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Smart grids play a crucial role in transitioning to a low-carbon energy sector by 

ensuring the efficient and sustainable utilization of natural resources, such as wind 

generation. The high penetration rate of intermittent wind generation in competitive 

smart power systems necessitates the development of more sophisticated support 

schemes for this resource. Most current policies rely on financial incentives for wind 

generation. However, determining the cost of these support schemes in a competitive 

electricity market poses a significant challenge, which is addressed in this paper. In 

this paper, the Generation Expansion Planning (GEP) model is developed to design 

an environmentally-based incentive mechanism for wind generation in a smart, 

competitive power system. The GEP model examines the non-cooperative 

competition of generators at two layers. At the top layer, the generation investment 

game is analyzed, and at the bottom layer, the Cournot game at the power network 

operational level is examined. A solution algorithm based on Q-learning is used for 

the two-layer model, demonstrating how these layers interact to obtain 

environmental incentives by solving the multi-year generation expansion problem. 

This framework is implemented on a test system to demonstrate the effectiveness of 

the proposed approach. The outputs of the numerical studies include the expansion 

strategies of generation firms, the total profit of the wind power plant firm, the cost 

of the incentive mechanism for wind generation, the Wind Penetration Index (WPI) 
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as an index of wind expansion rate, the average annual price (AAP) of electricity, 

and the Herfindahl-Hirschman Index (HHI) as an index of market power. 

 

1. Introduction 

A Smart Grid (SG) is an advanced electricity network 

that leverages communication and information 

technologies within the power system. Smart Grid 

technology addresses several critical issues in the 

electric power industry, including the limitation of 

fossil fuels and air pollution emissions, by 

incorporating renewable energy resources [A1]. The 

place of renewable energy in the new area is illustrated 

in Fig. 1 [A2].  

To achieve the critical objectives of smart grids, the 

ElectriNetSM framework is designed to integrate 

smart grids with low-carbon central generation, local 

energy networks, and electric transportation, as 

illustrated in Fig. 2 [A3]. 

 
Fig. 1: The role of renewable energy in smart grid. 

 

As shown in this figure, a fundamental component of 

the ElectriNetSM is low-carbon central generation. 

The successful implementation of the ElectriNetSM 

depends on meeting performance and deployment 

targets for several advanced technologies, which are 

crucial for estimating CO2 emissions reduction 

potential. For central generation, this includes 

expanded use of renewable energy and widespread 

adoption of CO2 capture and storage post-2020. 

Improving renewable energy policies, particularly for 

wind energy, is increasingly important. Governments 

frequently revise policy designs and implementations 

to encourage renewable electricity generation [A4].  

Unlike other forms of renewable energy, 

advancements in wind technology have led to wind 

generators that are comparable to conventional units in 

both cost and capacity ratings. Wind energy has the 

potential to significantly reduce fuel costs, enhance 

system adequacy, and provide security against price 

volatility and dependence on imported fuel for many 

industrialized and developing nations [A5-A7]. 

Previous studies have explored various methodologies 

for short-term load forecasting in national power 

systems using advanced techniques like multi-layer 

perceptron and fuzzy inference systems [A8-A9]. 

 

ElectriNet
Local Energy 

Networks

Electric

Transportation

Smart Grid

Low-Carbon 

Generation

 
Fig. 2: The components of ElectriNet framework [2]. 

 

The production from wind units is intermittent in 

nature, and these resources have high investment 

costs. In competitive electricity markets, generation 

companies (GENCOs) aim to maximize their expected 

profits during both the operation and planning periods. 

Within this competitive framework, each firm strives 

to achieve the highest possible benefit. However, high 

investment costs, intermittency, and uncertainty of 

wind power generation are significant obstacles to the 

high penetration of wind power. 

In [A10-A12], the investment dynamic in electricity 

markets of the United States and electricity crisis in 

California are investigated. In [A13], the incentive 

mechanism effect in Colombian power market is 

studied. Moreover, in [A14-A16], markets of Tradable 

Green Certificates (TGCs) and effects of 

environmental rules on investment is studied. 

The capacity payment is considered to prevent long-

term fluctuations in investment planning for 
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traditional power plants where a fixed payment is paid 

to a firm which is available for electricity generation 

to recover a part of its investment in the long-term. 

Capacity payment is considered as a fixed incentive 

mechanism in most studies. However, in [A17], 

variable capacity payment and its effects on long-term 

power market stability is studied. 

In [A2], Feed-in-Tariff support scheme is utilized to 

promote wind generation firm to participate in power 

market. In [A2], optimum reliability-based incentive 

for wind generation is considered. Moreover, wind 

farm power management is studied by high 

penetration of electrical vehicles (EVs) as “vehicle-to-

grid (V2G). In [A5], a framework is presented to study 

the impacts of DR programs to increase the flexibility 

and wind power owners' benefits in power market. 

Moreover, a modified model is developed to integrate 

the operational planning of wind generation along with 

implementing DR programs. In this regard, the impact 

of implementing DR programs on wind’s incentive 

cost is studied in [A5]. In [A7], a modified model is 

obtained to study the impact of energy efficiency 

approaches on support scheme cost of wind generation 

where energy efficiency programs are presented in two 

perspectives as the supply side and the demand side. 

Implementing energy efficiency programs in supply 

side is accomplished to increase the capacity factor of 

wind generation. However, on demand side, 

implementing the energy efficiency programs is 

presented as strategies to reduce the peak load levels. 

In [A18], a framework is presented on the basis of a 

combination of stochastic dynamic programming 

(SDP) algorithm and game theory. In [A18], 

regulatory policies including Feed-in-Tariff (FIT) 

incentive, quota and tradable green certificate are 

considered. Moreover, a model is gained to study the 

regulatory impacts on wind generation expansion 

planning where the probabilistic nature of wind 

generation is modeled which can calculate the optimal 

investment strategies including wind power 

uncertainty. In [19], (V2G) technology is used which 

increases the benefits of wind power in power market. 

V2G stabilizes the output power of the wind farm by 

providing storage capacity for electric energy during 

high wind speed. Moreover, a FIT incentive 

mechanism is considered to promote wind power 

owner for electricity power market participation. The 

suggested framework is implemented on a test system 

to illustrate effectiveness of the scheme. In [A20], 

improved incentive mechanisms for wind power 

investment is presented where the mechanism is 

addressed based on the system dynamic model. In this 

mechanism, wind power generations recover a part of 

the investment cost through incentive mechanisms. In 

this regard, different incentive methods are presented 

which is dependent on market conditions. In [A21], a 

reliability-based incentive mechanism is presented to 

promote wind power generation in a competitive 

electricity market. In this paper, the optimum amount 

of incentive is gained based on system dynamic 

approach. Moreover, game theory is used to model 

strategic uncertainties among market players in spot 

power market. In this regard, the Cournot game 

concept is suggested and the Nash equilibrium is 

gained for each state. Finally, LOEEpu is considered 

as the reliability index in the generation sector. 

Global environmental concerns, driven by greenhouse 

gas emissions, have led governments to develop 

policies encouraging energy generation from 

renewable energy sources (RES). The primary goal of 

these policies is to reduce carbon emissions. To this 

end, various laws and policy directives have been 

established, such as the Renewable Portfolio Standard 

(RPS), which mandates that a certain percentage of 

energy supplied in the power system comes from RES 

[A22]. Mechanisms must be implemented to 

incentivize investment in these resources to increase 

the penetration rate of wind generation in smart power 

systems. The most commonly used mechanism to date 

is the fixed incentive [A19]. However, this support 

scheme conflicts with the competitive nature of the 

power market. The main issue with this type of 

incentive is its failure to promote competition and 

efficiency once wind power generation has reached a 

certain maturity, potentially resulting in excessive 

costs for society. 

Therefore, the provision of support scheme costs is a 

critical issue investigated in this paper. To address this 

problem, a modified generation expansion planning 

model is employed to develop an environmentally-

based incentive for wind power generation. In this 

developed mechanism, the cost of the incentive is 

covered by the revenue generated from penalties 

imposed on other polluting power generation sources. 

Implementing this mechanism could be an effective 

solution for covering the incentive costs of wind 

generation in competitive electricity markets. This 
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support scheme could also enhance the wind 

penetration rate in smart power systems. 

This paper proposes a hybrid framework based on 

game theory and dynamic programming (DP) to 

design an environmentally-based incentive 

mechanism grounded in the Generation Expansion 

Planning (GEP) problem within a competitive smart 

power system. Generation Expansion Planning in a 

restructured market involves determining the type, 

location, and timing of new generation capacities to be 

installed by competing generators in response to 

expected demand growth, changes in network 

conditions, and market design incentives. This paper 

addresses this challenge by developing a 

comprehensive game-theoretic model that 

incorporates market features such as multiple 

competing generators, a multi-year planning horizon, 

demand elasticity, and an environmentally-based 

incentive mechanism as a regulatory intervention to 

increase the penetration rate of wind generation. The 

model employs a two-layer matrix game construct. 

Expansion strategies and environmental incentives for 

wind power are derived using a reinforcement 

learning-based value function approximation 

algorithm to solve matrix games [A23-A24]. 

The rest of this paper is organized as follows. Section 

2 presents the proposed framework for developing an 

environmentally-based incentive mechanism for wind 

generation in smart power systems. The mathematical 

formulation of the two-layer game model in GEP is 

detailed in Section 3. Section 4 introduces the 

Reinforcement Learning (RL) based solution 

algorithm for matrix games. In Section 5, this method 

is implemented on a test system. Finally, the last 

section is dedicated to the conclusion. 

 

2. The proposed Framework for Developing 

Environmental Based Incentive Mechanism 

 

As mentioned earlier, increasing environmental 

concerns in smart power systems have prompted 

governments to support large-scale integration of 

renewable generation by introducing mandatory 

Renewable Portfolio Standards (RPS) or equivalent 

policies. Various mechanisms have been employed to 

promote renewable energy worldwide [A13-A17]. 

The most commonly used mechanism is the Feed-In-

Tariff (FIT) incentive. Under FIT, customers are 

required to purchase renewable energy at a predefined 

price or a premium on energy spot prices [A4]. These 

prices are generally offered in a non-discriminatory 

manner for every kWh of electricity produced and can 

be differentiated based on several parameters, such as 

the type of technology, the size of the installation, the 

quality of the resource, the location of the project, and 

other project-specific variables. 

Quotas and tradable green certificates represent the 

second support scheme, where minimum shares of 

renewable energy are mandated for customers or 

producers, with penalties for noncompliance. The 

appeal of quotas is generally less than that of FIT. In 

some markets, trading of quotas is permitted, leading 

to the development of a green certificate market [A13]. 

As shown in Fig. 3, a support scheme package which 

includes mandatory policy and incentive-based 

policies was developed in [A13,A17,A19]. Under 

mandatory policies, power producers or customers 

must ensure that a portion of their production or 

consumption is sourced from wind generation. 

Incentive-based mechanisms can be categorized into 

market-independent incentives, market-based 

incentives, and reliability-based incentives. In market-

independent incentives, a fixed price is paid to wind 

investors [A11]. In market-based incentives, a 

premium price above the regular electricity price is 

paid to wind firms [A18]. However, the high 

penetration of wind power resulting from these 

support schemes significantly impacts power system 

reliability. Therefore, identifying an incentive 

mechanism that promotes wind power expansion 

while maintaining reliability at a predetermined level 

is crucial. In [A19], to achieve a reliability-based 

incentive mechanism, the reliability index (LOEE) is 

considered. 

As mentioned before, one of the most important 

problems of previous incentive mechanisms to 

increase the penetration rate of wind generation in 

smart environment is providing their related cost. 

Furthermore, these incentives have some conflict with 

competitive electricity market. As shown in Fig. 3, in 

this paper a support scheme for wind generation is 

developed based on generation expansion planning 

problem. The developed environmental based 

incentive mechanism reduces the problems about 

previous support schemes. In this incentive 

mechanism, the wind generation with no carbon 

production receive some persuasive, however, other 

power plants which produce emissions, are penalized. 
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The environmental based incentive could be 

introduced as an essential method in smart competitive 

power system; since the incentive is paid to wind 

generation based on adequacy. Furthermore, by 

considering some penalty obtained from pollutant 

resources, some portion or total amount incentive cost 

of wind generation could be provided. 

 

 
Fig. 3: Proposed support schemes package for wind generation. 

 

The developed framework for the environmentally-

based incentive mechanism is illustrated in Fig. 4, 

structured into fourteen blocks. The elastic demand 

considered in this model is depicted in block one. The 

profit of the investor is influenced by fluctuations in 

the spot price resulting from the elastic demand curve. 

The demand within each year is divided into four 

seasons, each with three states: base, medium, and 

peak demand. It is assumed that a portion of the 

demand within each season is price-responsive up to a 

certain price level (block 1). 

Regulatory policies are illustrated in blocks 2, 3, and 

4. The system regulator is assumed to set a price cap 

(block 2), which determines the price in the power 

market. This cap should provide accurate price signals 

for investment in new power generation. 

Alternatively, the price cap could be set at lower 

values to protect customers from significantly high 

prices. Block 3 illustrates the environmentally-based 

incentive for wind power. The amount of incentive 

mechanism in environmental based incentive 

mechanism is the function of penalty considered for 

other resources because of environmental pollutions 

(block 4). This dependency is illustrated in Fig. 4. Data 

required for solving the optimization problem, such as 

information on existing and candidate generating 

technologies selected for expansion planning, are 

indicated in block 5. The generation expansion 

planning model in a competitive electricity market, 

developed in this paper, is designed to create an 

environmentally-based incentive and consists of two 

layers. The top layer represents the investment 

competition among generators. This competitive 

decision-making scenario is modeled as an investment 

game (block 6). 

On the other hand, the bottom layer represents the 

competition among generators to supply electricity to 

the network during the operation state. Modeling the 

output of wind power generation during operation is 

required in the GEP problem, as shown in block 7. 

Since an investor's objective is to maximize profit, the 

revenue from the power market must be calculated 

during the operation period. This involves calculating 

the electricity price at each stage and state of the DP. 

The method for evaluating other hand, the bottom 

layer represents the competition amongst generators 

to supply electricity into the network. This scenario is 

also modeled as a 

the electricity price is also crucial. For this, 

equilibrium analysis is applied, using a matrix game to 

model the strategic behavior of market players (block 

8). It is also important to consider the pollution 

penalties of polluting power plants in the operation 

problem (block 9). Dynamic programming is used to 

solve the investment optimization problem, as 

indicated in block 10. 

Some outputs such as expansion strategies of 

investors, environmental based incentive mechanism 

cost, wind penetration index and the revenue of 

emission penalty from pollutant power plant are 

illustrated in blocks 11, 12, 13 and 14. The advantage 

of this mechanism is that in such a method, supplying 

incentive cost is determined and revenue from fines 

could provide some or total amount of wind incentive 

cost (block 12 and 14). 

 

3. Mathematical Basis of a two-layer game model 

in GEP 

 

As mentioned before, the algorithm for designing 

environmental based incentive is developed based on 

generation expansion planning problem. The 

generation expansion planning model proposed in this 

paper consists of two layers, as shown in Fig. 5. The 

top layer of the model represents the investment 

competition amongst generators. This competitive 

decision-making scenario is modeled as a matrix game 

and is therefore referred to as investment game. On the 

other hand, the bottom layer represents the 
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competition amongst generators to supply electricity 

into the network. This scenario is also modeled as a 

matrix game and is referred to as Cournot matrix 

game. 

Each strategy that is combination of the investment 

game represents a possible generation capacity 

expansion alternative. Hence, for each of the 

alternatives, there exists a corresponding Cournot 

game, which when solved permits the examination of 

the profitability of each expansion alternative. 
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Fig. 5: Generation Expansion planning model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Generation expansion planning problem 

formulation 

 

The investment optimization problem is formulated in 

Equations (1) to (5). The objective function, 

represented by Equation (1), indicates the total 

discounted profits over the planning period. Equation 

(2) represents the capacity vector for wind power 

generation at time step t. Equation (3) represents the 

capacity vector for other power plants at time step t. 

Constraints (4) and (5) account for the annual variation 

in demand and fuel prices. 

Ψ0

= 𝑀𝑎𝑥Ε[∑[(1

𝑇

𝑡=0

+ 𝑟)−𝑡 . Ω𝑡(𝐺𝑡 , 𝐺𝑤𝑡 , 𝐷𝑡 , 𝐺𝑒𝑥𝑡 , 𝜋𝑡)]] 

(1) 

S.T. 

𝐺𝑤𝑡+1 = 𝐺𝑤𝑡 + 𝐺𝑤𝑒𝑥𝑡+1 (2) 

 

𝐺𝑡+1 = 𝐺𝑡 + 𝐺𝑒𝑥𝑡+1 (3) 

 

𝐷𝑡+1 = 𝐷𝑡 + Δ𝐷𝑡 (4) 

 

𝐹𝐶𝑡+1 = 𝐹𝐶𝑡 + Δ(𝐹𝐶)𝑡 (5) 

 

The total expected profit of the investor for each time 

step is represented by Equation (6). 

5 Technologies 

1 Elastic Demand Curve 

10 DP 

 

 

   

2 Price Cap 

8 Strategic Uncertainty 

(Operation) 

7 Wind Power modeling 

11 Expansion Strategies 

4 penalty (Pollutant Power 

Plant) 

13 Wind Penetration Index 

12 Incentive costs 

Operational planning 

Regulatory Policies 

6 Strategic Uncertainty 

(Investment) 

14 Revenue of Emission Penalty  

9 Emission Penalty 

3 Environmental based 

Incentive 

Fig. 4: The developed framework for deriving environmental based incentive Mechanism. 
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Ω𝑖
∗ = Ε[Ω𝑒𝑛𝑒𝑟𝑔𝑦,𝑖,𝑡] + Ε[Ω𝑅𝑒𝑔.,𝑖,𝑡] − 𝐶𝑖𝑛𝑣,𝑖,𝑡

− 𝐶𝑣𝑎𝑟,𝑖 − 𝐶𝑐−𝑡𝑎𝑥,𝑖

− 𝐶𝑐−𝑝𝑒𝑛𝑎𝑙𝑡𝑦,𝑖                      

(6) 

 

The first term of Equation (6) represents an investor’s 

revenues from energy sales in the spot market. The 

second term represents the revenues resulting from the 

environmentally-based incentive. The investment cost 

and variable cost (operation cost) are illustrated by the 

third and fourth terms, respectively. The fifth term 

implies the carbon tax, and finally, the sixth term 

represents the emission penalty for polluting 

resources. 

 

3.1.1. Short term optimization problem 

 

The short-term optimization problem for each firm at 

any stage and state of the dynamic programming 

problem is represented by Equations (7) to (13). 

Equation (7) represents the investor’s revenues 

obtained in the power market. Equations (8) and (9) 

represent the operation cost and carbon tax, 

respectively. The revenue obtained from penalties 

imposed on pollutant power plants is represented in 

Equation (10). By imposing these penalties, a portion 

or the total incentive cost for wind generation can be 

covered by the revenue obtained from these penalties. 

Equation (11) represents the demand constraint. 

Constraints (12) and (13) set the bounds on the 

decision variables. Finally, Equation (14) represents 

the price cap constraint to prevent an increase in 

electricity prices, as determined by the regulatory 

body. 

Ω𝑒𝑛𝑒𝑟𝑔𝑦,𝑖,𝑡

= ∑ ∑ ∑ ∑[𝑑𝑡𝑠𝑙 . (𝑃𝐺𝑒,𝑡𝑠𝑙,𝑛). 𝑃𝑟𝑜𝑏𝑛 . 𝜋𝑡𝑠𝑙,𝑛]

𝑆𝑁

𝑛=1

𝐹

𝑓=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

+ ∑ ∑ ∑ ∑[

𝑆𝑁

𝑛=1

𝐹

𝑓=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

𝑑𝑡𝑠𝑙 . (𝑃𝐺𝑒𝑤,𝑡𝑠𝑙,𝑛). 𝑃𝑟𝑜𝑏𝑛 . 𝜋𝑡𝑠𝑙,𝑛]

(7) 

 

𝐶𝑣𝑎𝑟,𝑖

= ∑ ∑ ∑ ∑[𝑑𝑡𝑠𝑙 .

𝑆𝑁

𝑛=1

𝐹

𝑓=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

(𝑃𝐺𝑒,𝑡𝑠𝑙,𝑛). 𝑃𝑟𝑜𝑏𝑛 . 𝑉𝑎𝑟𝑓]

(8) 

 

𝐶𝑐−𝑡𝑎𝑥,𝑖

= ∑ ∑ ∑ ∑[𝑑𝑡𝑠𝑙 .

𝑆𝑁

𝑛=1

𝐹

𝑓=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

(𝑃𝐺𝑒,𝑡𝑠𝑙,𝑛). 𝑃𝑟𝑜𝑏𝑛 . 𝐶𝑡𝑎𝑥]

(9) 

 

𝐶𝑐−𝑝𝑒𝑛𝑎𝑙𝑡𝑦,𝑖 = ∑ ∑ ∑ ∑[𝑑𝑡𝑠𝑙 .

𝑆𝑁

𝑛=1

𝐹

𝑓=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

(𝑃𝐺𝑒,𝑡𝑠𝑙,𝑛). 

                                                         𝑃𝑟𝑜𝑏𝑛 . 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦]

(10) 

 

∑ 𝑃𝐺𝑒,𝑡𝑠𝑙,𝑖 +

𝐹

𝑓=1

∑ 𝑃𝐺𝑒𝑤,𝑡𝑠𝑙,𝑖 ≤ 𝐷𝑡𝑠𝑙

𝐹

𝑓=1

 

(11) 

 

𝑃𝐺𝑒,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑒,𝑡𝑠𝑙 ≤ 𝑃𝐺𝑒,𝑚𝑎𝑥  (12) 

 

𝑃𝐺𝑒𝑤,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑒𝑤,𝑡𝑠𝑙 ≤ 𝑃𝐺𝑒𝑤,𝑚𝑎𝑥 (13) 

 

𝜋𝑡𝑠𝑙 ≤ 𝑃𝐶 (14) 

 

As mentioned before, the elastic demand curve is 

considered in this paper. Eq. (15) presents the elastic 

demand curve. To find constants 𝐴𝑠,𝑙 and 𝐵𝑠,𝑙, the 

base demand (𝐷𝑏𝑎𝑠𝑒,𝑠,𝑙) and the reference price 

(∏𝑏𝑎𝑠𝑒,𝑠,𝑙) are used as shown in (16) and (17) [A20]. 

 

𝐷𝑡𝑠𝑙 = −𝐴𝑠,𝑙 . 𝜋𝑠,𝑙 + 𝐵𝑠,𝑙 (15) 

 

𝐴𝑠,𝑙 = 𝜀.
𝐷𝑏𝑎𝑠𝑒,𝑠,𝑙

𝜋𝑏𝑎𝑠𝑒,𝑠,𝑙
 

(16) 

 

𝐵𝑠,𝑙 = 𝐷𝑏𝑎𝑠𝑒,𝑠,𝑙 . (1 + 𝜀) (17) 

 

3.1.2. Representation of the investment cost 

 

The investment cost is represented in Equation (18). 

The proportion of the new generation technologies' 

lifetime remaining in the planning period, the inflation 

rate, and the fixed annuity for all time steps in the 

planning period are considered for adjusting the 

investment cost [A21]. 
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𝐶𝑖𝑛𝑣,𝑖,𝑡

= ∑[𝑖𝑛𝑣𝑡,𝑓 . 𝐺𝑒𝑥𝑡,𝑓].
∑ (1 + 𝑟)−𝑚𝑇−𝑡

𝑚=1

∑ (1 + 𝑟)−𝑛𝑙𝑡,𝑓
𝑛=1

𝐹

𝑓=1

+ ∑[𝑖𝑛𝑣𝑡,�́� . 𝐺𝑤𝑒𝑥𝑡,�́�].
∑ (1 + 𝑟)−𝑚𝑇−𝑡

𝑚=1

∑ (1 + 𝑟)−𝑛𝑙𝑡,�́�
𝑛=1

𝐹

𝑓=1

 

(18) 

 

3.1.3. Income obtained from environmental based 

incentive mechanism 

 

The revenue of wind firms obtained from 

environmental based incentive mechanism is 

represented in Eq. (18). As mentioned before, the 

environmental based incentive mechanism is the 

function of emission penalty. One of the most 

important benefits of this mechanism is providing 

incentive mechanism cost of wind generation by 

penalty revenue earned from pollutant power plant 

(Eq. 10). 

 

Ω𝑅𝑒𝑔,�́�,𝑡 = ∑ ∑ ∑[𝑑𝑡𝑠𝑙 .

𝑆𝑁

𝑛=1

𝑁𝑙

𝑙=1

𝑁𝑠

𝑠=1

(𝑃𝐺𝑒𝑤,𝑡𝑠𝑙,𝑛). 

                                            𝑃𝑟𝑜𝑏𝑛 . 𝜋(𝜋𝑡𝑠𝑙,𝐶𝑃𝑒𝑛𝑎𝑙𝑡𝑦)]

(19) 

 

3.2. Top layer of matrix game: investment game 

 

The investment matrix game can be defined by the set 

{𝑁, 𝐴1, … , 𝐴𝑁 , 𝑅1, … , 𝑅𝑁} where, 𝑁 represents the 

number of generators, 𝐴𝑖 represents the set of 

expansion alternatives available to generator 𝑖 and 𝑅𝑖 

is the payoff function for generator 𝑖. 𝑅𝑖 can be written 

in the form of N-dimensional matrices representing the 

investment matrix game as illustrated by (20). 

 

𝑅𝑖: 𝐴1 × … × 𝐴𝑁 → 𝑅 (20.a) 

 

𝑅𝑖 = [𝑟𝑖(𝑎1, 𝑎2, … , 𝑎𝑁)], |𝐴1|, … , |𝐴𝑁| (20.b) 

 

The generators select expansion alternatives from the 

set of available choices with the goal of maximizing 

their payoffs, which depend on the selection of all 

other generators. The concept of Nash equilibrium is 

used to illustrate a strategy as the most rational 

behavior by the generators acting to maximize their 

payoffs. 

So, for the investment matrix game, a pure strategy 

Nash equilibrium is a collection of expansion 

alternatives 𝑎∗ = (𝑎∗
1, … , 𝑎∗

𝑁) for which 𝑟𝑖(𝑎∗
𝑖 , 𝑎∗

−𝑖) ≥

𝑟𝑖(𝑎∗
𝑖 , 𝑎∗

−𝑖), ∀ 𝑎𝑖 ∈  𝐴𝑖 , 𝑖 = 1,2, … , 𝑁, where 𝑎𝑖 

indicates the selection of a non-Nash equilibrium 

alternative by generator 𝑖 and 𝑎∗
−𝑖 indicates the Nash 

equilibrium choice of all the other generators. 

 

3.3. Bottom layer of matrix game: Cournot game 

 

The Cournot matrix game can be defined by the set 

{𝑁, �̃�1, … , �̃�𝑛, �̃�1, … , �̃�𝑛}, where �̃�𝑖 represents the set 

of bid choices available to generator 𝑖, �̃�𝑖 is the payoff 

function for generator 𝑖 when an element �̃�𝑖 =

(𝑏1, … , 𝑏𝑁) of �̃�𝑖 is the profit of generator 𝑖 when the 

generators choose bids 𝑏1 through 𝑏𝑁. �̃�𝑖 for all 𝑖 can 

be written in the form of N-dimensional matrices 

representing the Cournot matrix game as illustrated in 

(21). 

 

�̃�𝑖: �̃�1 × … × �̃�𝑁 → 𝑅 (21.a) 

 

�̃�𝑖 = [�̃�𝑖(𝑏1, … , 𝑏𝑁)], |�̃�1|, … , |�̃�𝑁| (21.b) 

 

The pure strategy Nash equilibrium for the Cournot 

game is defined as the bid choice profile 𝑏∗ for which 

(22.b) is satisfied. 

 

𝑏∗ = (𝑏∗
1, … , 𝑏∗

𝑁) (22.a) 

 

�̃�𝑖(𝑏∗
𝑖 , 𝑏∗

−𝑖) ≥ �̃�𝑖(𝑏𝑖 , 𝑏∗
−𝑖), ∀𝑏𝑖 ∈ �̃�𝑖 , 𝑖

= 1,2, … , 𝑁 

(22.b) 

 

The generator profits �̃�𝑖 = (𝑏1, … , 𝑏𝑁) where, 

including the Cournot matrix game are calculated by 

Eqs. (7),(19). The payoffs for each generator are used 

to populate the N-dimensional payoff matrices for the 

Cournot game. Then, the reinforcement learning 

algorithm is proposed to get the equilibrium bids, 

corresponding price and quantity allocations. 

 

3.4. Solution algorithm for the GEP considering 

wind 

 

To solve the two-layer matrix game model for GEP, 

the following algorithm is used. 

 

Step 1: In the beginning of every year, potential 

investors evaluate the future demand growth plans, 

profits from previous years and the regulatory 
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interventions to develop a set of feasible generation 

expansion investment alternatives. 

 

Step 2: Let 𝑎𝑖: 𝑖 = 1, … , 𝑁 indicate the number of 

investment alternatives accessible to generator 𝑖. 

Then, the investment matrix game 𝐴, is an N-

dimensional matrix of size 𝑎1 × 𝑎2 × … × 𝑎𝑁. 

 

Step 3: For each element of matrix game 𝑨, there is a 

corresponding matrix game of size ∏ 𝒃𝒊𝑵
𝒊=𝟏 ,where 𝒃𝒊 

indicates the number of bids of generator 𝒊.  

 

Step 4: After solving the corresponding optimization 

problem, the profit for each element of the matrix 

games (�̃�𝒊 = (𝒃𝟏, 𝒃𝟏, … , 𝒃𝑵)) will be obtained. 

 

Step 5: Once the profits for each element of the games 

are obtained, a value approximation-based 

reinforcement learning algorithm is used to find the 

equilibrium profits (Ω𝑖
∗) for the generators. 

 

Step 6: Ultimately, the reinforcement learning 

algorithm, which is presented in next section, is used 

in matrix game 𝐴 to obtain the equilibrium solution. 

 

This procedure (steps 1-6) is represented once a year, 

till the generation expansion strategy for the entire 

planning horizon is obtained for each generator. 

 

4. Reinforcement learning based solution 

algorithm for matrix games 

 

Matrix games can be viewed as recursive stochastic 

games with a single state. A stochastic game can be 

introduced by a set {𝑛, 𝑆, 𝐴1, … , 𝐴𝑛, 𝑃, �̃�1, … , �̃�𝑛}, 

which differs from matrix games through holding the 

additional elements. In this set, 𝑆 is a finite set of states 

(𝑆) of the environment, and 𝑃 is the set of transition 

probability matrices. 

In this section, we present an approach to obtain Nash 

equilibrium of n-player matrix games. Let 𝑅𝑘(𝑎) 

represent the reward matrix of the 𝑅𝑡ℎ player of which 

𝑟𝑘 = (𝑎∗
1, … , 𝑎∗

𝑁) are the matrix elements. The value 

of an action 𝑎𝑘 to player 𝑘 is defined as shown in (23). 

 

𝑉𝑎𝑙[𝑅𝑘(𝑎𝑘)]

=  ∑ 𝑝(𝑎−𝑘 , 𝑎𝑘)𝑟𝑘 .

{𝑎1,…,𝑎𝑛\𝑎𝑘}

(𝑎1, … , 𝑎𝑘 , … , 𝑎𝑛) 

(23) 

 

In this equation, 𝑝(𝑎−𝑘, 𝑎𝑘) indicates the probability 

of choice of an action combination 𝑎−𝑘 by all the 

players while player 𝑘 chose action 𝑎𝑘 In this paper, 

for matrix games that have multiple players and a 

single state, it is assumed that there exist optimal 

values for all actions of the players which can give 

pure and mixed NE strategies. However, the 

probabilities (𝑝(𝑎−𝑘, 𝑎𝑘)) needed to compute these 

values are impossible to obtain for real life problems 

without prior knowledge of players’ behavior. 

Therefore, a learning approach is employed to 

estimate the values of the actions. By using learning 

method, the Eq. (23) can be rewritten by (24). In this 

equation, 𝛾𝑡 is learning parameter [A12-A13]. The 

algorithm presented below utilizes the value learning 

scheme (24) to derive pure and mixed Nash 

Equilibrium (NE) strategies for n-player matrix 

games. 

 

𝑉𝑎𝑙[𝑅𝑡+1
𝑘 (𝑎𝑘)] = (1 − 𝛾𝑡)[𝑅𝑡

𝑘(𝑎𝑘)]

+ 𝛾𝑡[𝑟𝑘(𝑎1, … , 𝑎𝑘 , … , 𝑎𝑛)] 

(24) 

 

4.1. Algorithm to obtain Nash equilibrium for n-

player matrix games 

 

In this study, it is assumed that the game has n-players 

and each player 𝑘 has a set of 𝐴𝑘 action choices. Thus, 

n reward matrices of size |𝐴1| × |𝐴2| × … × |𝐴𝑛| are 

available. The steps to obtain the Nash equilibrium of 

n-player matrix games are as follows: 

 

Step1: Eliminate elements of the matrices associated 

with non-rational strategies. These are strategies that 

will never be adopted by a rational player, regardless 

of the choices of other players. 

 

Step 2: Let iteration count 𝑡 = 0. Initialize the R-

values for all player and action combinations 𝑅(𝑘, 𝑎) 

to an identical small positive value. Also initialize the 

learning parameter 𝛾0, exploration parameter 𝜙0, and 

parameters 𝛾𝑡 , 𝜙𝑡 needed to obtain suitable decay rates 

of learning and exploration. Let Maxsteps denote the 

maximum iteration count. 
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Step 3: If 𝑡 ≤ 𝑀𝑎𝑥𝑠𝑡𝑒𝑝𝑠, continue learning of the R-

values through the following steps. 

(a) Greedy action selection for pure strategy Nash 

equilibrium: Each player 𝑘 with probability (1 −

𝜙𝑡), chooses a greedy action for which 𝑅𝑘(𝑎) ≥

𝑅(𝑘, �̃�). With probability 𝜙𝑡, the player chooses 

an exploratory action from the remaining 

elements of 𝐴𝑘 (excluding the greedy action), 

where each exploratory action is chosen with 

equal probability. Probabilistic action selection 

for mixed strategy Nash equilibrium can be 

computed using the ratio of R-values at iteration t 

as follows. For each player 𝑘, the probability of 

choosing the action 𝑎 𝜖𝐴𝑘 is given by  
𝑅(𝑘,𝑎) 

∑ 𝑅(𝑘,𝑏) 𝑏 𝜖𝐴𝑘

. 

(b) R-Value Updating: Update the specific R-values 

for each player k corresponding to the chosen 

action a using the learning scheme given below. 

 

𝑅𝑡+1(𝑘, 𝑎) ← (1 − 𝛾𝑡)𝑅𝑡(𝑘, 𝑎) + 𝛾𝑡(𝑟(𝑘, 𝑎)) (25) 

 

(c) 𝑠𝑒𝑡 ← (𝑡 + 1) 

(d) Update the learning parameters 𝛾𝜏 and exploration 

parameter 𝜙𝜏, following the decay scheme given 

in (26) [A12-A13]. 

 

𝜃𝑡 = (
𝜃0

1 + 𝜇
) 

(26.a) 

 

𝜇 = (
𝑡2

𝜃𝜏 + 𝑡
) 

(26.b) 

 

In (26), 𝜃0 denotes the initial value of a 

learning/exploration rate, and 𝜃𝜏 is a large value 

chosen to obtain an appropriate decay rate for the 

learning/exploration parameters. Exploration rate 

generally has a large starting value and a quicker 

decay, whereas learning rate has a small starting 

value and very slow decay rate. An exact option 

of these values depends upon the application 

[A23-A24]. 

(e) If 𝑡 ≤ 𝑀𝑎𝑥𝑠𝑡𝑒𝑝𝑠, go to Step 3(a), else go to Step 

4. 

 

Step 4: Equilibrium Strategy Determination: For each 

player 𝑘 the pure strategy is action 𝑎 for which 

𝑅(𝑘, 𝑎) ≥  𝑚𝑎𝑥𝑏 𝜖𝐴𝑘
𝑅(𝑘, 𝑏). The combined strategies 

for all players constitute the pure strategy equilibrium. 

 

5. Numerical studies 

 

5.1. Description of the test system 

 

The proposed method is implemented on a test system. 

Initial data for the test system is collected from [A25-

A26]. The test system has a total installed capacity of 

15,800 MW and a peak load of 15,000 MW in the 

initial year of investment. In this study, demand is 

considered elastic. The planning horizon is assumed to 

be five years. The probabilistic distribution function 

(pdf) of wind power generation is evaluated for each 

season. The electricity market considered here consists 

of four firms. Data regarding the ownership of the 

units by generation firms are shown in Table 1. 

The discount rate and annual growth of demand are 

assumed to be 5%. The seasonal factors are 1.0, 1.1, 

1.2, and 0.9 for the four seasons, respectively. The load 

coefficients are assumed to be 2, 1.5, and 1 for peak-

load, medium-load, and base-load sub-periods, 

respectively. In this study, the price cap is considered 

to be $80/MWh. 

The outputs of the numerical studies include the 

expansion strategies of generation firms, the total 

profit of the wind power plant firm, the cost of the 

incentive mechanism for wind generation, the Wind 

Penetration Index (WPI) as an index of wind 

expansion rate, the average annual price (AAP) of 

electricity, and the Herfindahl-Hirschman Index 

(HHI) as an index of market power [A27]. As 

previously mentioned, an environmentally-based 

incentive mechanism based on the generation 

expansion planning problem is developed in this 

study. To compare the results, three case studies are 

considered in this paper (Table 2). 
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5.2. Simulation results 

 

Case study 1: 

In this study, the impacts of the incentive mechanism 

on expansion planning are not considered. The results, 

as illustrated in Table 3, show that the wind power 

investor has no willingness to invest. Since no 

incentive is considered in this case, the WPI exhibits a 

descending trend over the planning period. This is in 
contrast to the policies of regulators and governments. 

Additionally, the wind firm revenue, HHI, and AAP, 

along with WPI variations over five years, are 

illustrated in Table 3. 

 

 Case study 2: 

In the second case, the required market-based 

incentive is derived for expanding wind power based 

on maximizing the wind firm’s revenue. The amount 

of the market-based incentive mechanism is the 

minimum incentive needed to encourage a wind firm 

to invest in wind generation expansion. 

If the incentive mechanism is lower than this amount, 

wind investors would not be motivated to invest. In 

this case, the penetration of wind power accumulates 

year by year. Results such as the generation expansion 

strategies, wind firm revenue, incentive cost, AAP, 

HHI, and WPI variations over five years are illustrated 

in Table 4. As observed, the WPI increased from 

5.06% in the initial year to 6.67% in the fifth year. The 

calculated HHIs are 3571 and 3622.09 for the 

beginning and the end of the planning period, 

respectively. These results indicate that the market 

power indices are reduced compared to case 1. 

The most important problem is that in this case the cost 

of incentive mechanism must be provided by 

customers. So, the environmental based incentive 

mechanism will be presented in case 3. 

 

Case study 3: 

As mentioned in previous section, the way that 

incentive costs are provided is another key problem 

which is considered in this case study by developing 

environmental based incentive mechanism. The cost 

of this incentive mechanism is provided by revenue 

earned by penalties of other pollutant power 

generation. The environmental based incentive which 

obtained based on generation expansion problem is 

illustrated in Table 5. 

 
Fig. 6: Comparison of incentive mechanism in case 2 and 3. 

 
Fig. 7: Comparison of average annual price in case 2 and 3. 

Tables 1: Data of generation technologies 

firm 
Generation 

technology 

Variable cost 

(US$/MWh) 

Capacity 

(MW) 

Expansion 

candidate capacity 

(MW) 

Life 

Time 

(yrs.) 

F.O.R 
CO2 

(lbs/MW) 

1 Nuclear 6.6 4000 400 40 0.02 0 

2 Coal-steam 15 8000 200 40 0.04 1840 

3 Gas 39.1 3000 50 20 0.01 889 

4 Wind 0 800 50 30 0.03 0 

 
Tables 2: Three case studies considered in this study. 

Case 1 No incentive mechanism 

Case 2 Market based incentive mechanism 

Case 3 Environmental based incentive mechanism 
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Furthermore, electricity price, wind firm profit, and 

wind penetration index are shown in this Table. As 

shown in Fig. 6, the amount of incentive is decreased 

in comparison with case 2 (market-based incentive). 

So, the incentive cost is reduced, when pollutant 

generation is penalized. In addition, by considering 

some penalties for pollutant power plant, marginal 

cost is increased and then the electricity price will be 

more than case 2 as shown in Fig. 7. 

 

6. Numerical studies 

 

In this paper, a generation expansion planning (GEP) 

model is developed to design an environmentally-

based incentive mechanism for wind generation in a 

smart, competitive power system. The GEP model 

examines the non-cooperative competition of 

generators at two layers. At the top layer, the 

generation investment game is analyzed, and at the 

bottom layer, the Cournot game at the power network 

operational level is examined. A solution algorithm 

based on Q-learning is used for the two-layer model, 

demonstrating how these layers interact to obtain 

environmental incentives by solving the multi-year 

generation expansion problem. 

In this developed incentive mechanism, power 

generation that produces pollution must pay penalties, 

while wind generation receives incentives for 

producing clean energy. One of the most important 

benefits of this mechanism is that the cost of the wind 

generation incentive is covered by the penalty revenue 

earned from polluting generation. Furthermore, by 

implementing this support scheme, investors are 

encouraged to invest in wind generation with lower 

incentives because the penalties imposed on polluting 

generation increase the marginal cost of power 

production for these resources. This penalty system 

further encourages firms to invest in wind generation 

Tables 3: The results of case 1: No incentive mechanism 

 Year 1 Year 2 Year 3 Year 4 Year 5 

Strategies (firm) 400(1), 2*200(2) 2*200(2) 400(1), 2*200(2) 2*200(2) 400(1), 2*200(2) 

WPI (%) 4.82 4.71 4.49 4.4 4.21 

AAP ($/MWh) 66.7 67.01 66.7 67.08 66.7 

Wind Benefits 

(M$) 
93.49 93.93 93.49 94.01 93.49 

HHI 3613 3683.05 3702.82 3768.87 3786.15 

 
Tables 4: The results of case 2: (Market based incentive mechanism). 

 Year 1 Year 2 Year 3 Year 4 Year 5 

Strategies (firm) 
400(1), 2*200(2), 

2*50(4) 

2*200(2), 

2*50(4) 

400(1), 2*200(2), 

2*50(4) 

2*200(2), 

2*50(4) 

400(1), 2*200(2), 

2*50(4) 

Incentive($/MWh) 29.73 29.75 29.73 29.73 29.75 

WPI(%) 5.39 5.81 6.08 6.45 6.67 

AAP($/MWh) 66.91 67 66.91 67.05 67 

Wind Incentive 

Cost(M$) 
42.97 48.21 53.39 58.6 63.85 

Wind Revenue(M$) 135.45 147.45 159.11 171.19 182.97 

HHI 3575.96 3610.06 3598.49 3631.63 3622.09 

 

 
Tables 5: The results of case 3: (Environmental based incentive mechanism). 

 Year 1 Year 2 Year 3 Year 4 Year 5 

Strategies (firm) 
400(1), 2*200(2), 

2*50(4) 

2*200(2), 

2*50(4) 

400(1), 2*200(2), 

2*50(4) 

2*200(2), 

2*50(4) 

400(1), 2*200(2), 

2*50(4) 

Incentive($/MWh) 29.427 29.419 29.391 29.382 29.37 

WPI(%) 5.39 5.81 6.08 6.45 6.67 

AAP($/MWh) 67.11 67.21 67.16 67.28 67.25 

Wind Incentive 

Cost(M$) 
42.53 47.68 53.39 57.91 63.03 

Wind Revenue(M$) 135.45 147.45 159.11 171.19 182.97 

HHI 3575.96 3610.06 3598.49 3631.63 3622.09 

 

 



S. M. Seyyedi et al / Journal of Renewable Energy and Smart Systems     Vol.1, No.2, 2024: 13-27 

25 

 

with reduced incentives. Thus, in the developed 

environmentally-based incentive mechanism, the cost 

of the incentive is decreased and funded by penalties 

collected from polluting power plants. 
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Nomenclature 

 

Indices 

𝑙             load level  

𝑆            Season  

𝑡            time step (year) 

Constants 

𝐴          is an N-dimensional matrix of size 𝑎1 × 𝑎2 × … × 𝑎𝑁. 

𝐴𝑖          set of expansion alternatives available to generator 𝑖 

𝑎𝑖          number of investment alternatives available to generator 𝑖 

�̃�𝑖          set of bid choices available to generator 𝑖  

𝑏𝑖          bid of generator 𝑖 

𝐷              electricity demand (MW) 

𝐷𝑏𝑎𝑠𝑒,𝑠,𝑙 base demand (MW)    

𝐷𝑡𝑠𝑙       time duration in tsl (hr) 

�́�           number of wind generation firms 

𝐹           number of other generation firms 

𝐺𝑡         power generation except wind power (MW) 

𝐹𝐶        fuel price($/MBtu) 

𝑙𝑡          life time of new technology (year) 

𝑁         number of generators 

𝑁𝑖        number of load levels 

𝑁𝑠       number of seasons 

𝑃𝐶      price cap ($/MWh) 

𝑃𝐺𝑒,𝑚𝑖𝑛  minimum power of generation (MW) 

𝑃𝐺𝑒,𝑚𝑎𝑥  maximum power of generation (MW) 

𝑃𝐺𝑒𝑤,𝑚𝑖𝑛 minimum power of wind generation (MW) 

𝑃𝐺𝑒𝑤,𝑚𝑎𝑥 maximum power of wind generation(MW) 

𝑃𝑟𝑜𝑏𝑖    probability of each scenario in wind generation modeling 

𝑟            discount rate 

𝑉𝑎𝑟        variable cost ($/MWh) 

∏𝑏𝑎𝑠𝑒,𝑠,𝑙    reference price ($/MWh) 

𝜃0              initial value of a learning/exploration rate 

𝜀               elasticity coefficient 

Variables 

𝑎𝑖  selection of a non-Nash equilibrium alternative by generator 𝑖 

𝑎∗
−𝑖        Nash equilibrium choice of all the other generators 

𝐸           expected benefits of investment planning 

𝐺𝑒𝑥𝑡      other generation expansion in time step t (MW) 

𝐺𝑤𝑒𝑥𝑡   wind generation expansion in time step t (MW) 

𝑃           set of transition probability matrices 
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𝑃𝐺𝑒,𝑡𝑠𝑙,𝑛  power generation in n’th scenario in tsl (MW) 

𝑃𝐺𝑒𝑤,𝑡𝑠𝑙,𝑛 wind power generation in n’th scenario in tsl (MW) 

𝑃𝐺𝑒     total power generation (MW) 

𝑆        finite set of states (s) 

𝛾𝑡        learning parameter 

𝜙𝑡        exploration parameter 

𝜋(𝜋𝑡𝑠𝑙,𝐶𝑃𝑒𝑛𝑎𝑙𝑡𝑦) amount of reliability based incentive ($/ MWh) 

∏             price of electricity($/ MWh) 

Functions 

Ω𝑒𝑛𝑒𝑟𝑔𝑦,𝑓,�́�,𝑡   investor’s revenues from energy sales ($) 

Ω𝑅𝑒𝑔,�́�,𝑡         wind firm revenues from incentive ($)  

Ω𝑡    expected net profit in year t ($) 

Ω𝑖
∗    total expected profit of investor i for each time step 

𝐶𝑐−𝑡𝑎𝑥,𝑓         carbon tax cost ($) 

C𝑖𝑛𝑣,𝑓,�́�,𝑡         investment cost in year t ($) 

𝐶𝑐−𝑝𝑒𝑛𝑎𝑙𝑡𝑦,𝑖    Penalty cost of pollutant power plant ($) 

𝐶𝑣𝑎𝑟,𝑓             variable cost(operation cost) ($) 

𝑝(𝑎−𝑘 , 𝑎𝑘)     probability of choice of an action combination 𝑎−𝑘 by 

all the players while player 𝑘 chose action 𝑎𝑘. 

𝑅𝑖            pay off function for generator 𝑖 

𝑅𝑘(𝑎)      reward matrix of the 𝑘𝑡ℎ player 

�̃�𝑖 = (𝑏1, 𝑏1, … , 𝑏𝑁)  profit of generator 𝑖 when the generators 

choose bids 𝑏1 through 𝑏𝑁. 

Ψ0            total discounted profits over the planning period 

 


