Journal of Linear and Topological Algebra Vol. 13*, No.* 02*,* 2024*,* 113*-* 119 *DOR: DOI: 10.71483/JLTA.2024.1127554*

Domination numbers and diameters in certain graphs

S. S. Karimizad*a,[∗]*

^a*Department of Mathematics, Faculty of Basic Sciences, Ilam University, Ilam, Iran.*

Received 30 July 2024; Revised 23 August 2024, Accepted 30 August 2024.

Communicated by Hamidreza Rahimi

Abstract. Regarding the problem mentioned by Brigham et al. "Is it correct that each connected bicritical graph possesses a minimum dominating set having every two appointed vertices of graphs?", we first give a class of graphs that disprove it and second obtain domination numbers and diameters of the graphs of this class. This class of graphs has the property: $\omega(\mathcal{H})$ *− diam*(\mathcal{H}) → ∞ when $|\mathcal{V}(\mathcal{H})|$ = *n* → ∞. Also, for the bicritical graphs of this class, $i(\mathcal{H}) = \omega(\mathcal{H}).$

Keywords: Domination number, bicritical graph, diameter.

2010 AMS Subject Classification: 05C69, 05C76.

1. Introduction

Presume $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a graph. Regarding the basic concept mentioned in [2, 6], we first will review some preliminary definitions. $\mathcal{T} \subset \mathcal{V}$ is named a dominating set whenever all vertexes are in $\mathcal T$ or are adjacent to a vertex in $\mathcal T$, i.e. $\mathcal V = \bigcup_{s \in \mathcal T} N[s]$. What's more, domination number $\omega(\mathcal{H})$ will be the minimum cardinality of a dominating set of \mathcal{H} and a do[m](#page-6-0)i[na](#page-6-1)ting set of minimum cardinality will be named a $\omega(\mathcal{H}) - set$. A dominating set $\mathcal T$ of $\mathcal H$ is independent when there exists no two vertices of $\mathcal T$ which are adjacent. The minimum cardinality between independent dominating sets of *H* is independent domination number $i(\mathcal{H})$. We indicate distance between two vertices $p, q \in \mathcal{V}(\mathcal{H})$ by $d_{\mathcal{H}}(p,q)$. Notice that deleting a vertex can enhance domination number by more than one, but can reduce it by at most one. Also, connectivity of H , considered by $\kappa(H)$, will be the minimum size of $\mathcal T$ provided that $\mathcal H-\mathcal T$ is disconnected or possesses just a vertex. *H* will be *k*-connected if its connectivity is at least *k*, and it's *k*-edge-connected when

*[∗]*Corresponding author.

E-mail address: s.karimizad@ilam.ac.ir; s karimizad@yahoo.com (S. S. Karimizad).

each disconnecting set possesses at least k edges. The edge-connectivity of H , given by *λ*(*H*), will be the minimum size of a disconnecting set. The circulant graph \mathcal{C}_{n+1} (1, 4*)* will be a graph with $V = \{x_0, ..., x_n\}$ and $\mathcal{E} = \{x_k x_{k+l \pmod{n+1}} | k \in \{0, ..., n\}, l \in \{1, 4\}\}.$ For example, see Figure 1. Also, more details can be found in [2, 3, 5, 9] and references therein.

Figure 1. $C_{12}\langle 1, 4 \rangle$

Proposition 1.1 [2] For a bicritical graph \mathcal{H} and $p, q \in \mathcal{V}(\mathcal{H})$,

$$
\omega(\mathcal{H}) - 2 \leq \omega(\mathcal{H} - \{p, q\}) \leq \omega(\mathcal{H}) - 1.
$$

Since 2005, man[y](#page-6-0) researcher have discussed open problems of [2] (for example, see [1, 4, 7, 8, 10]). Also, in 2013, Mojdeh et al. [6] answered these questions by considering their hypothesis. In this paper, we answer this question by disapproving the problem for a class of graphs that seems more simple than previous works.

2. Results

First, let us study the domination number and the diameter of $C_{n+1}(1,4)$, and verify their relation.

.

Lemma 2.1
$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) \leq \begin{cases} 2\left\lfloor \frac{n}{9} \right\rfloor + 3 & n \equiv 7 \pmod{9} \\ 2\left\lfloor \frac{n}{9} \right\rfloor + 1 & n \equiv 1 \text{ or } 0 \pmod{9} \\ 3 & n = 12 \\ 2\left\lfloor \frac{n}{9} \right\rfloor + 2 & o.w. \end{cases}
$$

Proof. Let $n \ge 7$ be an integer and $\mathcal T$ be one of the following sets. Then $\mathcal T$ is a dominating set for corresponding *n*.

- (n) $n = 9k + 8$, $\mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+7}\},$
- (b) $n = 9k + 7$, $\mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k}, v_{9k+6}, v_{9k+7}\},$
- (c) $n = 9k + 6$, $\mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+5}\},$
- (d) $n = 9k + 5, \mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+4}\},$

 ${\bf (e)}$ $n = 9k + 4$, ${\bf \mathcal{T}} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+3}\},$ (f) $n = 9k + 3, \mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+2}\},$ (g) $n = 9k + 2, \mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-2}, v_{9k}, v_{9k+1}\},$ (n) $n = 9k + 1$, $\mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-9}, v_{9k-2}, v_{9k}\},$ (i) $n = 9k, \mathcal{T} = \{v_0, v_7, v_9, v_{16}, v_{18}, \ldots, v_{9k-9}, v_{9k-2}, v_{9k-1}\}.$ This process shows that $\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) \leq$ $\sqrt{ }$ $\Big\}$ $\overline{\mathcal{L}}$ $2\left|\frac{n}{9}\right|$ $\left\lfloor \frac{n}{9} \right\rfloor + 3$ *n* $\equiv 7 \pmod{9}$ $2\left|\frac{n}{9}\right|$ $\left\lfloor \frac{n}{9} \right\rfloor + 1$ $n \equiv 1$ or 0 (*mod* 9) 3 $n = 12$ $2\left|\frac{n}{9}\right|$ 9 ⌋ + 2 *o.w.* . ■

Theorem 2.2
$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) = \begin{cases} 2\left\lfloor \frac{n}{9} \right\rfloor + 3 & n \equiv 7 \pmod{9} \\ 2\left\lfloor \frac{n}{9} \right\rfloor + 1 & n \equiv 1 \text{ or } 0 \pmod{9} \\ 3 & n = 12 \\ 2\left\lfloor \frac{n}{9} \right\rfloor + 2 & o.w. \end{cases}
$$

Proof. For equality, each vertex v_i for $0 \leq i \leq n$ dominates $\{v_{i-1}, v_{i+1}, v_{i+4}, v_{i-4}\}$, but the vertices v_{i-2} and v_{i+2} are nearest remaining vertices to v_i , which aren't dominated by v_i . If we choose v_{i-2} , it dominates $\{v_{i-1}, v_{i-3}, v_{i+2}, v_{i-6}\}$, and the vertices v_{i+7} are not dominated. If we choose v_{i+3} , then it dominates at most two new vertices. But if we choose v_{i+7} , then four vertices $\{v_{i+3}, v_{i+11}, v_{i+8}, v_{i+6}\}$ will be dominated. If we choose v_{i+5} , at most two new vertices will be dominated. Therefore, we pick v_{i+9} that dominates $\{v_{i+10}, v_{i+13}, v_{i+5}, v_{i+9}\}\.$ In this case, by choosing four vertices $\{v_i, v_{i-2}, v_{i+7}, v_{i+9}\}\,$ twenty vertices dominated and the vertices v_{i+12} and v_{i+16} remain. If we select v_{i+12} , at most two vertices will be dominated. But if we pick v_{i+16} , exactly five vertices with itself will be dominated and the vertices v_{i+14} and v_{i+18} remain. If we choose v_{i+14} , at most two vertices will be dominated. But if we select v_{i+18} , four vertices with itself will be dominated. Up to here, with 6 vertices $\{v_i, v_{i-2}, v_{i+7}, v_{i+9}, v_{i+16}, v_{i+18}\}$, at least 29 vertices be dominated.

Theorem 2.3 The graph C_{n+1} $(1,4)$ is bicritical for $n+1 = 9k+3, 9k+4, 9k+8$ in which $k \geqslant 1$.

Proof.

(a) If $n + 1 = 9k + 3$, then $\mathcal{T} = \{9k + 1, 0, 7, 9, \ldots, 9k - 2, 9k\}$ is a dominating set for $(\mathcal{C}_{n+1}\langle 1,4\rangle)$. On the other hand

$$
\mathcal{T}_1 = \{3, 6, 8, 15, \dots, 9k - 1\},
$$

\n
$$
\mathcal{T}_2 = \{2, 5, 7, 14, 16, 23, 25, \dots, 9k - 2\},
$$

\n
$$
\mathcal{T}_3 = \{3, 7, 9, 16, 18, \dots, 9k\}
$$

are dominating sets for $C_{n+1}\langle 1,4\rangle - \{v_0,v_i\}$ for some *i* and one of these can be a dominating sets for $C_{n-1} \langle 1, 4 \rangle$.

(b) If $n+1 = 9k+8$, then $\mathcal{T} = \{9k+7, 0, 7, 9, \ldots, 9k+6\}$ is a dominating set for $\mathcal{C}_{n+1}\langle 1, 4 \rangle$.

On the other hand,

$$
T_1 = \{3, 5, 12, 14, 21, \dots, 9k + 5\},
$$

\n
$$
T_2 = \{5, 7, 14, 16, 23, \dots, 9k + 7\},
$$

\n
$$
T_3 = \{6, 5, 12, 14, 21, \dots, 9k + 5\},
$$

\n
$$
T_4 = \{2, 8, 9, 15, 21, 28, 30, 37, 39, 46, 48, \dots, 9k + 1, 9k + 3\},
$$

\n
$$
T_5 = \{2, 3, 10, 12, 19, \dots, 9k + 3\}
$$

are dominating sets for $C_{n+1} \langle 1, 4 \rangle - \{v_0, v_i\}$ for some *i*. One of these can be a dominating set for $C_{n-1}\langle 1, 4 \rangle$.

(c) If $n + 1 = 9k + 4$, then $\mathcal{T} = \{9k + 2, 0, 7, 9, \ldots, 9k\}$ is a dominating set for $\mathcal{C}_{n+1}\langle 1, 4 \rangle$. On the other hand,

$$
T_1 = \{2, 6, 8, 15, 17, \dots, 9k - 1\},
$$

\n
$$
T_2 = \{2, 4, 11, 13, \dots, 9k - 7, 9k - 5, 9k + 2\},
$$

\n
$$
T_3 = \{2, 9, 8, 15, 17, \dots, 9k - 1\}
$$

are dominating sets for $C_{n+1}\langle 1,4\rangle - \{v_0,v_i\}$ for some *i* and one of these can be a dominating set for $C_{n-1} \langle 1, 4 \rangle$.

In all cases of $\mathcal{T}, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4, \mathcal{T}_5$ are a ω -set for $\mathcal{C}_{n+1}\langle 1, 4 \rangle - \{v_0, v_i\}$ which cardinality is less than $(\omega(\mathcal{C}_{n+1}\langle 1,4\rangle))$. Thus, $\omega(\mathcal{C}_{n+1}\langle 1,4\rangle - \{v_0,v_i\})\omega(\mathcal{C}_{n+1}\langle 1,4\rangle)$ and the proof ends. ■

Theorem 2.4 $\kappa(\mathcal{C}_{n+1}\langle 1,4\rangle) = 4$, where $n \ge 8$.

Proof. Presume $\mathcal{H} = \mathcal{C}_{n+1}\langle 1, 4 \rangle$ where $n \geq 8$. As $\delta(\mathcal{H}) = 4$, it's enough to demonstrate that $\kappa(\mathcal{H}) \geq 4$. On the contrary, assume that $\mathcal{T} \subset \mathcal{V}(\mathcal{H})$ with $|\mathcal{T}| < 4$. We show $\mathcal{H} - \mathcal{T}$ is connected. Take $M, N \in V(H) - \mathcal{T}$. The original circular arrangement contains a clockwise M , \mathcal{N} path and a counter clockwise M , \mathcal{N} path a long the circle. Assume that *A* and *B* are set of internal vertices on these two paths. As $|T| < 4$, the pigeon hole principle induces that one of A, B, T has fewer than 3 vertices. Note that each vertex in *H* contains edges to the next 4 vertices in a specific direction deleting fewer than 3 consecutive vertices cannot travel that direction. Hence, we can find a M , \mathcal{N} path in *H* − *T* via *A* or *B*, where *T* has fewer than 4 vertices. On the other hand, $C_{n+1}\langle 1,4\rangle$ is connective by deleting 4 vertices. It is sufficient to delete the adjacent of one vertex. Thus, $\kappa(\mathcal{C}_{n+1}\langle 1,4\rangle) = 4$.

Theorem 2.5 $\kappa'(\mathcal{C}_{n+1}\langle 1,4\rangle) = 4$, where $n \geq 8$.

Proof. It is well known that $\kappa \leq \kappa' \leq \delta$. Therefore, $4 \leq \kappa' \leq 4$ and $\kappa' = 4$.

Theorem 2.6

$$
diam(C_{n+1}\langle 1,4\rangle) = \begin{cases} \left\lceil \left\lfloor \frac{n+1}{2} \right\rfloor \div 4 \right\rceil + 1 & \text{when } 4 \mid \left\lfloor \frac{n+1}{2} \right\rfloor \\ \left\lceil \left\lfloor \frac{n+1}{2} \right\rfloor \div 4 \right\rceil + 1 & \text{when } 4 \nmid \left\lfloor \frac{n+1}{2} \right\rfloor - 1 & \text{and } 4 \nmid \left\lfloor \frac{n+1}{2} \right\rfloor \\ \left\lceil \left\lfloor \frac{n+1}{2} \right\rfloor \div 4 \right\rceil & \text{when } 4 \mid \left\lfloor \frac{n+1}{2} \right\rfloor - 1 & \text{and } 4 \nmid \left\lfloor \frac{n+1}{2} \right\rfloor \end{cases}
$$

.

Proof. Since vertex v_i is adjacent to v_{i+4}, v_{i-4} in $\mathcal{C}_{n+1}\langle 1, 4 \rangle$, we have for $k \geq 1$ that • if $\left\lfloor \frac{n+1}{2} \right\rfloor$ $\left[\frac{+1}{2}\right] = 4k$, then $diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = d(v_0, v_{4k-1}) = d(v_0, v_{4k}) + d(v_{4k}, v_{4k-1}) = k+1;$ • if $\left\lfloor \frac{n+1}{2} \right\rfloor$ $\frac{+1}{2}$ = 4*k* + 1, then $diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = d(v_0, v_{4k-1}) = d(v_0, v_{4k}) + d(v_{4k}, v_{4k-1}) = k+1;$ • if $\left\lfloor \frac{n+1}{2} \right\rfloor$ $\frac{+1}{2}$ = 4*k* + 2, then $diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = d(v_0,v_{4k+2}) = d(v_0,v_{4k}) + d(v_{4k},v_{4k+2}) = k+2;$ • if $\left\lfloor \frac{n+1}{2} \right\rfloor$ $\frac{+1}{2}$ = 4*k* + 3, then

$$
diam(C_{n+1}\langle 1,4\rangle) = d(v_0,v_{4k+2}) = d(v_0,v_{4k}) + d(v_{4k},v_{4k+2}) = k+2;
$$

that these lengths show the diameter in $C_{n+1}\langle 1, 4 \rangle$.

Theorem 2.7 In $C_{n+1}\langle 1, 4 \rangle$ for $n \ge 7$, we have $diam < \omega$.

Proof. If $n + 1 = 8k$ and $4 | \frac{n+1}{2}$ $\frac{+1}{2}$, we have

$$
n = 72t + 7, 72t + 15, 72t + 23, 72t + 31, 72t + 39, 72t + 47, 72t + 55, 72t + 63, 72t + 71.
$$

If $n = 72t + 7$, then $\omega = 16t + 3$ and $diam = 9t + 2$. Thus, $\omega - diam = 7t + 1$. An identical computation demonstrates that

$$
\omega - diam = 7t + 2, 7t + 3, 7t + 4, 7t + 5, 7t + 6, 7t + 8.
$$

In this case, it is clearly implied

$$
\lim_{n \to \infty} (\omega(\mathcal{C}_{n+1} \langle 1, 4 \rangle) - diam(\mathcal{C}_{n+1} \langle 1, 4 \rangle)) \to \infty.
$$

If $n + 1 = 2k$ and $4 \nmid \frac{n+1}{2}$ $\left[\frac{+1}{2}\right] - 1$, we have $n = 8m + 3$ or $n = 8m + 5$. If $n = 8m + 3$, then $n = 72t + 11, 72t + 19, 72t + 27, 72t + 35, 72t + 43, 72t + 51, 72t + 59, 72t + 67, 72t + 75.$ If $n = 72t + 11$, then $\omega = 16t + 4$ and $d = 9t + 3$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 71+2,7t+4,7t+5,7t+6,7t+7.
$$

If $n = 8m + 5$,

$$
n = 72t + 13, 72t + 21, 72t + 29, 72t + 37, 72t + 45, 72t + 53, 72t + 61, 72t + 69, 72t + 77.
$$

Now, if $n = 72t + 13$, then $\omega = 16t + 4$ and $d = 9t + 3$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 2, 7t + 3, 7t + 4, 7t + 6, 7t + 7.
$$

If $n + 1 = 2k$ and $4 \nmid \frac{n+1}{2}$ $\frac{+1}{2}$, 4 $\frac{n+1}{2}$ $\frac{+1}{2}$ | -1, we have $n = 8m + 1$ and then $n = 72t + 9, 72t + 17, 72t + 25, 72t + 33, 72t + 41, 72t + 49, 72t + 57, 72t + 65, 72t + 73.$ If $n = 72t + 9$, then $\omega = 16t + 3$ and $d = 9t + 2$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 71t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 3, 7t + 4, 7t + 5, 7t + 6, 7t + 7.
$$

If $n + 1 = 2k + 1$ and $4 \mid \frac{n+1}{2}$ $\frac{+1}{2}$, 4 $\frac{n+1}{2}$ $\frac{+1}{2}$, we have n= 8*m* and then

 $n = 72t + 8, 72t + 16, 72t + 24, 72t + 32, 72t + 40, 72t + 48, 72t + 56, 72t + 64, 72t + 72.$ If $n = 72t + 8$, then $\omega = 16t + 2$ and $d = 9t + 2$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 2, 7t + 3, 7t + 4, 7t + 5, 7t + 6, 7t + 7.
$$

If $n + 1 = 2k + 1$ and $4 \nmid \frac{n+1}{2}$ $\frac{+1}{2}$, 4 $\frac{n+1}{2}$ $\left[\frac{+1}{2}\right] - 1$, we have $n = 8m + 4$ or $n = 8m + 6$. If $n = 8m + 4$, then

$$
n = 72t + 12, 72t + 20, 72t + 28, 72t + 36, 72t + 44, 72t + 52, 72t + 60, 72t + 68, 72t + 76.
$$

If $n = 72t + 12$, then $\omega = 16t + 4$, $d = 9t + 3$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 2, 7t + 3, 7t + 5, 7t + 6, 7t + 7.
$$

Now, if $n = 8m + 6$,

$$
n = 72t + 14, 72t + 22, 72t + 30, 72t + 38, 72t + 46, 72t + 54, 72t + 62, 72t + 7, 72t + 78.
$$

If $n = 72t + 14$, then $\omega = 16t + 4$ and $d = 9t + 3$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 2, 7t + 3, 7t + 4, 7t + 5, 7t + 7.
$$

If $n + 1 = 2k + 1$, then $4\left\lfloor \frac{n+1}{2} \right\rfloor$ $\frac{+1}{2}$] - 1, 4 $\lfloor \frac{n+1}{2} \rfloor$ $\frac{+1}{2}$ and $n = 8m + 2$. Then

$$
n = 72t + 10, 72t + 18, 72t + 26, 72t + 34, 72t + 42, 72t + 50, 72t + 58, 72t + 66, 72t + 74.
$$

If $n = 72t + 10$, then $\omega = 16t + 3$ and $d = 9t + 2$. Thus,

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 1.
$$

An identical calculation shows that

$$
\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - diam(\mathcal{C}_{n+1}\langle 1,4\rangle) = 7t + 2, 7t + 4, 7t + 5, 7t + 6, 7t + 7, 7t + 8.
$$

All of them show that $(\omega(\mathcal{C}_{n+1}\langle 1,4\rangle) - \text{diam}(\mathcal{C}_{n+1}\langle 1,4\rangle)) \rightarrow \infty$ when $|\mathcal{V}(\mathcal{H})| = n \rightarrow \infty$. ■

Corollary 2.8 Given the problem mentioned above, we found bicritical graphs such as $\mathcal{C}_{n+1}(1,4)$ for $n+1=9k+3, 9k+4, 9k+8$ that have the property: $\omega(\mathcal{H})=i(\mathcal{H})$ and so we could disprove the validity of the problem mentioned in abstract.

References

- [1] N. Almalki, P. Kaemawichanurat, Structural properties of connected domination critical graphs, Mathematics. 9 (2021), 20:2568.
- [2] R. C. Brigham, T. W. Haynes, M. A. Henning, D. F. Rall, Bicritical domination, Discrete Math. 305 (2005), 18-32.
- [3] O. Favaron, D. Summer, E. Wojcicka, The diameter of domination-critical graphs, J. Graph Theory. 18 (1994), 723-724.
- [4] W. Goddard, M. A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (7) (2013), 839-854.
- [5] T. W. Haynes, S. T. Hedetniem, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [6] D. A. Mojdeh, H. Abdollahzadeh Ahangar, S. S. Karimizad, On open problems on the connected bicritical graphs, Sci. Magna. 9 (1) (2013), 71-79.
- [7] D. A. Mojdeh, N. Jafari Rad, On an open problem of total domination critical graphs, Expos. Math. 25 (2) (2007), 175-179.
- [8] D. A. Mojdeh, N. Jafari Rad, On the total domination critical graphs, Elect. Notes. Disc. Math. 24 (2006), 89-92.
- [9] D. P. Sumner, E. Wojcicka, Graphs Critical with Respect to the Domination Number, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [10] W. Zhao, Y. Li, R, Lin, The existence of a graph whose vertex set can be partitioned into a fixed number of strong domination-critical vertex-sets, AIMS Mathematics. 9 (1) (2023), 1926-1938.