introduces the S-Transform and its
related equations. In Section 3, the model employed to
simulate voltage flicker is presented, in the following,
the introduced model will be examined utilizing S
transformation and the used index will be explained. In
Section 4, the neural network and how to train it is
expressed. The simulation results of the mentioned
method are presented in Section 5. Finally, conclusions
are given in Section 6.

2. The generalized wavelet transform: S-transform
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The Fourier transform of the signal A(?) is defined as
follows:

H(f) = th(t)e“'z"ffdt 0

If the signal A(?) is multiplied by the window function
2(t), the resulting spectrum will be as follows:

Hn = | h@©g®e-rar 1

The continuous S-Transform is obtained by defining the
special window function in the form of the following
normalized Gaussian function:

e—(t?/20%) 3)

g = o

Where the width of the window ¢ is proportional to the
frequency response and is chosen as follows:

_ “4)
O = b1

If in Equation (4), =0, then H(f) represents the short-
time Fourier transform and if ¢=0, it represents the S-
Transform. The sample values for b are chosen between
0.333 and 5 to achieve different levels of frequency
accuracy. For low frequencies, large values of b are
chosen and small values of b are selected for high
frequencies to obtain proper frequency accuracy. By
substituting Equations (3) and (4) in Equation (2), the
continuous S-Transform of the signal /(%) is obtained as
follows:

S(T’f) _ f+ooh(t)g(t —1 f)e_izrrftdt (5)

As it is clear from Equation (5), the S transformation of
a signal A(t) is a function with two parameters,
frequency (f) and time shift (7), and this Equation shows
the time-frequency feature of the transformation. The S
transformation of the signal %(?) is a complex matrix
according to these two parameters, which can be shown
as follows:

5@, f) = Az, e ™D (6)

In this Equation, A(z,f) is the amplitude of the S
spectrum, and ¢@(zf) is its phase. The discrete S-
transform can be calculated in a similar way using the
fast Fourier transform (FFT) and the convolution
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theorem. The discrete Fourier transform of the sampled
signal A(KT) for K=0, 1, ..., N-1 is equal to:

N-1
n 1 i 2nmk
—|== —ieR)
H [NT] NKE_Oh(KT)e N

The S transformation of the signal 2(KT) is defined as
follows, considering f~n/NT and =jT:

S ( iT, 1_V1T) ®)

1 - m+n i(ZnnJ')
Z_ZH ]G(m,n)e N
N
m=0

(7

NT

Where G(m,n) is equal to:

2 2,22
G(m,n) = e ¢ ) ©)

and for a we have:

a=1/b (10)
In Equation (8), N is equal to the total number of
samples and j, m, n=0, 1, ..., N-1. The output of S
transformation is a complex matrix whose rows are
frequency values and its columns represent the time
values of the signal, so each column represents the local
spectrum of the corresponding time.

3. Voltage Flicker

The presence of high-power fluctuating loads such as
impulse loads can cause voltage fluctuations and flicker,
which may damage electrical equipment. This type of
power quality disturbance cannot be ignored and has
attracted a lot of attention, which has been modeled in
the following.

3.1. Thermodynamic analysis

Accurate modeling of flicker to test the proposed
algorithms is a complicated process. In a simplified
form, flicker can be modeled as a signal with a
modulated amplitude along with a series of harmonic
components. The modulated signal is equivalent to the
sum of the sinusoidal components with random
amplitude and frequency. First, for the simplicity of the
proposed method, signal harmonics are omitted, and
then in the next steps, their effect on the mentioned
method is investigated. Mathematically, if the
harmonics are ignored, the flicker signal can be modeled
as follows:
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M
h(t) = (AO + Z(Ai(t) cos(w;it
i=1

(11)

+ (Z)l-))) cos(wot + @)

Where 4o, @y, and @) are the amplitude, frequency, and
phase angle of the fundamental signal, respectively, and
A is the amplitude of the voltage flicker with frequency
o; and phase g Equation (11) in the discrete state can
be expressed in the following form:

M
h(n) = (AO + Z(Ai(n) cos(win
=1

(12)

+ Q)i))> cos(won + Bg)

This equation will be used to simulate the load that
creates a flicker in the power network.

3.2 Investigation of voltage flicker in S-transformation

According to the proposed model for flicker in Section
3.1, the waveform of a signal infected with flicker with
a fluctuation amplitude of 10% and a frequency of 5 Hz
changes was shown in Fig. 1. The three-dimensional
representation of matrix S along with the "time-
amplitude" contour is given in Figs. 2 and 3. It should
be noted that other contours, including "time-frequency"

and

"amplitude-frequency"” contours, can be obtained

from the matrix S, which is presented in [20-22].

Amplitude(P.U)
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Fig. 1: Flicker-infected sinusoidal waveform with 5 Hz
frequency changes and 10% amplitude fluctuations
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Fig. 2: The "time-amplitude " contour of the matrix S
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Fig. 3: 3D representation of matrix S

Since the flicker phenomenon contains low frequencies,
for a better analysis of the signal in the frequency
domain, the a used in this article is chosen as 0.27. As
can be seen, there is a close relationship between the
"time-amplitude" contour and the fluctuations caused by
voltage flicker. In the flicker phenomenon, the
frequency of fluctuations is variable and random
depending on the working point of the load, and on the
other hand, the "time-amplitude" contour according to
Equation (5) is both dependent on the frequency and
dependent on the amplitude, so to eliminate the effect of
changes a new index is used in the output of the S
transformation, which is defined as follows:

Voltage flicker index
= max (m_ax|5i,j|)
i j

- miin (m}ax|5i_]-|)
Where S(i,j) is the element of the i-th row and j-th
column of the complex transformation matrix. This
index is calculated for the voltage samples in the time
interval of flicker occurrence and then the index vector

(13)
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is normalized to its maximum and the obtained index is
used as an input for neural network training.

3.3 Choosing the number and location of measuring
devices in voltage flicker detection

To determine the optimal number and location of
measurements in the network, voltage measurements are
performed as follows: during the simulation, they are
performed on all buses of the network. To identify the
most sensitive network buses in terms of voltage flicker
detection, the introduced index is calculated for all
measurements. After that, the standard deviation of the
obtained indices is calculated for each measurement in
different simulation modes, and the sensitive buses are
arranged in descending order of standard deviation.
Based on this, at each step, the input is added to the
neural network, and flicker detection is checked for the
polluting bus using the neural network. Adding
measurements as input to the neural network continues
until the polluting bus is correctly detected. In this way,
the number and optimal location of measurements are
determined.

4. Neural network

To intelligently identify the location of the polluting
source according to the index obtained in Section 3.3, a
multilayer perceptron (MLP) neural network is used as
shown in Fig. 4. The number of neural network inputs is
equal to the number of measurements in the network,
and the number of outputs is equal to the number of
network buses. The Marquardt-Levenberg error back-
propagation algorithm was employed to train the neural
network, and gradient descent with momentum weights
and biases was used to update the weights. The transfer
function of neural network nodes was selected as the
logarithmic sigmoid function in the first step and the
hyperbolic tangent sigmoid function in the next steps.
The outputs of the network are considered zero and one
in the training phase, and the bus where the source of the
flicker is located is indicated by one. To detect the
polluting bus, the output of the neural network is
examined. If there is only one maximum greater than 0.5
among the outputs, that bus is selected as a polluting
one, but if the output of more than one bus is greater than
0.5, then those buses are also selected as suspicious
ones. Therefore, in a large network, the investigation to
find the polluting bus is limited to two or three buses,
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and in this situation, the main location of flicker
occurrence can be easily identified by the methods
presented in [17, 18].

Flicker indices for The status of

all network buses

the measured voltages + i termis oF flicker

Fig. 4: Selected neural network

5. Simulation results

To show the effectiveness of the proposed method in
this article, a sample 14-bus network was selected
according to Fig. 5 and simulated in EMTP/ATP
software, the required information of the network
parameters is given in [25]. To model the flicker in the
network, a resistance bank whose resistance changes
according to Equation (12) has been used. The selected
model is based on the model that is considered for
electric arc furnaces, which are the main cause of flicker
in power grids [23, 24]. According to the method
presented in Section 3.3, buses 1, 3, and 4 were selected
for measuring and sampling the voltage.

The used neural network is a two-layer perceptron
network with 3 neurons in the input layer and 16 neurons
in the hidden layer. To train the neural network, flicker
is simulated in three different amplitudes of 2%, 5%,
and 10% in different buses of the system and for the
oscillation frequency of 8 Hz and is trained by the
obtained indices of the neural network. Since the effect
of frequency in the change of "time-amplitude" contour
has been eliminated according to the discussion in
Section 3.2, there is no need to train the neural network
for different frequencies, and the simulated results prove
the truth of this.
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Fig. 5: The 14-bus network under study

In 14-bus network, the indices obtained for neural
network training in three different voltage fluctuation
modes are given in Table 1. The network test results for
flicker modes with 2%, 6%, and 8% amplitude at 8 Hz
frequency are given in Table 2. As can be seen, when
the polluting load is located in buses 1, 2, 3, 4, 13, and
14, the proposed algorithm is fully capable of
identifying the polluting bus. If the polluting load is
located in other buses, then the algorithm shows some
other buses as candidates for the polluting bus in
addition to the actual polluting one. These cases occur
when the buses of the network are located at a close
distance from each other (such as buses 8 and 9) or in
cases where there is symmetry in the network (such as
buses 11 and 12 compared to bus 10). In these cases,
according to the mentioned contents, some buses are
identified as polluting ones.

Vol.1, No.2, 2024: 27-34

Table 1: Calculated indices for neural network training

. Num . Num
Amplitude Amplitude
of of
Mea Mea
pollu pollu
sur a sure N
10% | 5% | 2% ting | 10% | 5% | 2% ting
bus bus
0.695 | 0.691 | 0.692 | V1 0.900 | 0.893 | 0.893 | V1
0773|0771 0772 v3 | % |0.908]0902| 0902 | v3 | !
1 1 1 | va 1 1 1 V4
0.808 0'7799 0.799 | V1 1 1 1 Vi
093809370937 v3 | ° |0996|0996| 0996 | v3 | 2
1 1 1 | va 0.986 | 0.985 | 0.985 | V4
0.699 | 0.688 | 0.688 | V1 0.695 | 0.687 | 0.688 | V1
0.776 | 0.768 | 0.768 | V3 | 10 |0.773 | 0.768 | 0.768 | V3 | 3
1 1 1| va 1 1 1 V4
0.696 | 0.692] 0.696 | V1 0.826 | 0.816 | 0.815 | V1
0774 [ 0772|0771 | V3 | 11 | 1 1 1 V3| 4
1 1 1 | va 0.866 | 0.858 | 0.857 | v4
0.694 | 0.692 | 0.694 | V1 0'6198 0.692 | 0.693 | V1
0'7372 077103 ] va | 2 Jomrs|om| o2 | va | 3
1 1 1 | va 1 1 1 V4
0.692 | 0.691 ] 0.693 | V1 0.617 ] 0.603 | 0.602 | V1
0771 0771 [ 0772 V3 | 43 | %97 fosar| 0s39 | V3 | 6
1 1 1| va 1 1 1 V4
0.694 | 0.692] 0.694 | V1 0.694 | 0.692 | 0.694 | V1
0772|0772 0773 | V3 | 14 |0772|0772| 07723 | V3 | 7
1 1 1 | va 1 1 1 V4

Tables 2: The output of the trained neural network for different

flicker amplitudes at a frequency of 8 Hz
Amplitude of flicker Amplitude of flicker
oscillations Poll Oscill oscillations Oscillat
0 . . .
8% | 6% | 2% |uting| 20" | goy | g0 | 205 |Polluti| ion
bus freque ng bus | frequen
Selected bus in the ncy Selected bus in the cy
ANN output ANN output
8,9 | 89 8 8 1 1 1 1
89 | 9 8,9 9 2 2 2 2
10
’ 10, 10, 11,
PRI C I 3 3 3 3
Flicker Flicker
10, with with 8
11, 111012 loizll’ 11 8% 4 4 4 4 Hz
12 ’ oscillat oscillatio
10 ions ns
! 10, 10, 11,
11, 11,12 12 12 56,7 5,6,7 5 5
12
13 13 13 13 5,6 6 5,6 6
14 14 14 14 7 6,7 7 7
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To show the effectiveness of the method in covering
different flicker frequencies, the aforementioned
network was also tested for flicker with different
amplitudes and frequencies of 4 and 15 Hz, the results
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of which are given in Tables 3 and 4, respectively. Also,
to check the robustness of the algorithm to the
harmonics that exist in the network along with flicker,
the flicker source was modeled in the network along
with a harmonic current source that contains 3™ and 5%
harmonics with amplitudes of 20% and 15% of the rated
current of the flicker source.

Table 3: The output of the trained neural network for different
Slicker amplitudes at a frequency of 4 Hz

Amplitude of Amplitude of
flicker flicker
oscillations Oscill oscillations Oscill
Hall ation Polluti | ation
8% | 6% | 2% | ting 8% | 6% | 2%
bus freque ng bus | freque
. ncy | Selected bus in ncy
Selected bus in the ANN
the ANN output
output
8,91 8,9 8 8 1 1
8,9 9 8,9 9 2 2 2 2
10, | 10,
11, | 11, 10, 10 3 3 3 3
12 | 12 12
Flicke Flicke
10, r with r with
11% 11, 11(1’ 11 4% 4 4 4 4 4 Hz
12 oscilla oscilla
10, | 10, 0 tions tions
11, | 11, 12’ 12 5,6(5,6| 5 5
12 | 12
13 ] 13 13 13 5,61 6 |56
14| 14 14 14 7 16,7 7

Table 4: The output of the trained neural network for different
licker amplitudes at a frequency of 15 Hz

Amplitude of . Amgil;tll(l:re of .
flicker oscillations OS?II O OS?II
Pollu | latio | oscillations . | latio
i Polluti
8% | 6% | 2% | Y™ | " |89 | 6% | 2% |ngbus| "
bus | frequ frequ
Selected bus in the ency | Selected bus in ency
ANN output the ANN output
8,9 8 8 8 1 1 1 1
8,9 9 8,9 9 2 2 2 2
10
? 11, | 10, .
11 12 A2 1o | 10 Rek| 3] 3 3 3 ngk
er .
. with
10, | 19| 10, with 15
11, 11 | 15% | 4 4 4 4
12 11 . Hz
12 oscill .
. oscil
10, | 10, | 10, ation s latio
11, 11, | 11, 12 § 6 ’7 5,6 5 5 ns
12 12 12 ?
13 13 13 13 5,6 6 | 5,6 6
14 14 14 14 7 16,7 7 7

The obtained indices were tested in the trained neural
network and the results are shown in Table 5. It can be
seen that the proposed method can detect the bus or area
of flicker in different situations.

Table 5: The output of the trained neural network for different
Slicker amplitudes at the frequency of 8 Hz along with harmonics
33
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Amplitude of flicker oscillations
10% | 8% | 6% | 4% | 2% | 1% Polluting | Oscillation
bus frequency
Selected bus in the ANN output
1 1 1 1 1 1 1 .
3 13 13153 3|53 2 Flicker
5 5 with 8 Hz
5 6. 6. 5 5 5 5 osc111at10_ns
7 7 along W}th
- 7 67 = 7 7 7 harmonics

5. Conclusion

The purpose of this article is to provide a method to
identify the location of the load causing flicker in
distribution networks. In this method, by sampling the
network voltage in the appropriate buses and using the
neural network, it is possible to determine the location
of the flicker. When the buses are close to each other or
there is symmetry in the network, the proposed method
can limit the choice to a few buses in a wide network.
Also, the simulation results show that the selected index
has little sensitivity to the harmonics that generally exist
along with flicker, and it can be applied in actual
distribution networks that often have harmonics.
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