
1

Page Replacement Algorithms in Memory Management: a survey

Saeid Taghavi Afshord, Mehdi Ayar

Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar,

Iran

taghavi@iau.ac.ir (Corresponding Author); mehdi.ayar@gmail.com

Abstract: One of the most important resources in a computer system is memory. Processes cannot

run unless their code and data structures are in RAM. Memory management is important and is the

most complex task for an operating system. Page replacement policies have been under extensive

study over the years. A large number of different page replacement algorithms have been proposed

and many of them have been implemented in operating systems and database management systems.

The page fault rate has critical criteria for choosing suitable page replacement algorithms. In this

paper, we describe algorithms that are widely simulated and utilized in practice. Then, we indicate the

effective and efficient algorithm among them.

Keywords: memory, operating system, page replacement, performance and page faults

1. Introduction

Virtual memory refers to the technology in

which some space in the hard disk is used as an

extension of main memory so that a program need

not worry if its size exceeds the size of the main

memory. If It does happen, only a part of the

program will reside in the main memory and other

parts will remain on the hard disk and may be

switched into memory later.

This mechanism is similar to the two-level

memory hierarchy discussed in [1], including

cache and main memory because the principle of

locality is also a basis here. With virtual memory,

if a piece of the process needed is not in the main

memory, another piece will be swapped out and

the former be brought in. If the latter is used

immediately, then it will load back into the main

memory right away. As we know, access to a hard

disk is time-consuming compared to access to the

main memory, Thus the reference to the virtual

memory space on hard disks will deteriorate the

system performance significantly. Fortunately, the

principle of locality holds. It is the instruction and

data references during a short period that tend to

be bound to one piece of the process. So, access to

hard disks will not be frequently requested and

performed. Thus, the same principle, on the one

hand, enables the caching mechanism to increase

system performance, and on the other hand,

avoids the deterioration of performance with

virtual memory.

With virtual memory, there must be some

facility to separate a process into several pieces so

that they may reside separately either on hard

disks or in main memory. Paging and/or

2

segmentation are two methods that are usually

used to achieve the goal.

2. Replacement policies

The replacement policy deals with the

selection of a memory page to be replaced after a

page fault occurs and a new page must be brought

in. The goal of any replacement algorithm

includes two aspects: (1) The algorithm itself

should be simple to implement and efficient to

run; and (2) the selection of page should not harm

the performance of the virtual system as a whole,

or more specifically, the page that is removed

should be the page least likely to be referenced

shortly.

2.1. Algorithms

The most important page replacement

algorithms have been considered in the literature

explained in this survey.

2.1.1. Optimal

The Optimal algorithm says that we should

always replace the page that will not be used for

the longest period, which means we have to be

able to predict the future. It is possible that we can

predict the future for certain applications with

extremely regular page access patterns. However,

in general, the complexity of applications, the

dynamic environment of machines especially

multiprocessing systems, and other random

factors such as user interactions make the future

very unpredictable.

The value of discussing this algorithm is that

it may be a benchmark to evaluate the

performance of other algorithms.

2.1.2. Least recently used (LRU)

Although we do not know the future

exactly, we can predict the future to some extent

based on the history. Based on the principle of

locality, the page that has not been used for the

longest time is also least likely to be referenced.

The LRU algorithm thus selects that page to be

replaced.

And experience tells us that the LRU policy

does nearly as well as the optimal policy.

However, since the decision-making is based on

history, the system has to keep the references that

have been made from the beginning of the

execution. The overhead would be tremendous.

2.1.3. First in first out (FIFO)

The FIFO policy treats the page frames

allocated to a process as a circular buffer, and

pages are removed in a round-robin style. It may

be viewed as a modified version of the LRU

policy, and this time instead of the least recently

used, the earliest used page is replaced since the

page that has resided in main memory for the

longest time will also be least likely used in the

future.

This logic may be wrong sometimes if some

part of the program is constantly used, which thus

may lead to more page faults. The advantage of

this policy is that it is one of the simplest page

replacement policies to implement since all that is

needed is a pointer that circles through the page

frames of the process.

The Table 1 shows the comparison of these

page replacement algorithms on various

parameters made in the survey. The parameters

considered are principle, performance, page faults

and memory usage.

2.1.4 Second Chance

The second-chance algorithm is very similar

to FIFO. However, it interferes with the accessing

process: Every page has, in addition to its ‘dirty bit’,

a ‘referenced bit’ (r-bit). Every time a page is

accessed, the r-bit is set. The replacement process

works like FIFO, except that when a page's r-bit is

set, instead of replacing it, the r-bit is unset, the

page is moved to the list's tail (or the pointer moves

to the next page) and the next page is examined.

Second Chances performs better than FIFO, but it is

still far from optimal.

2.1.5 Aging

The aging algorithm is somewhat tricky: It

uses a bit field of w bits for each page to track its

accessing profile. Every time a page is read, the

first (most significant) bit of the page's bit field is

set. Every n instructions all pages bit fields are

right-shifted by one bit.

3

The next page to replace is the one with the

lowest (numerical) value of its bit field. If several

pages are having the same value, an arbitrary page

is chosen.

The aging algorithm works very well in

many cases, and sometimes even better than LRU

because it looks behind the last access. It

furthermore is rather easy to implement, because

there are no expensive actions to perform when

reading a page. However, finding the page with

the lowest bit field value usually takes some time.

Thus, it might be necessary to predetermine the

next page to be swapped out in the background.

Table1. Comparison of three page replacement algorithms

Parameter

Methods

FIFO LRU Optimal

Principle Replaces the oldest
page in memory

Replaces the least
recently used page

Replaces the page not
needed for the longest

time in the future

Complexity Simple
implementation

Moderate complexity
due to tracking

recency

High complexity,
requires future

knowledge

Data Structures Queue Stack, linked list, or
counters

Not applicable in real-
world scenarios

Performance Generally suboptimal,
suffers from Belady's

anomaly

Better than FIFO, does
not suffer from

Belady's anomaly

Best theoretical
performance, lowest

page faults

Memory Usage Low Moderate, additional
space for tracking

usage history

Low(theorical)

Page Faults High Moderate to low Lowest possible

Predictability Poor, unpredictable
due to anomaly

Predictable, stable
performance

Theoretically
predictable

Temporal Locality Not considered

Considers temporal
locality

Assumes perfect
knowledge of future

references

Optimal Conditions Suitable for simple,
predictable patterns

Suitable for varied,
realistic access

patterns

Serves as a
benchmark, not used
in practical systems

2.1.6 Clock

Each of the above policies has its

advantages and disadvantages. Some may need

less overhead, and some may produce better

results. Thus here is an issue of balance. People

have proposed all kinds of algorithms based on

different considerations of balance between

overhead and performance. Among them, the

clock policy is one of the most popular ones.

The clock policy is a variant of the FIFO

policy, except that it also considers to some extent

the last accessed times of pages by associating an

additional bit with each frame, referred to as the

use bit. And when a page is referenced, its use bit

is set to 1.

As Figure 1 illustrates, the set of frames that

might be selected for replacement is viewed as a

circular buffer, with which a pointer is associated.

When a free frame is needed but not available, the

system scans the buffer to find a frame with a use

bit of 0 and the first frame of this kind will be

selected for replacement. During the scan,

whenever a frame with a use bit of 1 is met, the

bit is reset to 0. Thus if all the frames have a use

bit of 1, then the pointer will make a complete

cycle through the buffer, setting all the use bits to

0, and stop at its original position, replacing the

page in that frame. After a replacement is made,

the pointer is set to point to the next frame in the

buffer.

Figure 1 gives an example of this clock

policy. Figure 1 shows the status of the buffer at

some moment. Suppose page 727 is referenced

but is not available in the buffer which is already

4

full. Thus a page fault occurs and a page needs to

be replaced. According to the clock policy, page

556 is replaced. The other updates include the use

of bits of frame and 3 are set to 0 and the pointer

is made pointing to frame 5.

Fig.1. Example of clock policy operation

2.1.7. Not Recently Used (NRU)

The NRU (Not Recently Used) algorithm

uses an r-bit for every page. Every time a page is

read, the r-bit is set. Periodically, all r-bits are

unset. When a page fault occurs, an arbitrary page

with r-bit unset is swapped out. NRU is actually

Aging with a bit field width of 1, and it does not

perform very well.

2.1.8 Not Frequently Used (NFU)

Is a software approximation to LRU: a

perframe counter is incremented every clock tick

if the frame has been referenced since the last

clock tick; the frame with the lowest count is

evicted on page fault. NFU does not accurately

reflect temporal locality; a frame frequently

accessed a long time ago will be kept while a

frame accessed more recently but fewer times will

be evicted.

2.1.9. LRU-K

The algorithm is called the LRU-K method

and reduces to the well-known LRU (Least

Recently Used) method for K=1. At first, it has

shown the effectiveness of K > 1 by simulation

[3], especially in the most common case of K = 2.

The basic idea in LRU-K is to keep track of the

times of the last K references to the memory

pages and to use this statistical information to

rank-order the pages as to their expected future

behavior.

Based on this, the page replacement policy

decision is made: which memory-resident page to

replace when a newly accessed page must be read

into memory. In [3] proved, under the

assumptions of the independent reference model,

that LRU-K is optimal among all replacement

algorithms that can be based on information about

K most recent references to each page. The proof

uses the Bayesian formula to relate the space of

actual page probabilities of the model to the space

of observable page numbers on which the

replacement decision is made.

In [3] had analyzed the LRU-K algorithm.

The use of Bayesian methods in that analysis is, to

our knowledge, a new and entirely appropriate

way of handling the real lack of knowledge of

page identity at the memory buffer level of the

software.

2.2 MS, Application-specific algorithm

Different applications have different

memory reference patterns. Most operating

systems, however, are oblivious to this simple

truth. Some algorithms are highly suitable for

certain kinds of applications but inadequate for

5

other kinds of workloads. Some of the operating

system designers and theoreticians such as [4]

believe there is a range of applications can benefit

from application-specific memory management

policies. Further, It observed that reference

patterns do change during process execution,

suggesting that applications can further benefit

from dynamic selection of a suitable VM (Virtual

Machine) policy [4].

For more information about this type of

algorithm and as a sample, refer to [4] where they

described the algorithm called MS, with full

expressions of architecture, implementation, and

test and performance evaluation of it.

3. Linux mechanism

Linux uses a hybrid of LFU and LRU

algorithms, but it behaves approximately like

LRU. Linux keeps a page age counter for each

physical page in memory to inform the Kernel

Page Swap Daemon (KSWAPD) whether a page

is worth swapping out. The page age can be

between 0 and 20 where 0 is the oldest and 20 is

the youngest. When initially allocated, a page is

given an age of 3, and each time the page is

referenced, its age increases by 3 to a maximum

of 20. KSWAPD round robins through each

virtual page of each process. If a virtual page

resides in physical memory and has not been

referenced since the last KSWAPD scan, it will

decrease its age by 1 to a minimum of 0. Pages

with 0 age are candidates for swapping, and a

further test on the dirty bit in its page table entry

and its page priority will decide if the page should

be swapped out. By using this page replacement

mechanism, Linux favors, and, is likely to keep in

memory the pages that have been accessed

recently and frequently during a past period.

4. Conclusion and discussion

Unfortunately, there is no way to determine

which page will be last, so, the optimal algorithm

cannot be used practically. However, it is useful

as a benchmark against which other algorithms

can be measured. The NRU algorithm divides

pages into four classes depending on the state of

the R and M bits. A random page from the lowest-

numbered class is chosen. This algorithm is easy

to implement, but it is very crude. Better ones

exist. FIFO keeps track of the order of pages

loaded into memory by keeping them in a linked

list. Removing the oldest page then becomes

trivial, but that page might still be in use, so FIFO

is a bad choice. The second chance is a

modification to FIFO that checks if a page is in

use before removing it. If it is, the page is spared.

This modification greatly improves the

performance. The clock is simply a different

implementation of the second chance. It has the

same performance properties but takes less time

to execute the algorithm. LRU is an excellent

algorithm, but it cannot be implemented without

special hardware. If this hardware is not available,

it cannot be said. NFU is a crude attempt to

approximate LRU. It is not very good. However,

aging is a much better approximation to LRU and

can be implemented efficiently. It is a good

choice.

Consider the reference string 7, 0, 1, 2, 0, 3,

0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. The page

replacement algorithms of FIFO, LRU and

Optimal will be applied using 3 frames and

number of page faults will be calculated (M=miss

and H= hit). With these assumptions, the number

of page faults in FIFO, LRU, and Optimal

algorithms using three frames is calculated as

follows:

Number of page faults in FIFO using 3 frames: 15

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

M M M M H M M M M M M H H M M H H M M M

6

Number of page faults in LRU using 3 frames: 12

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

 1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7

M M M M H M H M M M M H H M H M H M H H

Number of page faults in Optimal using 3 frames: 09

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7

 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

M M M M H M H M H H M H H M H H H M H H

Consider the reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. The page

replacement algorithms of FIFO, LRU and Optimal will be applied using four frames and number of

page faults will be calculated. M=miss and H= hit.

Number of page faults in FIFO using 4 frames: 10

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 7 7 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2

 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 7 7 7

 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

M M M M H M H M H H M H H M M H H M H H

Number of page faults in LRU using 4 frames: 08

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 7 7 7

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 4 4 4 4 4 4 1 1 1 1 1 1 1

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

M M M M H M H M H H H H H M H H H M H H

Number of page faults in Optimal using 4 frames: 08

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 7 7 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 7 7 7

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

M M M M H M H M H H H H H M H H H M H H

Considering the above sequence of 20 pages

reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,

1, 2, 0, 1, 7, 0, 1 for memory frames of three and

four pages, the page trace is given to the three

replacement algorithms namely FIFO, LRU and

optimal page replacement and the page faults are

observed. The process is implemented on

Windows 10 64-bit operating system using Java.

7

The results obtained for page faults using FIFO,

LRU and Optimal algorithms using 3, 4 and 5

frames is shown in Table 2. The comparative

analysis of FIFO, LRU, and Optimal page

replacement algorithms demonstrates that while

the optimal algorithm provides the best theoretical

performance, LRU offers a practical and efficient

alternative. FIFO, though easy to implement,

generally performs worse due to its simplistic

approach. Optimal emerges as the best-suited

algorithm for real-world applications, balancing

performance and practicality effectively.

Table 2. Page Faults Obtained using FIFO, LRU

and Optimal Algorithms

Frame Size

Methods

FIFO LRU Optimal

3 15 12 09

4 10 08 08

5 09 07 07

Some other algorithms based on counting

mechanisms that we did not introduce in this

paper (see [2] for detailed information), such as

Least Frequently Used (LFU) and Most

Frequently Used (MFU) algorithms, have also

been studied but not very widely used due to both

their poor performance and large space

requirement. The Most Recently Used (MRU)

algorithm has been shown to perform well for a

certain class of applications, such as database

systems with large sequential access.

The Linux LRU algorithm performs well for

many general applications. However, other

algorithms have their specialty area of

applications. One obvious example is MRU,

which always swaps out the just referenced pages.

In cases of sequential access or random access to

pages that nowadays don’t reference, MRU

performs much better than the common LRU

algorithm. LRU-K, which keeps track of the last

K accesses in history instead of just the last access

as in normal LRU for each page. It has been

shown to be optimal under the assumption of the

independent reference model, given the same

amount of information about past page accesses.

Finally, the two best algorithms are aging and

WSClock (This algorithm is described in [1] and

we do not discuss it in this paper). They are based

on LRU and the working set, respectively. Both

give good paging performance and can be

implemented efficiently. A few other algorithms

exist, but these two are probably the most

important in practice. We summarized the

discussed algorithms in Table 3.

Table 3. Summary of the Page replacement algorithms discussed in the text

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude
FIFO (First-In, First-Out) Might throw out important page

Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement exactly
sNFU (Not Frequently Used) Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
LRU-K The best, more difficult to implement of LRU

8

5. References
[1] A. S. Tanenbaum,, Modern Operating Systems,

Prentice Hall; Second edition, 2001.

[2] W. Stallings. Operating Systems Internals and

Design Principles, Fifth Edition, Prentice Hall, 2004.

[3] E. J. O'Neil, P. E. O'Neil, and G. Weikum, An

Optimality Proof of the LRU-K Page Replacement

Algorithm, Journal of the ACM, Vol. 46, No. 1,

January 1999, pp. 92-112.

[4] S. Chang, K. Zhang, Application Specific Memory

Management, Electrical Engineering and Computer

Science Department, University of California,

Berkeley.

[5] S. H. Abbas, W. A. K. Naser, and L. M. Kadhim,

“Study and Comparison of Replacement Algorithms,”

Int. J. Eng. Res. Adv. Technol., vol. 08, no. 08, pp.

01–06, 2022, doi: 10.31695/ijerat.2022.8.8.1.

[6] M. Waqar, A. Bilal, A. Malik, and I. Anwar,

“Comparative analysis of replacement algorithms

techniques regarding to technical aspects,” Eur. J. Eng.

Technol., vol. 4, no. 5, pp. 60–82, 2016.

[7] B. A. Tingare and V. L. Kolhe, “Analysis of

Various Page Replacement Algorithms in Operating

System,” Int. J. Sci. Res., vol. 5, no. 12, pp. 578–584,

2016, [Online]. Available:

https://www.ijsr.net/archive/v5i12/ART20163405.pdf.

[8] G. Rexha, E. Elmazi, and I. Tafa, “A Comparison

of Three Page Replacement Algorithms: FIFO, LRU

and Optimal,” Acad. J. Interdiscip. Stud., vol. 4, no. 2,

pp. 56–62, 2015, doi: 10.5901/ajis.2015.v4n2s2p56.

[9] H. M. H. Owda, M. A. Shah, A. I. Musa, and M. I.

Tamimy, “A Comparison of Page Replacement

Algorithms in Linux Memory Management,” Int. J.

Comput. Inf. Technol., vol. 03, no. 03, pp. 565–569,

2014, [Online]. Available: www.ijcit.com565.

[10] R. K. Gupta and M. A. Franklin, “Working Set

and Page Fault Frequency Paging Algorithms: A

Performance Comparison,” IEEE Trans. Comput., vol.

c–27, no. 8, pp. 706–712, 1978.

[11] A. J. Smith, “A Comparative Study of Set

Associative Memory Mapping Algorithms and Their

Use for Cache and Main Memory,” IEEE Trans.

Softw. Eng., vol. SE-4, no. 2, pp. 121–130, 1978, doi:

10.1109/TSE.1978.231482.

[12] S. Iranit, A. R. Karlin, and S. Phillips, “Strongly

Competitive Algorithms for Paging with Locality of

Reference,” Soc. Ind. Appl. Math., vol. 25, no. 3, pp.

477–497, 1996, doi:

10.1007/springerreference_65225.

https://www.ijsr.net/archive/v5i12/ART20163405.pdf
http://www.ijcit.com565/

