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Abstract.  Recently the Extended Fre’chet distribution has appeard as the subject of so many 
research. This research aims to extend the Extended Fre’chet distribution as a three-parameter 

distribution to a four-parameter life-time distribution named Extended Frechet Power Series 

distributions. The Extended Frechet Power Series distribution happens to have decreasing, 
increasing, bathtub, and upside down bathtub hazard shapes for different values of its parameters. 

This proposed class of distributions can apply to modeling of hazard rate data in the Engineering, 

Medical, Economics and Insurance fildes. The new compounded distributions considered in this 

paper are seen to provide models for all of the different shaped hazard rates mentioned above. This 

flexibility permits the data to determine the nature of the hazard function without its being 

inadvertently imposed through the selection of an improper model. In this paper, some of the 
statistical properties such as the quantiles, moment generating functions and ordered statisticalls 

has been studied for this distributions. Also, the maximum likelihood estimation and capability of 

the quantile measures are discussed. The properties of the mean reversed residual life and failure 
rate functions have been discussed related to the order statistics. Finally, using two data sets 

leading to the numerical experiment, the functioning of the maximum likelihood estimators and 

their asymptotic results of Extended Frechet Power Series distribution are compared to several 
rival destributions. The results shown that this class of distributions have the better performance 

than other hazard rate distributions in order to hazard data modeling. 
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1. Introduction 

Statistical distributions are powerful tools for describing and modeling real life data. 

Adding one or more additional shape parameters to a particular probability distribution 

model can lead to extend of more robust and flexible distributions for predicting real data. 

This study focused on extending the Fréchet distribution which has been widely applied in 

extreme value theory. The family of Extreme Value distributions has been developed as 

the limiting distribution for minimum or maximum of several independent and identically 

distributed random variables with respect to the increase of the sample size. Combining 

the Gumbel, Fre’chet, and Weibull distribution that are also known as type I, II, and III 

extreme value distributions respectively lead to different extreme value distributions. The 

extreme value theory often deals with events with very small probabilities. These extreme 

value distributions and theire other forms are massively used in finance, economics, 

material sciences, telecommunications, etc. Market returns data, has been extensively 
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modeled by Frechet (or type II extreme value) distributions that are often heavy-tailed in 

financial applications (Alves, 2010). The standard Frechet distribution with the CDF Has 

been generalized by Nadaraja and Kotz (2003), to a new distribution Called Extended 

Frechet (EF) distribution. 

Consider a system of n components in series with independent and identically distributed 

lifetime 𝐸𝐹 distributions. It is concluded that the lifetime of the system is also distributed 

according to the 𝐸𝐹 distribution. Kotz and Nadaraja (2000), described the applications of 

the Frechet distribution such as accelerated life testing through earthquakes, floods, horse 

racing, rainfall, queues in supermarkets, sea currents, wind speed, track records, etc. 

Recently, many distribution have been introduced for modeling lifetime data by 

compounding two or more life-time distribution. The two parameters Exponential 

Geometric (EG) distribution was introduced by Adamidis and Loukas (1998) 

compounding an exponential distribution with a geometric distribution. Min Wang (2012) 

proposed a three-parameter lifetime distribution and studied many of its properties. With 

the same method, Kus (2007) and Tahmasbi and Rezaei (2008) studied the Exponential 

Poisson (EP) and the Exponential Logarithmic (EL) distribution respectively. The weibull-

Geometric (WG) and the Weibull-Poisson (WP) were introduced by Barreto-Souza et al. 

(2010)and Lu and Shi (2011), respectively. These were natural extended version of 𝐸𝐺 

and 𝐸𝑃  respectively. In addition, Rodrigues (2011) proposed the Weibull-Negative 

Binomial (WNB) distribution which generally is a super model of WG and WP 

distributions. In the same way, any lifetime distribution could have been compounded with 

the power series distribution. The Exponential Power Series (EPS) family of distributions 

was introduced by Chahkandi and Ganjali (2009), which includes EP, EG and EL as sub-

models. The Weibull Power Series (WPS) was studied by Morais and Barreto-Souza(2011) 

which contains the EPS distribution as a special case. The WPS distribution can potentially 

have a decreasing, increasing, bathtub, and upside-down bathtub failure rate function. 

Mahmudi and Jafari (2012) proposed the Generalized Exponential Power Series (GEPS) 

distribution following the same method used by Morais and Barreto-Souza (2011). The 

Extended Weibull Power Series (EWPS) was studied by Silva et al. (2013) which contains 

EPS and WPS distribution as sub-models. Bagheri et al.(2015) studied the family of 

Generalized Modified Weibull Power Series (GMWPS) distribution The Inverse Weibull 

Power Series (IWPS) distribution was introduced by Shafiei et al. (2015). Alizadeh et al. 

(2018) introduced the Exponentiated Power Lindly Power Series distribution. Akarawak 

et al. (2023) proposed a four-parameter continuous distribution known as the Inverted 

Gompertz Fréchet (IGoFre) distribution, which is an inverse transformation of the 

Gompertz Frechet distribution. Ramos et al. (2019) considered different methods of 

estimation of the unknown parameters both from frequentist and Bayesian viewpoint of 

Fr´echet distribution. Gomez et al. (2024) presented the Slash-Exponential-Fréchet 

distribution, which is an expanded version of the Fréchet distribution. Al-Jabouri, and Al-

Taee (2023) compared several methods of estimating the parameter of Frechet distribution 

based on different Bayesian methods with (square loss, Linux and Unix) functions. In this 

research, several simulation experiments were conducted according to the difference in 

(sample size, value of distribution parameters and estimation methods) and the results were 

compared based on mean square error criteria, it is possible to use other estimation methods 

such as (moments and percentile), for other distributions such as (Gumbel and Lindley). 

Consider a system of 𝑁  components with positive continuous random life times 

𝑋1,⋯ , 𝑋𝑁, where 𝑁 is a discrete positive integred random variable (rv). Clearly, the life 

time of such system is 𝑋(1) = 𝑚𝑖𝑛(𝑋1,⋯ , 𝑋𝑛), if the components are parallal and 𝑋(𝑛) =

𝑚𝑎𝑥(𝑋1,⋯ , 𝑋𝑛) if they are in series. This leads to compounding life time distributions. 

Here, N can be as a power series disturbed rv. Now, let consider the parallel system where 

𝑋𝑖’s follow EF distributions. Then, we obtain a new family of Extended Frechet power 

series (𝐸𝐹𝑃𝑆) distributions. The Complementary Extended Frechet Geometric (𝐶𝐸𝐹𝐺), 
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Extended Frechet Poisson (𝐸𝐹𝑃), Extended Frechet Binomial (𝐸𝐹𝐵), and the Extended 

Frechet Logarithmic (𝐸𝐹𝐿) distributions are contained in the 𝐸𝐹𝑃𝑆 model as special 

cases. The application of the new class of distributions in the industry and biological 

organisms studies made it a well-motivated model to study. For instance, consider the time 

to relapse of cancer under the first activation scheme. We denote the number of 

carcinogenic cells for an individual left active after the initial treatment as N, and the spent 

time for the ith carcinogenic cell to produce a detectable cancer mass by 𝑋𝑖 for 𝑖 ≥ 1. Let 

𝑁 is distributed according to a power series distribution. Suppose that 𝑋𝑖 for 𝑖 ≥ 1 is a 

sequence of independent and identically distributed 𝐸𝐹 rv’s independent of 𝑁. Then one 

can model the time to relapse of cancer of a susceptible individual by the 𝐸𝐹𝑃𝑆 class of 

distributions. As the second example, suppose that the hazard of an item happens according 

to the appearance of an unknown number of initial defects of the same kind, denoted by 

𝑁, which can be identified only after the occurrence of the failure and repaired perfectly. 

The time to the failure of the device is represented by 𝑋𝑖 due to the ith defect, for 𝑖 ≥ 1. 

Let 𝑋𝑖 , 𝑖 = 1,⋯ ,𝑁 ,be independent and identically distributed 𝐸𝐹  rv’s and are 

independent of 𝑁, and 𝑁 follows power series distribution Then the time to the first 

failure can be properly modeled by the 𝐸𝐹𝑃𝑆 class of distributions. Also, there might be 

a question regarding the first activation scheme for certain diseaes. Suppose that the 

number of latent factors, 𝑁, that should all be activated by failure is distributed according 

to a power series distribution. Let 𝑋𝑖 denote the resistant time to a disease manifestation 

due to the ith latent factor follow an EF distribution. In the last-activation scheme, the 

hazard happens after all 𝑁 factors activation (see Cooner et al. (2007)). So, the new class 

of distributions could be able to model the time to the failure under the last-activation 

scheme.  

We are motivated to extend the Frechet distribution to a more flexible generalized form 

based on the following: 

(i) When standard probability distribution is developed by the addition of shape 

parameter(s), the new distributions performs better  when applied to model extremely 

skewed data as compared to basic probability distribution.  

(ii) The goodness of fit can be improved up on with the addition of shape parameter(s). 

This model is more flexible as for its skewness and kurtosis. 

(iii) To further analyse extensively, the tail properties of a distribution one can extend the  

basic probability distribution by the addition of a shape parameter. 

The rest of the paper is organized as follows. In Section 2, we introduce the new class 

EFPS distributions, and the CDF, survival and hazard rate functions. Some special cases 

and their properties are discussed. Mathematical and statistical properties of the class of 

EFPS distributions are the quantile, moments, etc. are obtained in Section 3. In Section 4, 

we present residual life and reversed failure rate functions and discuss the order statistics. 

Maximum likelihood estimates of the unknown parameters are presented in Section 5. In 

Section 6, real data applications are given to show the flexibility and potentiality of the 

EFPS distribution. Conclusions are presented in Section 7. 

 

2. The new compound distribution 

Let X be distributed according to a EF distribution. Then, X has the following CDF and 

PDF, respectively: 

𝐺(𝑥) = 1 − [1 − 𝑒−
(
𝛼

𝑥
)
𝜆

]

 𝜇

,   𝑥, 𝜇, 𝛼, 𝜆 > 0.         (1) 

And 
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𝑔(𝑥) = 𝜆𝜇𝛼𝜆𝑥−(𝜆+1)𝑒
−(

𝛼

𝑥
)
𝜆

[1 − 𝑒
−(

𝛼

𝑥
)
𝜆

]

 𝜇−1

. 𝑥 > 0. 𝜇 > 0. 𝛼 > 0. 𝜆 > 0 ∙ (2) 

Suppose that 𝑿𝟏, ⋯ .,, given N, are an i.i.d random sample of EF distribution. Let N be a 

discrete random variable having a power series probability mass function (PMF) (truncated at 

zero) as follows: 

            𝑷𝒏 = 𝑷(𝑵 = 𝒏) =
𝒂𝒏𝜽

𝒏

𝑪(𝜽)
, 𝒏 = 𝟏, 𝟐,⋯                             

(3) 

Where 𝑎𝑛 ≥ 0 depends only on n, 𝐶(𝜃) = ∑∞𝑛=1 𝑎𝑛 𝜃𝑛 < ∞ and its first, second, 

 𝐶−1(∙).and  𝐶′(∙), 𝐶′′(∙)shown by  arederivatives respect to θ exist and  thirdand 

respectively. 

One can find detailed information on the power series class of distribution in Noack (1950). 

The binomial, Poisson, geometric and Logarithmic distributions are included in the class of 

power series distributions, (Jonson et al. (2005)). Table 1 shows useful quantities of some 

power series distributions (truncated at zero) defined by (3) such as Geometric, Poisson, 

Logarithmic and Binomial (with m being the number of replicas). 

Table 1. Useful quantities of some power series distributions. 

Distribution 𝑎𝑛 𝐶(𝜃) 𝐶/(𝜃) 𝐶//(𝜃) 𝐶(𝜃)−1 𝜃 
Geometric 1 𝜃(1 − 𝜃)−1 (1 − 𝜃)−2 2(1 − 𝜃)−3 𝜃(1 − 𝜃)−1 𝜃 ∈ (0.1) 

Poisson 𝑛!−1 𝑒𝜃 − 1 𝑒𝜃 𝑒𝜃 log(𝜃 + 1) 𝜃 ∈ (0.∞) 
Logarithmic 𝑛−1 −log(1 − 𝜃) (1 − 𝜃)−1 (1 − 𝜃)−2 1 − 𝑒𝜃 𝜃 ∈ (0.1) 
Binomial ∗ (

𝑚
𝑛
) (𝜃 + 1)𝑚 − 1 𝑚(𝜃 + 1)𝑚−1 𝑚(𝑚 − 1)

(𝜃 + 1)2−𝑚
 (𝜃 − 1) 

1
𝑚 − 1 

𝜃 ∈ (0.∞) 

* 𝜃 is not the probability of succes here. The probability of succes of this binomial 

distribution is 
𝜃

𝜃+1
.   

  

Suppose that 𝑋(𝑁) = 𝑚𝑎𝑥{𝑋𝑖}𝑖=1
𝑁  . Then the conditional CDF of 𝑋(𝑁)|𝑁 = 𝑛  is as 

follows: 

𝐺 𝑋(𝑁)|𝑁=𝑛
(𝑥) = (𝐺(𝑥))𝑛 = (1 − [1 − 𝑒−

(
𝛼
𝑥
)
𝜆

]

 𝜇

)𝑛, 𝑥, 𝜇, 𝛼, 𝜆 > 0, 𝑛 = 1,2,⋯ 

Then we obtain 

 

 𝑃(𝑋(𝑁) ≤ 𝑥,𝑁 = 𝑛) =
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
(𝐺(𝑥))𝑛, 𝑥, 𝛼, 𝜆 > 0, 𝑛 ≥ 1 

Now, the extended Fréchet power series represented by 𝐸𝐹𝑃𝑆(𝛼, 𝜆, 𝜇, 𝜃) is defined by the 

marginal CDF of 𝑋(𝑁) as follows: 

𝐹(𝑥) =
𝐶{𝜃𝐺(𝑥)}

𝐶(𝜃)
=

𝐶{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶(𝜃)
,    𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0   (4) 

So the PDF hazard rate and the survival function of EFPS distribution are respectively as 

follows: 

 𝑓(𝑥) = 𝜃𝑔(𝑥)
𝐶′{𝜃𝐺(𝑥)}

𝐶(𝜃)
= 
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𝜃𝜆𝜇𝛼𝜆𝑥−(𝜆+1)𝑒−
(
𝛼

𝑥
)
𝜆

× [1 − 𝑒−
(
𝛼

𝑥
)
𝜆

]

 𝜇−1 𝐶′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶(𝜃)
 ,             

(5)                                 

ℎ(𝑥) = 𝜆𝜇𝛼𝜆𝑥−(𝜆+1)𝑒
−(
𝛼
𝑥
)
𝜆

[1 − 𝑒
−(
𝛼
𝑥
)
𝜆

]

 𝜇−1
𝐶
′{𝜃[1−(1−𝑒

−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶 {𝜃 [1 − (1 − 𝑒
−(
𝛼
𝑥
)
𝜆

)

 𝜇

]}

 , 

 and  

 𝐹(𝑥) = 1 −

𝐶{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶(𝜃)
∙ 

 

The 𝐸𝐹𝑃𝑆  class of distributions includes several lifetime distributions that have been 

introduced and studied in the literature. Table 2 represents useful quantities  and 

respective parameters for each distribution and shows a list of distributions that can be 

derived from the EFPS distribution. 

 
Table 2. Some sub-models from the EFPS(α.μ.λ.θ) distribution. 

Model 𝐶(𝜃) 𝛼 𝜆 𝜇 References 

𝐹𝑃𝑆 − − − 1 Morais and Barreto-Souza (2011) 

𝐼𝐸𝑋𝑃𝑆 − − 1 1 Chahkandi and Ganjali (2009) 

𝐼𝑅𝑃𝑆 − − 2 1 Morais and Barreto-Souza(2011) 

𝐸𝐹𝐺 𝜃(1 − 𝜃)−1 − − − New 

𝐹𝐺 𝜃(1 − 𝜃)−1 − − 1 Barreto-Souza  et al . (2011) 

𝐼𝐸𝑋𝐺 𝜃(1 − 𝜃)−1 − 1 1 Adamidis and Loukas (1998) 

𝐼𝑅𝐺 𝜃(1 − 𝜃)−1 − 2 1 New 

𝐸𝐹𝑃𝑜 𝑒𝜃 − 1 − − − New 

𝐹𝑃𝑜 𝑒𝜃 − 1 − − 1 Wanbo Lu and Daimin Shi (2012) 

𝐼𝐸𝑋𝑃𝑜 𝑒𝜃 − 1 − 1 1 Wanbo Lu and Daimin Shi (2012) 

𝐼𝑅𝑃𝑜 𝑒𝜃 − 1 − 2 1 New 

𝐸𝐹𝐵 (𝜃 + 1)𝑚 − 1 − − − New 

𝐹𝐵 (𝜃 + 1)𝑚 − 1 − − 1 New 

𝐼𝐸𝑋𝐵 (𝜃 + 1)𝑚 − 1 − 1 1 New 

𝐼𝑅𝐵 (𝜃 + 1)𝑚 − 1 − 2 1 New 

𝐸𝑃𝐿𝑜 −log(1 − 𝜃) − − − New 

𝐹𝐿𝑜 −log(1 − 𝜃) − − 1 New 

𝐼𝐸𝑋𝐿𝑜 −log(1 − 𝜃)  1 1 New 

𝐼𝑅𝐿𝑜 −log(1 − 𝜃)  2 1 New 

𝐺𝑒𝐼𝑊𝑃𝑆 - 
𝑞𝑐

1
𝜆 

− 1 New 

𝐺𝑒𝐼𝑅𝑃𝑆 - 
𝑞𝑐

1
2 

2 1 New 

𝐺𝑒𝐼𝐸𝑋𝑃𝑆 - 𝑞𝑐 1 1 New 

     New 

Where 𝐺 = Geometric 𝑅 = Rayleigh  𝐸𝑋 = Exponential, 𝐿𝑜 = Logarithmic, 𝐼= Inverse 

𝐺𝑒 = generalized and 𝐵 = Binomial.   
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Proposition 2.1  Let 𝑋(1) = 𝑚𝑖𝑛𝑋𝑖=1
𝑁 . Then the CDF and PDF of 𝑋(1) are respectively 

as follows:  

𝐹 𝑋(1)
(𝑥) = 1 −

𝐶{𝜃[1 − 𝐺(𝑥)]}

𝐶(𝜃)
= 1 −

𝐶 {𝜃 [1 − 𝑒
−(
𝛼
𝑥
)
𝜆

]

 𝜇

}

𝐶(𝜃)
, 𝑥 > 0, 

 and  

𝑓(𝑥) = 𝜃𝜆𝜇𝛼𝜆𝑥−(𝜆+1)𝑒−
(
𝛼
𝑥
)
𝜆

[1 − 𝑒−
(
𝛼
𝑥
)
𝜆

]

 𝜇−1 𝐶′ {𝜃 [1 − 𝑒
−(
𝛼
𝑥
)
𝜆

]

 𝜇

}

𝐶(𝜃)
∙ 

 Proof.   

𝐹𝑋(1)(𝑥) = 1 − 𝑃(𝑚𝑖𝑛(𝑋1, … , 𝑋𝑛) > 𝑥) = 1 −∏

𝑛

𝑖=1

𝑃(𝑋𝑖 ≥ 𝑥) = 1 −∏

𝑛

𝑖=1

1 − (𝑃(𝑋𝑖

⩽ 𝑥) = 1 − (1 − (1 − 𝐺(𝑥)))𝑛 =∑

𝑛

𝑖=1

𝑎𝑛𝜃
𝑛

𝐶(𝜃)
−∑

𝑛

𝑖=1

𝑎𝑛[𝜃(1 − 𝐺(𝑥)]
𝑛

𝐶(𝜃)
 

 = 1 −
𝐶(𝜃(1−𝐺(𝑥))

𝐶(𝜃)
 

By subsetting 𝐺(𝑥) in the above relation and taking derivative, we obtain PDF of 𝑋1. 

 

 

Proposition 2.2  The EF distribution is derived as a sub-model of the EFPS class of 

distributions when 𝜃 ⟶ 0+. 
 

Proof. Using 𝐶(𝜃) = ∑∞𝑛=1 𝑎𝑛 𝜃𝑛, we can write  

 𝑙𝑖𝑚
𝜃⟶0+

𝐹(𝑥) = 𝑙𝑖𝑚
𝜃⟶0+

(

 
 
1−

∑∞𝑛=1𝑎𝑛{𝜃(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

}

𝑛

∑∞𝑛=1𝑎𝑛𝜃
𝑛

)

 
 

 

 = lim
𝜃⟶0+

(

 
 
1 −

𝑎1(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

+∑∞𝑛=2𝑛𝑎𝑛𝜃
𝑛−1(1−𝑒

−(
𝛼
𝑥)
𝜆

)

 𝑛𝜇

𝑎1+∑
∞
𝑛=2𝑛𝑎𝑛𝜃

𝑛−1

)

 
 

 

 = 1 − (1 − 𝑒−
(
𝛼

𝑥
)
𝜆

)

 𝜇

∙ 

Proposition 2.3  The densitie of the EFPS family of distributions can be expressed as a 

linear combination of order statistics densities of  EF with parameters 𝛼, 𝜆 and 𝑛𝜇 i.e.,  

 𝑓(𝑥) = ∑∞𝑛=1 𝑃(𝑁 = 𝑛)𝑔 (1)(𝑥; 𝑛) = ∑
∞
𝑛=1 𝑃

𝑛𝑔(𝑥; 𝛼, 𝜆, 𝑛𝜇) ∙ (6) 

where 𝑔 (1)(𝑥; 𝑛) is the PDF of the extended Fréchet distribution with parameters 𝛼, 𝜆 and 

𝑛𝜇. 

Therefore some mathematical properties of the EFPS class of distributions is obtained from 

those of the EF distribution.  

 

Proof. Since 𝐶′(𝜃) = ∑∞𝑛=1 𝑛𝑎𝑛(𝐶(𝜃))
𝑛−1 , we can write  

𝑓(𝑥) = 𝜃𝑔(𝑥)
𝐶′(𝜃 − 𝜃𝐺(𝑥))

𝐶(𝜃)
= ∑

∞

𝑛=1

𝜃𝑔(𝑥)
𝑛𝑎𝑛(𝜃 − 𝜃𝐺(𝑥))

𝑛−1    

𝐶(𝜃)
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       = ∑

∞

𝑛=1

𝑎𝑛𝜃
𝑛

𝐶(𝜃)
𝑛𝑔(𝑥)[1 − 𝐺(𝑥)]𝑛−1 =∑

∞

𝑛=1

𝑃(𝑁 = 𝑛)𝑔(1)(𝑥; 𝛼, 𝑛, 𝛽, 𝜆) 

 

in which 𝑔 (1)(𝑥; 𝑛) is the PDF of 𝑋(1) = min(𝑋1, 𝑋2,⋯ , 𝑋𝑛) given by  

 𝑔 𝑋(1)(𝑥; 𝑛) = 𝑛𝑔(𝑥)[1 − 𝐺(𝑥)]
𝑛−1 = 𝑛𝜆𝜇𝛼𝜆𝑥−(𝜆+1)𝑒

−(
𝛼

𝑥
)
𝜆

[1 − 𝑒
−(

𝛼

𝑥
)
𝜆

]

 𝑛𝜇−1

 

so 𝑔 (1)(𝑥; 𝑛) is the PDF of extended Frechet distribution with parameters 𝛼, 𝜆 and 𝑛𝜇. 

 

3. Extracting the sub-models 

In this section we obtain four sub-models of EFPS such as EFP, EFG, EFB, and EFL 

distributions. By plotting the PDF CDF and hazard rate functions of these sub-model 

distributions for different values of parameters the flexibility of them are illustrated. 

 

3.1  Extended Fréchet geometric distribution 

 

The extended Fréchet geometric (EFG) distribution is derived by taking 𝑎𝑛 = 1  and 

𝐶(𝜃) = 𝜃(1 − 𝜃)−1(0 < 𝜃 < 1). Therefore the CDF, PDF and hazard rate functions of 

EFG distribution are repectively as follows.  

𝐹(𝑥) =

(1 − 𝜃)(1 − (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

)

1 − 𝜃 (1 − (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

)

, 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0, 

𝑓(𝑥) =

𝜆 𝜇 𝛼𝜆𝑥−𝜆−1(1 − 𝜃)e−
(
𝛼
𝑥
)
𝜆

(1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇−1

𝜃 (1 − 𝜃 (1 − (1 − e
−(
𝛼
𝑥
)
𝜆

)

𝜇

))

 , 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0, 

and  

ℎ(𝑥) = −
𝛼𝜆𝑥−𝜆−1(−1 + 𝜃)𝜆 𝜇

𝜃 {(e
(
𝛼
𝑥
)
𝜆

− 1)(𝜃 (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

− 𝜃 + 1)}

, 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0 ∙ 

Figure 1 illustrate the PDF, CDF and hazard rate functions of the EFG distribution for 

different values of parameters. Figure 1 indicates that the EFG distribution has proper PDF 

and that the PDF of the DFG model is non-monotonic. Also, the shape of the hazard 

function of EFG model can be increasing- decreasing and bathtub failure rates.  
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Figure 1. Plots of PDF , CDF and hazard rate function of the EFG distribution. 

 

3.2  Extended Fréchet Poisson distribution 

 

The extended Fréchet Poisson (EFP) distribution is derived by taking 𝑎𝑛 = (𝑛!)
−1 and 

𝐶(𝜃) = 𝑒𝜃 − 1, 𝜃 > 0. The CDF PDF and the hazard rate functions of EFP distribution 

are respectively as follows.  

𝐹(𝑥) =

1 −

(

 
 
e
𝜃 (1−(1−e

−(
𝛼
𝑥)
𝜆

)

𝜇

)

)

 
 

1 − 𝑒𝜃
, 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0, 

 and  

𝑓(𝑥) =
𝜆 𝜇 𝛼𝜆𝑥−𝜆−1

e𝜃 − 1
e−

(
𝛼
𝑥
)
𝜆

(1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇−1

e
𝜃 (1−(1−e

−(
𝛼
𝑥)
𝜆

)

𝜇

)

, 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0, 

 

 

ℎ(𝑥) = −

𝜆 𝜇 𝛼𝜆𝑥−𝜆−1e
−𝜃 (1−e

−(
𝛼
𝑥)
𝜆

)

𝜇

−(
𝛼
𝑥
)
𝜆
+𝜃

(1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇−1

e
−𝜃 (−1+(1−e

−(
𝛼
𝑥)
𝜆

)

𝜇

)

− e𝜃

, 𝑥, 𝜇, 𝛼, 𝜆, 𝜃 > 0 ∙ 

 

Figure. 2 illustrate the PDF , CDF and the hazard rate function of the EFP distribution for 
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different values of parameters.  

 

Figure 2. Plots of PDF , CDF and hazard rate function of the EFP distribution. 

3.3  Extended Fréchet Binomial distribution 

 

The extended Fréchet Binomial (EFB) distribution is obtained by taking 𝑎𝑛 = (
𝑚
𝑛
) and 

𝐶(𝜃) = (𝜃 + 1)𝑚 − 1, (𝜃 > 0)   where 𝑚 (𝑚 ≥ 𝑛) . The CDF, PDF and hazard rate 

functionn of EFB  distribution are repectively as foloows.  

𝐹(𝑥) =

(𝜃 (1 − (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

) + 1)

𝑚

− 1

(𝜃 + 1)𝑚 − 1
, 

𝑓(𝑥) =
𝑚𝜆 𝜇 𝛼𝜆𝑥−𝜆−1

(𝜃 + 1)𝑚 − 1
e−

(
𝛼
𝑥
)
𝜆

(1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇−1

× (𝜃 (1 − (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

) + 1)

𝑚−1

, 

  

 

and 

ℎ(𝑥) =

𝛼𝜆𝑥−𝜆−1𝜆 𝜇 (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

(𝑚(−𝜃 (1 − e
−(
𝛼
𝑥
)
𝜆

)

𝜇

+ 𝜃 + 1))

𝑚−1

((𝜃 + 1)𝑚 − (−𝜃 (1 − e−
(
𝛼
𝑥
)
𝜆

)

𝜇

+ 𝜃 + 1)

𝑚

)

−1

(e
(
𝛼
𝑥
)
𝜆

− 1)

∙ 

 

 

Figure 3 illustrate the PDF, CDF and the hazard rate function of the EFB distribution for 
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different values of parameters.  

 

Figure 3. Plots of PDF , CDF and hazard rate function of the EFB distribution. 

3.4  Extended Fréchet Logarithmic distribution 

 

The xtended Frechet Logarithmic (EFL) distribution is obtained by taking 𝑎𝑛 = 𝑛
−1 and 

𝐶(𝜃) = − log (1 − 𝜃), 0 < 𝜃 < 1. The CDF PDF and the hazard rate functions of the 

𝐸𝐹𝐿  distribution are respectively as follows.  

𝐹(𝑥) =

𝑙𝑜𝑔(1−𝜃 (1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

𝜇

))

𝑙𝑜𝑔(1−𝜃)
,     𝑥, 𝛼, 𝜃, 𝜇, 𝜆 > 0, 

 

𝑓(𝑥) = −

𝜆 𝜇 𝛼𝜆𝑥−𝜆−1𝑒−
(
𝛼
𝑥
)
𝜆

(1 − 𝑒−
(
𝛼
𝑥
)
𝜆

)

𝜇−1

𝑙𝑜𝑔(1 − 𝜃)(1 − 𝜃 (1 − (1 − 𝑒
−(
𝛼
𝑥
)
𝜆

)

𝜇

))

,    𝑥, 𝛼, 𝜃, 𝜇, 𝜆 > 0, 

 

ℎ(𝑥) = 

−𝜆 𝜇 𝛼𝜆𝑥−𝜆−1𝑒
−(
𝛼
𝑥
)
𝜆

(1 − 𝑒
−(
𝛼
𝑥
)
𝜆

)

𝜇−1

(𝜃 (1 − 𝑒−
(
𝛼
𝑥
)
𝜆

)

𝜇

− 𝜃 + 1)(− log(1 − 𝜃) + log(𝜃 (1 − 𝑒−
(
𝛼
𝑥
)
𝜆

)

𝜇

− 𝜃 + 1))

∙ 

 

 figure 4 illustrate the PDF, CDF and the hazard rate function of the EFL distribution for 

different values of parameters.  
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Figure 4. Plots of PDF , CDF and hazard rate function of the EFL distribution. 

4.  Evaluation of the properties of the EFPS distribution 

 

In this section some of statistical properties of EFPS distribution such as incomplete and 

ordinary moments quantiles moment generating function mean deviation residual life and 

reversed failure rate functions and Bonferroni and Lorenz Curves. 

 

4.1 The kewness and the kurtosis 

 

Suppose that random variable 𝑋  is distributed as (5). The quantile function say 𝑄(𝑝) 
defined by 𝐹(𝑄(𝑝)) = 𝑝 for 0 < 𝑝 < 1 is the root of  

𝑄(𝑝) = 𝛼 (−log(1 − [1 −
𝐶−1{𝐶(𝜃)𝑝}

𝜃
]
1

𝜇)
−1

𝜆 ) ∙ (7) 

 

Also the Galton’ skewness and the Moors’ kurtosis defined by Galton (1883) abd Moors 

(1988) are respectively obtained as follows: 

 

s𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑄 (
6
8) − 2𝑄 (

4
8) + 𝑄 (

2
4)

𝑄 (
6
8) − 𝑄 (

2
8)

, 

 k𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑄(7/8) − 𝑄(5/8) + 𝑄(3/8) − 𝑄(1/8)

𝑄(6/8) − 𝑄(2/8)
∙ 

Figure 5 illustarte the behavior of the Galton’ skewness and Moors’ kurtosis for EFP as 

functions of 𝜃 for representative values of 𝛼, 𝜆 and 𝜇.  
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Figure 5. Galton’s skewness and Moors’ kurtosis for EFP for different values of 𝛼, 𝜆 and 𝜇. 

   

It is illustarted in the Figure 5 that for the EFP distribution both Galton’ skewness and 

Moors’ kurtosis decrease and stabilize when 𝛼. 𝜆 and 𝜇 are not getting very large and 𝜃 

increases. 

4.2  Moments and generator function 

 

The 𝑟𝑡ℎ moment of 𝑋 is derived from equation (6) as  

    𝜇′𝑟 = ∫
∞

0

𝑥𝑟𝑓(𝑥)𝑑𝑥 

= ∑∞𝑛=1 𝑃
𝑛𝑛𝜆𝜇𝛼𝜆 ∫

∞

0
𝑥(𝑟−𝜆−1)𝑒−

(
𝛼

𝑥
)
𝜆

[1 − 𝑒−
(
𝛼

𝑥
)
𝜆

]

 𝑛𝜇−1

𝑑𝑥 ∙ (8) 

 

Using the series expansion  

(1 − 𝑧)𝑏−1 = ∑∞𝑖=0 (−1)
𝑖 (
𝑏 − 1
𝑖

) 𝑧𝑖, |𝑧| < 1. (9) 

 in which 𝑏 > 0 is non-integer real Equation (8) becomes  

𝜇′𝑟 =∑

∞

𝑗=0

∑

∞

𝑛=1

(−1)𝑗 (
𝑏 − 1
  𝑗

)𝑃𝑛𝑛𝜆𝜇𝛼𝜆∫
∞

0

𝑥𝑟−𝜆−1𝑒−(𝑗+1)
(
𝛼
𝑥
)
𝜆

𝑑𝑥 

  

 =
𝑛𝜇𝛼𝑟

(𝑗+1)
1−
𝑟
𝜆

∑∞𝑛=1 ∑
∞
𝑗=0 (−1)

𝑗 (
𝑏 − 1
  𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

𝑟

𝜆
) ∙ (10) 

 

The central moments 𝜇𝑟 and cumulants 𝜅𝑟 of the 𝐸𝐹𝑃𝑆 distribution can be determined 

from equation (10) as 𝜇𝑟 = ∑
𝑟
𝑚=0 (

𝑟
𝑚
) (−1)𝑚𝜇′1

𝑚
,  𝜇′𝑟−𝑚  and 𝜅𝑟 = 𝜇′𝑟 −

∑𝑟−1𝑚=1 (
𝑟 − 1
𝑚 − 1

)𝜅𝑚  𝜇′𝑟−𝑚  , respectively, where 𝜅1 = 𝜇′1,  𝜅2 = 𝜇′2 −  𝜇′1
2  , 𝜅3 =

𝜇′3
−3𝜇′2  𝜇′1 + 2𝜇′1

3   and 𝜅4 = 𝜇′4 − 4𝜇′1𝜇′3 − 3𝜇′2
2 + 12𝜇′2𝜇′1

2 − 6𝜇′1
4  , etc. Moreover 

the skewness and kurtosis can be obtained from the third and fourth standardized 

cumulants in the forms 𝑆𝐾 =
𝜅3

√𝜅2
3
 and 𝐾𝑈 =

𝜅4

𝜅2
2 , respectively. 

To derive the Bonferroni and Lorenz curves we need to obtaine the first incomplete 
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moment. The Bonferroni and Lorenz curves are very useful in Reliability Economics 

Insurance Demography and Medicine. In economical studies the shape of the model is as 

important as the estimation of the parameters of the model. Obviously this is not only the 

econometrics but in other areas as well. For lifetime models the mean residual lifetime 

function and the conditional moments are also of interest. The conditional moments for 

𝐸𝐹𝑃𝑆 distribution are as follows:  

𝜐𝑠 = 𝐸(𝑋
𝑠|𝑋 < 𝑡) = ∫

𝑡

0

𝑥𝑠𝑓(𝑥)𝑑𝑥 = ∑

∞

𝑛=1

𝑃𝑛∫
𝑡

0

𝑥𝑠𝑔(𝑥; 𝛼, 𝜆, 𝑛𝜇)𝑑𝑥 

  

     =
𝑛𝜇𝛼𝑠

(𝑗+1)
1−

𝑠
𝜆

∑∞𝑛=1 ∑
∞
𝑗=0 (−1)

𝑗 (
𝑏 − 1
    𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

𝑠

𝜆
, (𝑗 + 1) (

𝛼

𝑡
)
𝜆
). (11) 

in which Γ(𝑎, 𝑡) = ∫
𝑡

0
𝑧𝑎−1(1 − 𝑧)𝑏−1𝑑𝑧 is the lower incomplete gamma function. 

The moment generating function (mgf) of EFPS distribution is given by  

𝑀 𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) =∑

∞

𝑟=0

𝑡𝑟

𝑟!
∫
∞

0

𝑥𝑟𝑓(𝑥) =∑

∞

𝑟=0

𝑡𝑟

𝑟!
𝜇𝑟
/
 

  

= ∑∞𝑟=0
𝑡𝑟

𝑟!

𝑛𝜇𝛼𝑟

(𝑗+1)
1−
𝑟
𝜆

∑∞𝑛=1 ∑
∞
𝑗=0 (−1)

𝑗 (
𝑏 − 1
    𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

𝑟

𝜆
) ∙ (12) 

 

4.3  deviations 

 

To measure the amount of scatter in the population we need to obtaine the mean deviation 

about the mean and mean deviation about the median. The mean deviation from the mean 

is a robust statistic being more resilient to outliers in a data set than standard deviation. 

Consider the variable 𝑋  with probability distribution function 𝑓(𝑥) , cumulative 

distribution function 𝐹(𝑥),  mean 𝜇 = 𝐸(𝑋)  and 𝑀 =  Median (𝑋) . Then the mean 

deviation about the mean and mean deviation about the median are defined respectively as 

follows:  

𝛿1(𝑥) = ∫
∞

0

|𝑥 − 𝜇|𝑓(𝑥)𝑑𝑥 = 2𝜇𝐹(𝜇) − 2𝐼(𝜇) 

 and  

𝛿2(𝑥) = ∫
∞

0

|𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥 = 2𝑀𝐹(𝑀) −𝑀 + 𝜇 − 2𝐼(𝑀). 

Respectively, where  

𝐼(𝑧) = ∫
𝑧

0

𝑥𝑓(𝑥)𝑑𝑥 

    =
𝑛𝜇𝛼

(𝑗+1)
1−
1
𝜆

∑∞𝑛=1 ∑
∞
𝑗=0 (−1)

𝑗 (
𝑏 − 1
    𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

1

𝜆
, (𝑗 + 1) (

𝛼

𝑧
)
𝜆
) ∙ (13) 

 

 

4.4  Applications in Economics 

 

The main application of the Bonferroni and Lorenz curves and the Bonferroni and Gini 

indices are for studying income and poverty in Economics. Furthere more they are 

applicable in the fields such as Demography Reliability Medicine and Insurance. The 

Bonferroni and Lorenz curves of EFPS distribution are as follows:  

𝐵(𝑝) =
1

𝑝𝜇
∫
𝑞

0

𝑥𝑓(𝑥)𝑑𝑥 
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  =
1

𝑝𝜇
[

𝑛𝜇𝛼

(𝑗 + 1)1−
1
𝜆

∑

∞

𝑛=1

∑

∞

𝑗=0

(−1)𝑗 (
𝑏 − 1
    𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

1

𝜆
, (𝑗 + 1) (

𝛼

𝑞
)
𝜆

)]. 

 

 and 

 

  𝐿(𝑝) =
1

𝜇
∫
𝑞

0

𝑥𝑓(𝑥)𝑑𝑥 

=
1

𝜇
[

𝑛𝜇𝛼

(𝑗 + 1)1−
1
𝜆

∑

∞

𝑛=1

∑

∞

𝑗=0

(−1)𝑗 (
𝑏 − 1
    𝑗

)
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
Γ (1 −

1

𝜆
, (𝑗 + 1) (

𝛼

𝑞
)
𝜆

)] ∙ 

 

 

5  Hazard rate 

 

Reliability theory deals with the continious and discrete lifetime distributions. The failue 

rate function and the mean residual life (𝑀𝑅𝐿) are the two common measures in the study 

of the lifetime of an item. Distributions with a decreasing increasing bathtub-shaped or 

upside-down bathtub-shaped MRL are mainly used to model different types of lifetime 

data that may arise from many areas such as survival analysis reliability actuarial sciences 

economics etc. For instance in biomedical sciences researchers analyze survivorship 

studies by using the MRL (see Gupta 1981). The hazard rate function also has various 

applications including modelling the lifetime of electronic mechanical and electro-

mechanical products. For instance to improve the quality of products after production Mi 

(1996) discussed useful models when the hazard rate function of the products follows a 

bathtub shape. On the other hand Peck and Zerdt (1974) showed the influence of the 

upside-down bathtub shaped hazard rate functions for modelling lifetimes of mechanical 

parts and semiconductors. 

Suppose that a component survives up to time 𝑡 ≥ 0 . The residual lifetime of the 

component starts from time 𝑡 to an unknown time represented by 𝑋 which is denoted by 
|𝑋 − 𝑡|𝑋 > 𝑡 . It is well known that the mean residual life function and ratio of two 

consecutive moments of residual life uniquely determine the distribution of the lifetime 

(see Gupta and Gupta 1983). Hence the 𝑟𝑡ℎ -order moment of the residual lifetime is 

obtained by the following formula  

𝜇𝑟(𝑡) = 𝐸((𝑋 − 𝑡)
𝑟|𝑋 > 𝑡) =

1

𝐹(𝑡)
∫
∞

𝑡

(𝑥 − 𝑡)𝑟𝑓(𝑥, 𝜑)𝑑𝑥, 𝑟 ≥ 1 ∙ 

 Applying the binomial expansion of (𝑥 − 𝑡)𝑟 into the above equation  

𝜇𝑟(𝑡) =
1

𝐹(𝑡)
∑

∞

𝑗=0

∑

∞

𝑛=1

∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
) (−1)𝑗 (

𝑏 − 1
    𝑗

) 𝑃𝑛∫
∞

𝑡

𝑥𝑟−𝜆−𝑑−1𝑒−
(𝑗+1)(

𝛼
𝑥
)
𝜆

𝑑𝑥 

    =
1

𝐹(𝑡)
∑

∞

𝑗=0

∑

∞

𝑛=1

∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
) (−1)𝑗 (

𝑏 − 1
  𝑗

)𝑃𝑛𝛾 (
𝑑 − 𝑟

𝜆
+ 1, (𝑗 + 1) (

𝛼

𝑡
)
𝜆

) ∙ 

in which 𝛾(𝑎, 𝑡) = ∫
∞

𝑡
𝑧𝑎−1(1 − 𝑧)𝑏−1𝑑𝑧 is the upper incomplete gamma function. 

We also discuss the properties of the reversed residual life which is defined as the 𝑡 −
𝑋|𝑋 ≤ 𝑡 ∙ It denotes the time elapsed from the failure of a component given that its life is 

less than or equal to 𝑡. This random variable is also called the time since failure. See Kundu 

and Nanda( 2010) and Nanda et al. (2003) for more details. Furthermore the mean reversed 

residual life and ratio of two consecutive moments of reversed residual life uniquely 

characterize the distribution of the lifetime. The 𝑟𝑡ℎ-order moment of the reversed residual 
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life is obtained by the following formula.  

𝑚𝑟(𝑡) = 𝐸((𝑡 − 𝑋)
𝑟|𝑋 ≤ 𝑡) =

1

𝐹(𝑡)
∫
𝑡

0

(𝑡 − 𝑥)𝑟𝑓(𝑥, 𝜑)𝑑𝑥, 𝑟 ≥ 1 ∙ 

Applying the binomial expansion of (𝑡 − 𝑥)𝑟 into the above formula gives  

𝜇𝑟(𝑡) =
1

𝐹(𝑡)
∑

∞

𝑗=0

∑

∞

𝑛=1

∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
) (−1)𝑗 (

𝑏 − 1
    𝑗

) 𝑃𝑛∫
𝑡

0

𝑥𝑟−𝜆−𝑑−1𝑒−
(𝑗+1)(

𝛼
𝑥
)
𝜆

𝑑𝑥 

      =
1

𝐹(𝑡)
∑

∞

𝑗=0

∑

∞

𝑛=1

∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
) (−1)𝑗 (

𝑏 − 1
    𝑗

) 𝑃𝑛Γ(
𝑑 − 𝑟

𝜆
+ 1, (𝑗 + 1) (

𝛼

𝑡
)
𝜆

) ∙ 

 

 

5.1  Order Statistics 

 

Moments of order statistics is very important in reliability and quality control where the 

future failure of the products needs to be predicted based on the times of a few early 

failures. These predictions are often made by the moments of order statistics. Here we 

derive the PDFs of the 𝑖𝑡ℎ  order statistic of the EFPS distribution in closed form 

expressions. Furthere more the measures of kurtosis and skewness of the distribution of 

the 𝑖𝑡ℎ order statistic for different values of sample size and 𝑖 are presented here. Suppose 

that 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤ 𝑋𝑛:𝑛 be a sequence of 𝑛 random sample where 𝑋𝑖 , 𝑖 = 1,⋯ , 𝑛 

is distributed according to the 𝐸𝐹𝑃𝑆 distribution. The PDF of the 𝑖𝑡ℎ order statistic 𝑋𝑖:𝑛  

denoted by 𝑓𝑖:𝑛(𝑥) 𝑖 = 1,2, . . . . , 𝑛  is given by  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝛽(𝑖, 𝑛 − 𝑖 + 1)
[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖𝑓(𝑥) 

  

 =
𝑓(𝑥)

𝛽(𝑖,𝑛−𝑖+1)

[
 
 
 
 𝐶{𝜃(1−(1−𝑒−(

𝛼
𝑥)
𝜆

)

 𝜇

)}

𝐶(𝜃)

]
 
 
 
 
𝑖−1

×

[
 
 
 
 

1 −

𝐶{𝜃(1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

)}

𝐶(𝜃)

]
 
 
 
 
𝑛−𝑖

 (14) 

in which 𝑓(𝑥) is the PDF given by (6). Using binomial expansion we can write (14) as  

𝑓𝑖:𝑛(𝑥) =
1

𝛽(𝑖,𝑛−𝑖+1)
𝑓(𝑥)∑𝑛−𝑖𝑗=0 (−1)

𝑗 (
𝑛 − 𝑖
    𝑗

) [𝐹(𝑥)]𝑖+𝑗−1 (15) 

 

The corresponding CDF of 𝑋𝑖:𝑛 is given by  

            𝐹𝑖:𝑛(𝑥) =∑

𝑛

𝑘=𝑖

(
𝑛
𝑘
) (𝐹(𝑥))𝑘(1 − 𝐹(𝑥))𝑛−𝑘 

  

=∑

𝑛

𝑘=𝑖

∑

𝑛−𝑘

𝑗=0

(−1)𝑗 (
𝑛
𝑘
) (
𝑛 − 𝑘
    𝑗

) (𝐹(𝑥))𝑘+𝑗 . 

Also we can write  

𝑓𝑖:𝑛(𝑥) =
1

𝛽(𝑖, 𝑛 − 𝑖 + 1)
∑

∞

𝑛=1

∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
    𝑗

) [𝐹(𝑥)]𝑖+𝑗−1𝑃𝑛𝑓𝐸𝐹𝑃𝑆(𝑥, 𝛼, 𝜆, 𝑛𝜇) ∙ 

Hence the 𝑠𝑡ℎ raw moment 𝑋𝑖;𝑛 comes immediately from the above equation where 

𝐸(𝑋𝑖:𝑛
𝑠 ) =

1

𝛽(𝑖, 𝑛 − 𝑖 + 1)
∑

∞

𝑛=1

∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
    𝑗

) 𝑃𝑛𝐸[𝑍𝑠(𝐹(𝑍))𝑖+𝑗−1] 
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where 𝑍 follows the EFPS(𝑥, 𝛼, 𝜆, 𝑛𝜇) distribution. 

 

6  Inferenece on real data  

 

6.1  Statistical inference 

 

The maximum likelihood method is the most common method employed in the statistical 

inference. The MLEs enjoy interesting properties and is appliable in constructing 

confidence intervals and also in test statistics. The estimations based on large samples 

delivers simple appliable approximations for finite samples. The resulting approximation 

for the MLEs in distribution theory is easily handled either numerically or analytically. In 

this subsection the ML estimation of the parameters of the EFPS distribution is obtained 

based on complete samples. Suppose that the random sample 𝑋1,⋯ , 𝑋𝑛 are distributed as 

the EFPS distribution given by (5). Let 𝜙 = (𝛼, 𝜇, 𝜆, 𝜃)𝑇 be 𝑝 × 1 vector of parameters. 

The log-likelihood function for 𝜙 is as follows:  

𝐿 = 𝑛𝑙𝑜𝑔𝜆 + 𝑛𝑙𝑜𝑔𝜇 + 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝜆𝑙𝑜𝑔𝛼 − (𝜆 + 1)∑𝑛𝑖=1 𝑙𝑜𝑔𝑥𝑖 − ∑
𝑛
𝑖=1 (

𝛼

𝑥𝑖
)𝜆 −

                   𝑛log𝐶(𝜃) + ∑𝑛𝑖=1 log𝐶′ {𝜃 [1 − (1 − 𝑒
−(

𝛼

𝑥
)
𝜆

)

 𝜇

]} ∙ (16) 

 The corresponding score function is given by 𝑈𝑛(𝜙) = (
𝜕𝐿

𝜕𝛼
,
𝜕𝐿

𝜕𝜇
,
𝜕𝐿

𝜕𝜆
,
𝜕𝐿

𝜕𝜃
)
𝑇
 where  

𝜕𝐿

𝜕𝛼
=
𝑛𝜆

𝛼
− 𝜆∑

𝑛

𝑖=1

1

𝑥𝑖
(
𝛼

𝑥𝑖
)𝜆−1 + 𝜃𝜇𝜆∑

𝑛

𝑖=1

1

𝑥𝑖
(
𝛼

𝑥𝑖
)𝜆−1𝑒−

(
𝛼
𝑥
)
𝜆

 

                        × (1 − 𝑒−
(
𝛼

𝑥
)
𝜆

)

 𝜇−1

{
 
 

 
 𝐶′′{𝜃[1−(1−𝑒−(

𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

}
 
 

 
 

, (17) 

  

𝜕𝐿

𝜕𝜆
=
𝑛

𝜆
+ 𝑛log𝛼 −∑

𝑛

𝑖=1

log𝑥𝑖 −∑

𝑛

𝑖=1

(
𝛼

𝑥𝑖
)𝜆log(

𝛼

𝑥𝑖
) + 𝜃𝜇∑

𝑛

𝑖=1

(
𝛼

𝑥𝑖
)𝜆log(

𝛼

𝑥𝑖
)𝑒−

(
𝛼
𝑥
)
𝜆

 

 × (1 − 𝑒−
(
𝛼

𝑥
)
𝜆

)

 𝜇−1

{
 
 

 
 𝐶′′{𝜃[1−(1−𝑒−(

𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

}
 
 

 
 

, (18) 

  

   
𝜕𝐿

𝜕𝜇
=

𝑛

𝜇
+ ∑𝑛𝑖=1 𝜃 (1 − 𝑒

−(
𝛼

𝑥
)
𝜆

)

 𝜇

log (1 − 𝑒−
(
𝛼

𝑥
)
𝜆

) ×

{
 
 

 
 𝐶′′{𝜃[1−(1−𝑒−(

𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

}
 
 

 
 

, (19) 

 and  

           
𝜕𝐿

𝜕𝜃
=

𝑛

𝜃
− 𝑛

𝐶/(𝜃)

𝐶(𝜃)
+∑𝑛𝑖=1

(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

𝐶′′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

 𝜇

]}

𝐶′{𝜃[1−(1−𝑒
−(
𝛼
𝑥)
𝜆

)

𝜇

]}

∙ (20) 

 

The MLE of 𝜙, represented as �̂�, can be secured by finding the solution to the equation 
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𝑈𝑛(𝜙)  = 0  through numerical methodologies, for instance, the Newton-Rapson 

algorithm. In another way, the MLEs can be directly secured by optimizing the log-

likelihood function as provided in (16) and using the “BFGS” method of the “optim” 

subroutine in R software (see R Core Team (2023)). The “BFGS” method is a limited-

memory quasi-Newton method for approximating the Hessian matrix of the target 

distribution. It is worth mentioning that the parameter vector 𝜙 = (𝛼, 𝜇, 𝜆, 𝜃)𝑇  can be 

easily obtained, thanks to the properties of the PDF f . The smooth and continuous nature 

of the function f , along with the existence and finiteness of its first and second derivatives, 

ensure that the equation 𝑈𝑛(𝜙) = 0 has roots. These roots correspond to the MLEs of the 

vector 𝜙 . By employing relevant calculus techniques, it is possible to verify that the 

solutions correspond to a maximum. We can estimate the asymptotic variance of the 

MLEs, denoted as �̂�, using the Fisher information matrix. The Fisher information matrix 

is needed for the interval estimation of the parameters of the model. The Fisher information 

matrix, denoted as 𝐼𝑛(𝜙), is calculated as the negative expectation of the second derivative 

of the log-likelihood function (16) respect to 𝜙 = (𝛼, 𝜇, 𝜆, 𝜃)𝑇 . Under regularity 

conditions, the MLEs are asymptotically normal. The corresponding information matrix is 

as follows.   

𝐼𝑛(𝜙) =

[
 
 
 
 
𝐼𝛼𝛼 𝐼𝛼𝜇 𝐼𝛼𝜆 𝐼𝛼𝜃

𝐼𝜇𝛼 𝐼𝜇𝜇 𝐼𝜇𝜆 𝐼𝜇𝜃

𝐼𝜆𝛼
𝐼𝜃𝛼

𝐼𝜆𝜇
𝐼𝜃𝜇

𝐼𝜆𝜆
𝐼𝜃𝜆

𝐼𝜆𝜃
𝐼𝜃𝜃]
 
 
 
 

 

 where 

𝐼𝜆𝜆 =
𝜕2𝐿

𝜕𝜆2
,    𝐼𝜃𝜃 =

𝜕2𝐿

𝜕𝜃2
,    𝐼𝛼𝛼 =

𝜕2𝐿

𝜕𝛼2
,    𝐼𝜇𝜇 =

𝜕2𝐿

𝜕𝜇2
,      𝐼𝛼𝜃 =

𝜕2𝐿

𝜕𝛼𝜕𝜃
, 

𝐼𝛼𝜆 =
𝜕2𝐿

𝜕𝛼𝜕𝜆
, 𝐼𝜇𝜆 =

𝜕2𝐿

𝜕𝜇𝜕𝜆
, 𝐼𝜃𝜆 =

𝜕2𝐿

𝜕𝜃𝜕𝜆
, 𝐼𝜇𝛼 =

𝜕2𝐿

𝜕𝜇𝜕𝛼
 

 

Applying the usual large sample approximation MLE of 𝜙 , i.e. �̂� can be treated as being 

approximately 𝑁4(𝜙𝐽𝑛(𝜙)
−1)  where 𝐽𝑛(𝜙)  = 𝐸[𝐼𝑛(𝜙)] . Under conditions that are 

fulfilled for parameters in the interior of the parameter space but not on the boundary the 

asymptotic distribution of √𝑛(  �̂� −  𝜙  )  is 𝑁4(0𝐽(𝜙)
−1)  where 𝐽(𝜙)  = 𝑙𝑖𝑚

𝑛⟶∞
 

𝑛−1𝐼𝑛(Φ) is the unit information matrix. This asymptotic behavior remains valid if 𝐽(𝜙) 
is replaced by the average sample information matrix evaluated at �̂�  say 𝑛−1𝐼𝑛(�̂�) . The 

estimated asymptotic multivariate normal 𝑁4(𝜙𝐼𝑛(�̂�)
−1) distribution of �̂� can be used 

to construct approximate confidence intervals for the parameters and for the hazard rate 

and survival functions. An 100(1 − 𝛾) asymptotic confidence interval for each parameter 

𝜙𝑟 is given by 

 

𝐴𝐶𝐼𝑟 = (�̂�𝑟 − 𝑍𝛾
2
√𝐼𝑟�̂��̂�𝑟 + 𝑍𝛾

2
√𝐼𝑟�̂�) 

 

where 𝐼𝑟�̂�  is the (𝑟𝑟)  diagonal element of 𝐼𝑛(�̂�)
−1  for 𝑟 = 1,2,3,4  and 𝑍𝛾

2
  is the 

quantile 1 −
𝛾

2
 of the standard normal distribution. 
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Table  3: The PDF of F, EF, BF, BEF, W, EW, MW and GLFRG distrinutons 

 

Distribution  PDF 
Fréchet (F)  

𝑓𝐹(𝑥; 𝛼, 𝜆) =
𝜆

𝑥
(
𝛼

𝑥
)𝜆𝑒−(

𝛼
𝑥
)𝜆

 

 
EF  𝑓𝐸𝐹(𝑥; 𝛼, 𝜆, 𝜇) = 𝜆𝜇𝛼

𝜆𝑥−𝜆−1𝑒−(𝛼/𝑥)
𝜆
(1 − 𝑒−(𝛼/𝑥)

𝜆
)𝜇−1 

 
Beta Fréchet ( BF)  

𝑓𝐵𝐹(𝑥; 𝛼, 𝜆, 𝜃, 𝛾) =
1

𝐵(𝜃𝛾)
𝜆𝛼𝜆𝑥−𝜆−1𝑒−𝜃(𝛼/𝑥)

𝜆
(1 − 𝑒−(𝛼/𝑥)

𝜆
)𝛾−1 

 
Beta Exponentiated 

Fréchet (BEF) 
𝑓𝐵𝐸𝐹(𝑥; 𝛼, 𝜆, 𝜇, 𝜃, 𝛾) =

1

𝐵(𝜃𝛾)
𝜆𝜇𝛼𝜇𝑥−𝜇−1𝑒−(𝛼/𝑥)

𝜇
[1 − 𝑒−(𝛼/𝑥)

𝜇
]𝛾𝜆−1 

                                          × {1 − (1 − 𝑒−(𝛼/𝑥)
𝜇
)𝜆}𝜃−1  

 
Weibull (W) 𝑓𝑊(𝑥; 𝛼, 𝛾) = 𝛼𝛾𝑥𝛾−1𝑒−𝛼𝑥

𝛾
 

 
Exponentiated Weibull 

(EW) 
𝑓𝐸𝑊(𝑥; 𝛼, 𝜇, 𝛾) = 𝛼𝛾𝜇𝛾𝑥𝛾−1𝑒−(𝜇𝑥)

𝛾
{1 − 𝑒−(𝜇𝑥)

𝛾
}𝛼−1 

 
Modified Weibull (MW) 𝑓𝑀𝑊(𝑥; 𝛼, 𝜆, 𝛾) = 𝛼𝑥

𝛾−1(𝛾 + 𝜆𝑥)𝑒𝜆𝑥𝑒−𝛼𝑥
𝛾𝑒𝜆𝑥  

 
Generalized Linear 

Failure Rate-Geometric 

(GLFRG) 

𝑓𝐺𝐿𝐹𝑅𝐺(𝑥; 𝛼, 𝜃, 𝜆, 𝜇) =
𝛼(𝜆 + 𝜇𝑥)(1 − 𝜃)𝑒−𝜆𝑥−1/2𝜇𝑥

2
{1 − 𝑒−𝜆𝑥−1/2𝜇𝑥

2
}𝛼−1

[1 − 𝜃{1 − (1 − 𝑒−𝜆𝑥−1/2𝜇𝑥
2
}𝛼)]2

 

 
 

6.2  Real data 

 

In this section we compare the performance of the EFPS distribution with respect to some 

other distributions using two real data sets to show the efficiency of 𝐸𝐹𝑃𝑆  class of 

distributions. All computations are performed using the R. 

We compare EFLG distribution with some of distributions that theire PDF are expressed 

in Table 4. 

 

6.2.1  Data set 1: Strength of glass fibers data 

The tensile strength data of glass fiber, re-ported by Smith and Naylor (1987), is used to 

illustrate the methodologies developed in this paper. In the article of Smith and Naylor 

(1987), The experimental strength data set of glass fiber of 1.5 cm length, are 

provided,originally obtained by workers at the UK National Physical Laboratory. 

Unfortunately, the units of measurement are not given in the paper. The strength data are: 

 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49 

1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 

1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 

1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89.  

 

Based on the results in the Table 4 the 𝐸𝐹𝑃𝑆 distribution shows a better fit to the the 

strength of the glass fibers data than the others. We see that at least one of the 𝐸𝐹𝑃𝑆 

distributions have smaller AIC, BIC, CM and K-S statistics with respect to other 

distributinos. Furthere more, Figures 6 and 7 show the estimated survival function plot 

TTT plot and Kaplan–Meier curve of the fitted distributions for the strength of glass fibers 

data.  
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Table 4. Estimates of fitted distributions for strength of glass fibers data. 

 Dist. �̂� �̂� �̂� �̂� 𝛾 m2L AIC BIC K-S CM 

1 EFP 1092.9 0.337 18138.7 4.083  33.38 41.38 49.95 0.16 7.76 

2 EFG 123.08 0.449 3687.5 0.940  25.40 33.40 41.98 0.11 8.28 

3 EFL 92.951 0.477 3714.2 0.995  29.93 37.93 46.51 0.20 7.66 

4 EFB 1137.1 0.338 20299.2 0.224  33.73 41.73 50.30 0.16 7.70 

5 F 1.264 2.887    93.71 97.71 101.99 0.24 6.34 

6 EF 697.7 0.374 16532.1   48.48 54.48 60.91 0.23 6.93 

7 BF 3.805 2.903  0.041 1.615 91.22 99.22 107.79 0.79 6.48 

8 BEF 0.830 2.817 0.491 61.766 12.83 62.52 72.52 83.23 1.00 20.92 

9 W 0.059 5.780    30.41 34.41 38.70 0.15 7.93 

10 EW 0.671  0.582  7.284 29.35 35.35 41.78 0.15 7.80 

11 MW 0.008 2.160   2.402 28.71 34.71 41.14 0.14 7.78 

 

6.2.2  Data set 2: Strength of single carbon fiber 

we consider the strength of single carbon fiber data, which was originally reported by 

Badar and priest (1982 ) and it represents the strength measured in Gpa for single carbon 

fibers tows. The data are presented as follow. 

10 33 44 56 59 72 74 77 92 93 96 100 100 102 105 107 107 108 108 108 109 112 113 115 

116 120 121 122 122 124 130 134 136 139 144 146 153 159 160 163 163 168 171 172 176 

183 195 196 197 202 213 215 216 222 230 231 240 245 251 253 254 254 278 293 327 342 

347 361 402 432 458 555. 

Based on the results in the Table 5 the 𝐸𝐹𝑃𝑆 distributions show a better fit to the strength 

of the carbon fibers data than the other distributions. We see that at least one of the 𝐸𝐹𝑃𝑆 

distributions have smaller AIC, BIC, CM and K-S statistics with respect to other 

distributinos. Furthere more Figures 8 and 9 show the estimated survival function plot TTT 

plot and Kaplan–Meier curve of the fitted distributions for the strength of carbon fibers 

data. 

 

Table  5: Estimates of fitted distributions for strength of single carbon fibers data. 

 

   Dist. α̂ λ̂ μ̂ θ̂ γ̂ m2L AIC BIC K-S CM 

1 EFP 55.160 0.455 147.695 20.908  113.02 121.02 129.59 0.09 0.07 

2 EFG 4.214 2.415 6.608 0.001  112.70 120.70 129.28 0.08 0.06 

3 EFL 2.461 6.127 2.056 0.995  111.69 119.69 128.26 0.07 0.04 

4 EFB 49.861 0.498 167.024 1.515  112.95 120.95 129.53 0.08 0.07 

5 F 2.721 5.433    117.80 121.80 126.09 0.10 0.10 

6 EF 4.295 2.363 7.032   112.70 118.70 125.13 0.08 0.06 

7 BF 6.327 4.656  0.020 0.860 119.90 127.90 136.47 0.11 0.13 

8 BEF 4.262 2.346 1.862 1.969 4.108 112.70 122.70 133.42 0.29 2.32 

9 W 0.002 5.049    123.91 127.91 132.20 0.09 0.12 

10 EW 37.134  0.869  1.454 112.62 118.62 125.05 0.08 0.06 

11 MW 0 3.4   4e-04 335.39 341.39 347.82 0.58 9.10 

12 GLFRG 11.731 0.004 0.584 0.298  112.92 120.92 129.49 0.08 0.07 

 



F. Momeni et al. /𝐼𝐽𝑀2𝐶, xx -xx (2025) xxx-xxx.                      269 
 

 
Figure  6: Estimated survival function and the empirical survival function for the 

strength of glass fibers data 

 

    

 

 
 

Figure  7: Empirical TTT-plot (top left) estimated hazard rate function (top right) 

estimated survival function (bottom) for the fitted distributions to the strength of glass 

fibers data. 
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  Figure  8: Estimated survival function and the empirical survival function for the 

single carbon fibers data 

 
Figure  9: Empirical TTT-plot (top left) estimated hazard rate function (top right) 

estimated survival function (bottom) for the fitted distributions to the single carbon fibers 

data. 

 

7  Conclusions 

We introduced and studied the properties of new class of distributions called the 𝐸𝐹𝑃𝑆 

distribution as a compounding of the 𝐸𝐹  and 𝑃𝑆  distributions. The 𝐸𝐹𝑃𝑆  distribution 

shows a good performance in modeling different types of hazard data with a bathtub-

shaped hazard rates. The 𝐸𝐹𝑃𝑆  class of distributions show more flexibility than the 
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Weibule 𝐸𝑊 Fréchet 𝐵𝐸𝐹, 𝐸𝐹, 𝑀𝑊,  𝐵𝐹, 𝐸𝑊 and the 𝐺𝐿𝐹𝑅𝐺 distributions. The real 

data analysis prove that the 𝐸𝐹𝑃𝑆 class of distributions perform reliable in the real data 

applications. We hope that the 𝐸𝐹𝑃𝑆  distribution attract more attentions in survival 

analysis. 
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