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ABSTRACT 

Several research investigations have indicated that asset returns exhibit nota-

ble skewness and kurtosis, which have a substantial impact on the utility function 

of investors. Additionally, it has been observed that Average Value-at-Risk 

(AVaR) provides a more accurate estimation of risk compared to variance. This 

study focuses on the computational challenge associated with portfolio optimiza-

tion in an uncertain context, employing the Mean-AVaR-skewness-kurtosis par-

adigm.The uncertainty around the total return is considered and analyzed in the 

context of the challenge of selecting an optimal portfolio. The concepts of Value-

at-Risk (VaR), Average Value-at-Risk (AVaR), skewness, and kurtosis are ini-

tially introduced to describe uncertain variables. These concepts are then further 

explored to identify and analyse relevant aspects within specific distributions. 

The outcomes of this study will convert the existing models into deterministic 

forms and uncertain mean-AVaR-skewness-kurtosis optimization models for 

portfolio selection. These models are designed to cater to the demands of inves-

tors and mitigate their apprehensions. 

 

 

1 Introduction 

 The primary objective of the optimum portfolio selection theory is to maximize the profits of 

investors by considering a range of alternative investments based on their individual preferences. 

Initially, the mean-variance model developed by Markowitz served as the foundation for addressing the 

portfolio selection problem [1]. Numerous research have subsequently been conducted to explore 

portfolio optimization within the context of these two moments of the return distribution [2]. 

Subsequent to this, extensive research has been conducted to explore diverse methodologies that can be 

employed to model investment risk, aiming to achieve a more accurate estimation of risk. For instance, 

previous studies have utilised risk functions or Value at Risk (VaR) measures such as [3-13]. However, 

VaR suffers from certain limitations. Firstly, it fails to provide information regarding the magnitude of 

losses exceeding the VaR level. Additionally, VaR does not satisfy the coherence criterion. 

https://portal.issn.org/resource/ISSN/2538-5569
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Consequently, the concept of average value-at-risk (AVaR) has emerged as an alternative risk measure. 

The proposal of AVaR is suggested as a potential solution to address the inherent issues associated 

with VaR. VaR, being a risk measure that lacks coherence in general, necessitates the introduction of 

AVaR as a more suitable alternative. In numerous articles, alternative terms such as conditional Value-

at-Risk (CVaR), Tail Value-at-Risk (TVaR), or Expected Shortfall (ES) are employed to refer to the 

same concept [14]. However, for the purpose of this discussion, we will adopt the term average value-

at-risk (AVaR) as it more accurately captures the essence of the variable under consideration. Risk is 

derived from the presence of uncertainty, which may be categorised into two main types: objective 

uncertainty and subjective uncertainty. Stochasticity is a fundamental form of objective uncertainty, 

whereas probability theory serves as a mathematical discipline dedicated to the analysis of the 

characteristics and dynamics of random events. The conventional risk metric known as Value at Risk 

(VaR) or Average Value at Risk (AVaR) has typically been introduced within a stochastic framework. 

The present research introduces the concept of the credibilistic AVaR as a novel risk measure, offering 

a more advantageous alternative to VaR within the framework of uncertainty theory as proposed by Liu 

[15]. 

Numerous manuscripts addressing optimal portfolio selection problems have been published, 

highlighting the insufficiency of relying solely on average and variance, or alternative risk estimators 

such as AVaR, for determining the optimal portfolio allocation. Recent research has emphasised the 

importance of considering additional factors such as skewness and kurtosis, which have proven to be 

highly effective and influential in this context [16-31]. In light of these findings, scholars have recently 

exhibited a growing interest in higher-order moments. 

In conventional practise, it has been widely accepted that security returns exhibit stochastic 

behaviour, hence necessitating the application of probability theory as the primary means for achieving 

optimal portfolio selection. However, it is evident that the effectiveness of security measures is 

influenced by a range of factors, such as social, political, economic, human cognitive, and notably 

psychological factors. Research has demonstrated that historical data does not well capture short-term 

security returns. Empirical data suggests that the probability distribution of underlying asset returns 

exhibits greater peaks and heavier tails compared to the normal distribution. Furthermore, it is observed 

that the first two moments alone are inadequate in characterising this distribution. Several studies have 

employed fuzzy variables as a means to address the aforementioned problems [32-35]. However, the 

utilisation of fuzzy variables has been found to present certain paradoxes [36, 37]. Consequently, the 

concept of uncertainty theory has garnered significant attention, leading many researchers to 

incorporate Liu’s uncertain measurement theory into their portfolio selection models [38-43]. 

Some studies applied skewness with respect to portfolio optimization in uncertain or hybrid 

uncertain spaces [44]. But they have not considered the fourth moment in their studies. So in this article, 

our attempt to fill this gap is to find AVaR, skewness, and kurtosis in an uncertain environment to study 

the mean-AVaR-skewness-kurtosis portfolio optimization model. 

First, we verify the uncertain model in the framework of uncertain theory for portfolio selection by 

considering uncertain returns. Second, AVaR is considered as risk, and due to the asymmetry and 

different kurtosis of financial assets, it is considered uncertain skewness and at the same time examines 

kurtosis in the case of uncertain variables. Third, we replace Average Value-at-Risk instead of variance 

and add skewness-kurtosis to the mean-variance model in an uncertain environment and create a mean-

AVaR-skewness-kurtosis uncertain portfolio optimization model. The uncertain mean-AVaR-

skewness-kurtosis model will be formulated to get the basic opinion of accounting return, risk, 

skewness, and kurtosis simultaneously in the portfolio optimization problem in general. 

The present paper is structured in the following manner. In Section 2, a comprehensive 
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understanding of uncertain and uncertain-random variables will be acquired by a thorough examination 

of relevant knowledge. Following this, Section 3 will delve into the examination and validation of 

skewness and kurtosis pertaining to two distinct categories of uncertain random returns. In the fourth 

section, many models have been developed to address portfolio selection within the framework of 

mean-variance-skewness-kurtosis. In Section 5, two instances are employed to illustrate the efficacy of 

the suggested approach. In Section 6, a set of concluding remarks are presented. Other findings research, 

through a regular and logical process based on the judgment method in a survey of 14 experts in the 

field of capital market investment and a quantitative and multivariate model of fuzzy network analysis, 

to assess the level of importance, ranking and refining the effective factors. Portfolio optimization was 

undertaken. Based on the analysis, the variables of profit volatility, return on capital, company value, 

market risk, stock profitability, financial structure, liquidity and survival index can be introduced as the 

most important factors affecting the optimization of the stock portfolio [48]. 

 

2 Preliminaries  

 Consider Γ be a non-empty set, and define the 𝜎 -algebra 𝐿 be a collection of all the events Θ ∈ 𝐿 

over Γ. It could be defined as a function that for each event Θ return ℳ{Θ} which indicates the belief 

degree which means that we believe Θ will occur. Liu [15] offered the following five axioms, in order 

to define uncertain measure in an axiomatic form, to ensure that the number ℳ{Θ} is not arbitrary and 

has special mathematical properties; 

 1:  (Normality axiom) ℳ(Γ) = 1 ;  

 2:  (Monotonicity axiom) ℳ(Θ1) ≤ ℳ(Θ2) every where Θ1 ⊆ Θ2 ;  

 3:  (Duality axiom) ℳ(Θ) +ℳ(Θ𝑐) = 1 for every event Θ;  

 4:  (Subadditivity axiom) For each sequence of events {Θ𝑗} that can be counted, we have  

ℳ(⋃∞𝑗=1 Θ𝑗) ≤ ∑
∞
𝑗=1 ℳ(Θ𝑗) 

 

Definition 1. [45]. The set function ℳ which satisfies the above axioms, is called an uncertain 

measure.  

 

Definition 2. [45]. Consider 𝛤 be a non-empty set, the 𝜎-algebra 𝐿 be a collection of all the events 

over 𝛤, and ℳ be an uncertain measure according to the above definition, the triple (𝛤،𝐿،ℳ) is 

named an uncertain space.  

  5: (Product Measure Axiom) [45]. Let the triple (Γ𝑘،𝐿𝑘،ℳ𝑘) for 𝑘 = 1،2،. . . ،𝑛, where Γ =

Γ1 × Γ2 ×. .. and 𝐿 = 𝐿1 × 𝐿2 ×. .. be uncertainty spaces, then it satisfyed in  

ℳ(∏∞
𝑘=1 Θ𝑘) ≤ ∧

𝑘=1

∞
ℳ𝑘(Θ𝑘) 

 Where Θ𝑘, are arbitrary events and chosen from 𝐿𝑘 for 𝑘 = 1،2،. . . ،𝑛, respectively. 

 

Definition 3. [45]. The uncertainty distribution for an uncertain variable such as 𝜂 is defined by 

function 𝛷:ℝ → [0،1] that 𝛷(𝑥) = ℳ{𝜂 ≤ 𝑥}.  

 

Theorem 1. [46] Let 𝛷1،𝛷2،. . . ،𝛷𝑛 be uncertainty distributions of independent uncertain 

variables 𝜂1،𝜂2،. . . ،𝜂𝑛, respectively. If 𝑓(𝑡1،𝑡2،. . . ،𝑡𝑛) be increasing strictly. Then  

 𝜂 = 𝑓(𝜂1،𝜂2،. . . ،𝜂𝑛)، (1) 

 is an uncertain variable with uncertainty distribution  
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 Ψ(𝑡) = sup
𝑓(𝑡1،𝑡2،…،𝑡𝑛)=𝑡

( min
1≤𝑖≤𝑛

Φ𝑖(𝑡𝑖)) ،   𝑡 ∈ ℝ، (2) 

 and following inverse function  

 Ψ−1(𝛼) = 𝑓[Φ1
−1(𝛼)،Φ2

−1(𝛼)،. . . ،Φ𝑛
−1(𝛼)]، (3) 

 Where Φ1
−1(𝛼)،Φ2

−1(𝛼)،. . . ،Φ𝑛
−1(𝛼) are unique for each 𝛼 ∈ (0،1). 

 

Definition 4. [15]. The expected value of an uncertain variable 𝜂 is defined by  

𝐸[𝜂] = ∫
∞

0
𝑀{𝜂 ≥ 𝑟}𝑑𝑟 − ∫

0

−∞
𝑀{𝜂 ≤ 𝑟}𝑑𝑟، (4) 

 while at least one of the above integrals be finite.  

  

Theorem 2. [46]. Let 𝑎1 and 𝑎2 be real numbers and 𝜂1 and 𝜂2 be independent uncertain 

variables where them expected values are finite, then we have  

 𝐸[𝑎1𝜂1 + 𝑎2𝜂2] = 𝑎1𝐸[𝜂1] + 𝑎2𝐸[𝜂2]. (5) 

 

Theorem 3.  Let 𝜂 be an uncertain variable where them expected values are finite, with regular 

uncertainty distribution 𝛷, and let 𝑘 be a positive integer. Then the 𝑘-th moment of 𝜂 is  

𝐸[𝜂𝑘] = ∫
+∞

−∞
𝛼𝑘𝑑Φ(𝛼) = ∫

1

0
(Φ−1(𝜆))𝑘𝑑𝜆 (6) 

  

Definition 5.  Assume that 𝐸 indicated the operator of expected value and 𝜂 be an uncertain variable 

and 𝐸[𝜂] be finite. the Skewness and kurtosis of 𝜂 is defined as  

𝑆[𝜂] = 𝐸[(𝜂 − 𝐸[𝜂])3] (7) 

 and  

𝐾[𝜂] = 𝐸[(𝜂 − 𝐸[𝜂])4] (8) 

  

Theorem 4.  Let 𝜂 be an uncertain variable with finite expected value 𝐸[𝜂], and uncertainty 

distribution 𝛷 then  

𝑆[𝜂] = ∫
+∞

−∞
(𝜂 − 𝐸[𝜂])3𝑑Φ(𝑥)، (9) 

 and  

𝐾[𝜂] = ∫
+∞

−∞
(𝜂 − 𝐸[𝜂])4𝑑Φ(𝑥)، (10) 

   

Proof. You can find the proof of part 1 in [44]. Now for proofing the Kurtosis formula, assume that 

𝐸[𝜂] = 𝑒 is the finite expected value of 𝜂. From definition (5)  

 𝐾[𝜂] = 𝐸[(𝜂 − 𝐸[𝜂])4] 

 = ∫
+∞

0
𝑀{(𝜂 − 𝑒)4 ≥ 𝑥}𝑑𝑥 − ∫

0

−∞
𝑀{(𝜂 − 𝑒)4 ≤ 𝑥}𝑑𝑥 

 = ∫
+∞

0
𝑀{𝜂 − 𝑒 ≥ √𝑥

4
}𝑑𝑥 − ∫

0

−∞
𝑀{𝜂 − 𝑒 ≤ √𝑥

4
}𝑑𝑥 

 = ∫
+∞

0
𝑀{𝜂 ≥ √𝑥

4 + 𝑒}𝑑𝑥 − ∫
0

−∞
𝑀{𝜂 ≤ √𝑥

4 + 𝑒}𝑑𝑥 

 Now let √𝑥
4 + 𝑒 = 𝑧, so 𝑥 = (𝑧 − 𝑒)4 and we have  

 ∫
+∞

0
𝑀{𝜂 ≥ √𝑥

4 + 𝑒}𝑑𝑥 − ∫
0

−∞
𝑀{𝜂 ≤ √𝑥

4 + 𝑒}𝑑𝑥 = ∫
+∞

𝑒
𝑀{𝜂 ≥ 𝑧}𝑑(𝑧 − 𝑒)4 − ∫

𝑒

−∞
𝑀{𝜂 ≤

𝑧}𝑑(𝑧 − 𝑒)4 

= ∫
+∞

𝑒
(1 −Φ(𝑧))𝑑(𝑧 − 𝑒)4 − ∫

𝑒

−∞
Φ(𝑧)𝑑(𝑧 − 𝑒)4 

= ∫
+∞

𝑒
(𝑧 − 𝑒)4𝑑Φ(𝑧) + ∫

𝑒

−∞
(𝑧 − 𝑒)4𝑑Φ(𝑧) 



Omidi et al. 

 
 

 

 

Vol. 10, Issue 2, (2025) 

 

Advances in Mathematical Finance and Applications 

 

[205] 

 

= ∫
+∞

−∞
(𝑧 − 𝑒)4𝑑Φ(𝑧). 

 In the result the kurtosis is  

𝐾[𝜂] = ∫
+∞

−∞
(𝜂 − 𝐸[𝜂])4𝑑Φ(𝑥)، (11) 

  

 

Theorem 5. Let 𝑎 and 𝑏 be arbitrary real numbers and the expected value of an uncertain 

variable 𝜂 be finite, then  

𝑆[𝑎𝜂 + 𝑏] = 𝑎4𝑆[𝜂]، (12) 

 and  

𝐾[𝑎𝜂 + 𝑏] = 𝑎4𝐾[𝜂]، (13) 

  

Proof. We know that 𝐸[𝑎𝑥 + 𝑏] = 𝑎𝐸[𝑥] + 𝑏. It follows from definition (5) that  

 𝑆[𝑎𝜂 + 𝑏] = 𝐸[(𝑎𝜂 + 𝑏 − (𝑎𝐸[𝜂] + 𝑏))3] = 𝑎3𝐸[(𝜂 − 𝐸(𝜂))3] = 𝑎3𝑆[𝜂]، (14) 

 and  

 𝐾[𝑎𝜂 + 𝑏] = 𝐸[(𝑎𝜂 + 𝑏 − (𝑎𝐸[𝜂] + 𝑏))4] = 𝑎4𝐸[(𝜂 − 𝐸(𝜂))4] = 𝑎4𝐾[𝜂]. (15) 

 The theorem is proved.  

  

Definition 6. Let 𝜆 ∈ (0،1] be a confidence level and 𝜂 be an uncertain variable, Then the 

function 𝑉𝑎𝑅: (0،1] → ℝ denotes Value-at-Risk of 𝜂, and defined by  

𝑉𝑎𝑅(𝜆) = 𝑠𝑢𝑝{𝑥|ℳ{𝜂 ≥ 𝑥} ≥ 𝜆}. 

  

Theorem 6.  For the risk confidence level 𝜆 ∈ (0،1],  

 𝑉𝑎𝑅(𝜆) = Φ−1(1 − 𝜆)، 

 where Φ−1(1 − 𝜆) denotes the inverse of uncertainty distribution function Φ(𝜆).  

  

Definition 7. Let 𝜆 ∈ (0،1] be the confidence level for an uncertain variable 𝜂, then the function 

𝐴𝑉𝑎𝑅: (0،1] → ℝ denotes the average Value-at-Risk of 𝜂, and defined by  

𝐴𝑉𝑎𝑅(𝜆) =
1

𝜆
∫
𝜆

0
𝑉𝑎𝑅(𝛾)𝑑𝛾. 

  

3 Explanation of the Problem 

Lemma 1.  Consider for 𝛼 < 𝛽, 𝜂 ∼ 𝐿(𝛼،𝛽) be a linear uncertain variable. 

i) The expected value of 𝜂 is obtained as  

 𝐸[𝜂] =
𝛼+𝛽

2
 (16) 

 ii) The Value-at-risk of 𝜂 is obtained as  

𝑉𝑎𝑅(𝜆) = 𝜆𝛼 + (1 − 𝜆)𝛽،    0 ≤ 𝜆 ≤ 1. (17) 

 iii) The Average Value-at-risk of 𝜂 is obtained as  

𝐴𝑉𝑎𝑅(𝜆) =
𝜆𝛼

2
+ (1 −

𝜆

2
)𝛽،    0 ≤ 𝜆 ≤ 1. (18) 

 iv) The Skewness of 𝜂 is obtained as  

 𝑆[𝜂] = 0 (19) 

 v) The Kurtosis of 𝜂 is obtained as  

 𝐾[𝜂] =
(𝛼−𝛽)4

80
 (20) 

Proof. i)It is known that the uncertainty distribution of the linear uncertain variable 𝜂 is [15]  
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 Φ(𝜏) =

{
 
 

 
 0،                 𝜏 ≤ 𝛼،
𝜏−𝛼

𝛽−𝛼
،               𝛼 ≤ 𝜏 ≤ 𝛽،

1،                 𝜏 ≥ 𝛽.
 (21) 

 So  

Φ−1(𝜏) = 𝜏𝛽 + (1 − 𝜏)𝛼. (22) 

 Using (4),  

𝐸[𝜂] = ∫
+∞

0
(1 − Φ(𝜏))𝑑𝜏 − ∫

0

−∞
Φ(𝜏)𝑑𝜏. (23) 

 then, if 𝛼 ≥ 0,  

𝐸[𝜂] = (∫
𝛼

0
1𝑑𝜏 + ∫

𝛽

𝛼
(1 −

𝜏−𝛼

𝛽−𝛼
)𝑑𝜏 + ∫

+∞

𝛽
0𝑑𝜏) − ∫

0

−∞
0𝑑𝜏 =

𝛼+𝛽

2
 (24) 

 If 𝛽 ≤ 0,  

𝐸[𝜂] = ∫
+∞

0
0𝑑𝜏 − (∫

𝛼

−∞
0𝑑𝜏 + ∫

𝛽

𝛼

𝜏−𝛼

𝛽−𝛼
𝑑𝜏 + ∫

0

𝛽
1𝑑𝜏) =

𝛼+𝛽

2
 (25) 

 If 𝛼 ≤ 0 ≤ 𝛽,  

 𝐸[𝜂] = ∫
𝛽

0
(1 −

𝜏−𝛼

𝛽−𝛼
)𝑑𝜏 + ∫

0

𝛼

𝜏−𝛼

𝛽−𝛼
𝑑𝜏 =

𝛼+𝛽

2
 (26) 

 Thus  

𝐸[𝜂] =
𝛼+𝛽

2
 (27) 

 ii)Using (22),  

Φ−1(1 − 𝜏) = (1 − 𝜏)𝛽 + 𝛼𝜏.        0 ≤ 𝜏 ≤ 1. (28) 

 Then using theorem (6), the proof is obvious. 

iii)Using (7) and (28), for 0 ≤ 𝜆 ≤ 1,  

 𝐴𝑉𝑎𝑅(𝜆) =
1

𝜆
∫
𝜆

0
𝑉𝑎𝑅(𝛾)𝑑𝛾 

 =
1

𝜆
∫
𝜆

0
(𝛼𝛾 + 𝛽(1 − 𝛾)𝑑𝛾 

 =
𝜆𝛼

2
+ (1 −

𝜆

2
)𝛽. 

 iv)Using theorem (3),  

𝐸[𝜂3] = ∫
1

0
(𝛽𝜏 + (1 − 𝜏)𝛼)3𝑑𝜏 =

𝛼4−𝛽4

4(𝛼−𝛽)
 

 and  

𝑉𝑎𝑟[𝜂] = 𝐸[𝜂2] − 𝐸2[𝜂] =
(𝛽−𝛼)2

12
 

 Then using definition (5)  

 𝑆[𝜂] = 𝐸[𝜂3] − 𝐸3[𝜂] − 3𝐸[𝜂]𝑉𝑎𝑟[𝜂] 

 =
𝛼4−𝛽4

4(𝛼−𝛽)
− (

𝛼+𝛽

2
)3 − 3(

𝛼+𝛽

2
)(
(𝛽−𝛼)2

12
) = 0. 

 v) Using theorem (3),  

𝐸[𝜂4] = ∫
1

0
(𝛽𝜏 + (1 − 𝜏)𝛼)4𝑑𝜏 =

𝛼5−𝛽5

5(𝛼−𝛽)
 

 Then using definition (5)  

 𝐾[𝜂] = 𝐸[𝜂4] + 𝐸4[𝜂] − 4𝐸[𝜂3]𝐸[𝜂] + 6𝐸[𝜂2]𝐸2[𝜂] − 4𝐸4[𝜂] 

 =
𝛼5−𝛽5

5(𝛼−𝛽)
+ (

𝛼+𝛽

2
)4 − 4(

𝛼4−𝛽4

4(𝛼−𝛽)
)(
𝛽+𝛼

2
) + 6(

𝛼2+𝛼𝛽+𝛽2

3
)(
𝛼+𝛽

2
)2 − 4(

𝛼+𝛽

2
)4 

 =
(𝛼−𝛽)4

80
. 
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Lemma 2.  Consider for 𝑎 < 𝑏 < 𝑐, 𝜂 ∼ 𝑍(𝑎،𝑏،𝑐) be a Zigzag uncertain variable. 

i) The expected value of 𝜂 is obtained as  

𝐸[𝜂] =
𝑎+2𝑏+𝑐

4
 (29) 

 ii) The Value-at-risk of 𝜂 is obtained as  

 𝑉𝑎𝑅(𝜆) = {

(2𝜆 − 1)𝑎 + (1 − 𝜆)2𝑏،                0 < 𝜆 ≤
1

2
،

2𝑏𝜆 + (1 − 2𝜆)𝑐،                    
1

2
≤ 𝜆 < 1.  (30) 

 iii) AVaR of 𝜂 is obtained as  

 𝐴𝑉𝑎𝑅(𝜆) = {

(1 −
𝜆

2
) 2𝑏 + 𝑎(𝜆 − 1)،               0 < 𝜆 ≤

1

2
،

1

4𝜆
(2𝑏 − 𝑎) − 𝜆𝑐 + 𝑏𝜆،               

1

2
≤ 𝜆 < 1.  (31) 

 iv) The Skewness of 𝜂 is obtained as  

𝑆[𝜂] =
𝑎3−𝑎2𝑐−2𝑏𝑎2−𝑎𝑐2+4𝑎𝑏𝑐+𝑐3−2𝑏2𝑐

32
 (32) 

 v) The Kurtosis of 𝜂 is obtained as  

 𝐾[𝜂] =
1

1280
(33𝑎4 + 400𝑏4 + 33𝑐4 + 32𝑏3𝑎 + 88𝑎2𝑏2 − 72𝑏𝑐3 + 32𝑏3𝑐 + 88𝑏2𝑐2 + (33) 

 70𝑎2𝑐2 − 60𝑎3𝑐 − 60𝑎𝑐3 − 80𝑎𝑏2𝑐 + 40𝑎𝑏𝑐2 + 40𝑎2𝑏𝑐) 

  

Proof. i)It is known that the uncertainty distribution of the Zigzag uncertain variable 𝜂 is [15]  

 Φ(𝜏) =

{
 
 

 
 
0،                𝜏 ≤ 𝑎،
𝜏−𝑎

2(𝑏−𝑎)
،            𝑎 ≤ 𝜏 ≤ 𝑏، 

𝜏+𝑐−2𝑏

2(𝑐−𝑏)
،            𝑏 ≤ 𝜏 ≤ 𝑐،

1،                𝜏 ≥ 𝑐.

 (34) 

 So  

 Φ−1(𝜏) = {
2𝑏𝜏 − 𝑎(2𝜏 − 1)،             0 ≤ 𝜏 ≤

1

2
،

2𝑏(1 − 𝜏) + 𝑐(2𝜏 − 1)،         
1

2
≤ 𝜏 ≤ 1.

 (35) 

 Using (4),  

𝐸[𝜂] = ∫
+∞

0
(1 − Φ(𝜏))𝑑𝜏 − ∫

0

−∞
Φ(𝜏)𝑑𝜏. 

 then, if 𝑎 ≥ 0,  

 𝐸[𝜂] = (∫
𝛼

0
1𝑑𝜏 + ∫

𝑏

𝑎

2𝑏−𝜏−𝑎

2(𝑏−𝑎)
𝑑𝜏 + ∫

𝑐

𝑏

𝑐−𝜏

2(𝑐−𝑏)
𝑑𝜏 + ∫

+∞

𝑐
0𝑑𝜏) − ∫

0

−∞
0𝑑𝜏 =

𝑎+2𝑏+𝑐

4
 

 If 𝑎 ≤ 0 ≤ 𝑏,  

𝐸[𝜂] = ∫
𝑏

0

2𝑏−𝑎−𝜏

2(𝑏−𝑎)
𝑑𝜏 + ∫

𝑐

𝑏

𝑐−𝜏

2(𝑐−𝑏)
𝑑𝜏 + ∫

+∞

𝑐
0𝑑𝜏 − ∫

𝑎

−∞
0𝑑𝜏 − ∫

0

𝑎

𝜏−𝑎

2(𝑏−𝑎)
𝑑𝜏 =

𝑎+2𝑏+𝑐

4
. 

 If 𝑏 ≤ 0 ≤ 𝑐,  

𝐸[𝜂] = ∫
𝑐

0

𝑐−𝜏

2(𝑐−𝑏)
𝑑𝜏 + ∫

+∞

𝑐
0𝑑𝜏 − ∫

𝑎

−∞
0𝑑𝜏 − ∫

𝑏

𝑎

𝜏−𝑎

2(𝑏−𝑎)
𝑑𝜏 − ∫

0

𝑏

𝜏+𝑐−2𝑏

2(𝑐−𝑏)
𝑑𝜏 =

𝑎+2𝑏+𝑐

4
. 

 If 𝑐 ≤ 0,  

𝐸[𝜂] = ∫
+∞

0
0𝑑𝜏 − ∫

𝑎

−∞
0𝑑𝜏 − ∫

𝑏

𝑎

𝜏−𝑎

2(𝑏−𝑎)
𝑑𝜏 − ∫

𝑐

𝑏

𝜏+𝑐−2𝑏

2(𝑐−𝑏)
𝑑𝜏 − ∫

0

𝑐
1𝑑𝜏 =

𝑎+2𝑏+𝑐

4
. 

 Thus  
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 𝐸[𝜂] =
𝑎+2𝑏+𝑐

4
. 

 ii)Using (35),  

 Φ−1(1 − 𝜏) = {
2𝑏(1 − 𝜏) − 𝑎(2𝜏 − 1)،        0 < 𝜏 ≤

1

2
،

2𝑏𝜏 + 𝑐(1 − 2𝜏)،            
1

2
≤ 𝜏 < 1.

 

 Then using theorem (6), the proof is obvious. 

iii)Using (7) and (28), for 0 < 𝜆 ≤
1

2
 ،  

 𝐴𝑉𝑎𝑅(𝜆) =
1

𝜆
∫
𝜆

0
𝑉𝑎𝑅(𝛾)𝑑𝛾 

 =
1

𝜆
∫
𝜆

0
2𝑏(1 − 𝛾) − 𝑎(2𝛾 − 1)𝑑𝛾 

 = 2𝑏(1 −
𝜆

2
) + 𝑎(𝜆 − 1). 

 and for 
1

2
≤ 𝜆 < 1,  

 𝐴𝑉𝑎𝑅(𝜆) =
1

𝜆
∫
𝜆

0
𝑉𝑎𝑅(𝛾)𝑑𝛾 

 =
1

𝜆
(∫

1

2
0
2𝑏(1 − 𝛾) − 𝑎(2𝛾 − 1)𝑑𝛾 + ∫

𝜆
1

2

((1 − 2𝛾)𝑐 + 2𝑏𝛾)𝑑𝛾) 

 = 2𝑏(1 −
𝜆

2
) + 𝑎(𝜆 − 1). 

 iv)Using theorem (3),  

 𝐸[𝜂3] = ∫
1

2
0
(2𝑏𝜏 − 𝑎(2𝜏 − 1))3𝑑𝜏 + ∫

1
1

2

(𝑐(2𝜏 − 1) + 2𝑏(1 − 𝜏))3𝑑𝜏 =
𝑎4−𝑏4

8(𝑎−𝑏)
+

𝑏4−𝑐4

8(𝑏−𝑐)
 

 and  

𝑉𝑎𝑟[𝜂] = 𝐸[𝜂2] − 𝐸2[𝜂] =
5𝑎2+4𝑏2+5𝑐2−4𝑎𝑏−4𝑏𝑐−6𝑎𝑐

48
 

 Then using definition (5)  

 𝑆[𝜂] = 𝐸[𝜂3] − 𝐸3[𝜂] − 3𝐸[𝜂]𝑉𝑎𝑟[𝜂] 

 =
𝑎3−𝑎2𝑐−2𝑏𝑎2−𝑎𝑐2+4𝑎𝑏𝑐+𝑐3−2𝑏2𝑐

32
 

 v) Using theorem (3),  

𝐸[𝜂4] = ∫
1

2
0
(2𝑏𝜏 − 𝑎(2𝜏 − 1))4𝑑𝜏 + ∫

1
1

2

(𝑐(2𝜏 − 1) + 2𝑏(1 − 𝜏))4𝑑𝜏 =
𝑎5−𝑏5

10(𝑎−𝑏)
+

𝑏5−𝑐5

10(𝑏−𝑐)
 

 Then using definition (5)  

 𝐾[𝜂] = 𝐸[𝜂4] + 𝐸4[𝜂] − 4𝐸[𝜂3]𝐸[𝜂] + 6𝐸[𝜂2]𝐸2[𝜂] − 4𝐸4[𝜂] 

 =
1

1280
(33𝑎4 + 400𝑏4 + 33𝑐4 + 32𝑏3𝑎 + 88𝑎2𝑏2 − 72𝑏𝑐3 + 32𝑏3𝑐 

 +88𝑏2𝑐2 + 70𝑎2𝑐2 − 60𝑎3𝑐 − 60𝑎𝑐3 − 80𝑎𝑏2𝑐 + 40𝑎𝑏𝑐2 + 40𝑎2𝑏𝑐). 

  

Lemma 3.  Consider a Normal uncertain variable 𝜂 ∼ 𝑁(𝑒،𝜎) where 𝑒،𝜎 > 0. 

i) The expected value of 𝜂 is obtained as  

 𝐸[𝜂] = 𝑒. (36) 

 ii) The VaR of 𝜂 is obtained as  

 𝑉𝑎𝑅(𝜆) = 𝑒 −
√3𝜎

𝜋
𝑙𝑛

𝜆

1−𝜆
 (37) 

 iii) The AVaR of 𝜂 is obtained as  

 𝐴𝑉𝑎𝑅(𝜆) = 𝑒 −
√3𝜎

𝜋
[𝑙𝑛

𝜆

1−𝜆
+
𝑙𝑛(1−𝜆)

𝜆
] (38) 

 iv) The Skewness of 𝜂 is obtained as  
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 𝑆[𝜂] =
−36𝑒𝜎2

𝜋2
 (39) 

 v) The Kurtosis of 𝜂 is obtained as  

 𝐾[𝜂] =
42

10
𝜎4 −

432𝜎4

𝜋4
+
144𝑒2𝜎2

𝜋4
 (40) 

 

Proof. i)It is known that the uncertainty distribution of the normal uncertain variable 𝜂 is [15]  

Φ(𝜏) = (1 + 𝑒𝑥𝑝 (
𝜋(𝑒−𝜏)

√3𝜎
))−1،        𝜏 ∈ ℝ، (41) 

 So  

Φ−1(𝜏) = 𝑒 −
√3𝜎

𝜋
𝑙𝑛

1−𝜏

𝜏
 (42) 

 Using (4),  

𝐸[𝜂] = ∫
+∞

0
(1 − Φ(𝜏))𝑑𝜏 − ∫

0

−∞
Φ(𝜏)𝑑𝜏. 

 Then,  

𝐸[𝜂] = ∫
+∞

0
1 − (1 + 𝑒𝑥𝑝(

𝜋(𝑒−𝜏)

√3𝜎
))−1𝑑𝜏 − ∫

0

−∞
(1 + 𝑒𝑥𝑝(

𝜋(𝑒−𝜏)

√3𝜎
))−1𝑑𝜏 = 𝑒. 

 ii)Using (42),  

Φ−1(1 − 𝜏) = 𝑒 −
√3𝜎

𝜋
𝑙𝑛

𝜏

1−𝜏
 (43) 

 Then using theorem (6), the proof is obvious. 

iii)Using (7) and (43),  

 𝐴𝑉𝑎𝑅(𝜆) =
1

𝜆
∫
𝜆

0
𝑉𝑎𝑅(𝛾)𝑑𝛾 

 =
1

𝜆
∫
𝜆

0
(𝑒 −

√3𝜎

𝜋
𝑙𝑛𝛾 +

√3𝜎

𝜋
𝑙𝑛(1 − 𝛾))𝑑𝛾 

 = 𝑒 −
√3𝜎

𝜋
[𝑙𝑛𝜆 + (

1−𝜆

𝜆
)𝑙𝑛(1 − 𝜆)]. 

   = 𝑒 −
√3𝜎

𝜋
[𝑙𝑛

𝜆

1−𝜆
+
𝑙𝑛(1−𝜆)

𝜆
].  

iv)Using theorem (3),  

𝐸[𝜂3] = ∫
1

0
(𝑒 −

√3𝜎

𝜋
𝑙𝑛(1 − 𝜏) +

√3𝜎

𝜋
𝑙𝑛𝜏)3𝑑𝜏 = 𝑒3 −

36𝑒𝜎2

𝜋2
+ 3𝑒𝜎2. 

 and  

𝑉𝑎𝑟[𝜂] = 𝐸[𝜂2] − 𝐸2[𝜂] = 𝑒2 − 𝜎2 − 𝑒2 = 𝜎2 

 Then using definition (5)  

 𝑆[𝜂] = 𝐸[𝜂3] − 𝐸3[𝜂] − 3𝐸[𝜂]𝑉𝑎𝑟[𝜂] 

 = 𝑒3 −
36𝑒𝜎2

𝜋2
+ 3𝑒𝜎2 − 𝑒3 − 3𝑒𝜎2 

 =
−36𝑒𝜎2

𝜋2
 

 v) Using theorem (3),  

 𝐸[𝜂4] = ∫
1

0
(𝑒 −

√3𝜎

𝜋
𝑙𝑛(1 − 𝜏) +

√3𝜎

𝜋
𝑙𝑛𝜏)4𝑑𝜏 = 𝑒4 −

432𝜎4

𝜋4
+
42

10
𝜎4 + 6𝑒2𝜎2. 

 Then using definition (5)  

 𝐾[𝜂] = 𝐸[𝜂4] + 𝐸4[𝜂] − 4𝐸[𝜂3]𝐸[𝜂] + 6𝐸[𝜂2]𝐸2[𝜂] − 4𝐸4[𝜂] 

 =
42

10
𝜎4 −

432𝜎4

𝜋4
+
144𝑒2𝜎2

𝜋4
. 

4 Portfolio Selection Problem  

 Markowitz models had considered the security returns as random variables. As explained in the 

introduction, there are situations that returns of securities may be uncertain variables. In these cases, 
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uncertain variables will be used to describe the security returns. Let 𝜂𝑖 denotes uncertain return of the 

𝑖th security, and 𝑥𝑖 represents the proportion of investment in the 𝑖th security, and the given risk 

confidence level is denoted by 𝜆 ∈ (0،1]. The investment return is determined by the expected value 

and risk by AVaR of a portfolio. 

One of the problems in portfolio optimization is minimizing the Average Value at Risk (AVaR) in 

order to reduce risk at a given expected return level 𝜗 that investors find acceptable. The admissible 

skewness level, denoted by 𝜚, and the maximum tolerable kurtosis level, denoted by 𝜅, are additional 

factors to consider. In this case, the portfolio optimization model can be displayed as  

 

 m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑉𝑎𝑅[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]          (44) 

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
  
 

  
 
𝐸[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≥ 𝜗،

𝑆[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≥ 𝜚،

𝐾[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

 Alternatively, another portfolio selection problem can be maximizing expected return on the 

limitation that the skewness is rather than or equal to the admissible level 𝜚 and the risk which denotes 

by AVaR does not overpass a preset risk level 𝜛 and kurtosis does not exceed a preset level 𝜅 in 

advance. This optimization model becomes as  

 m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝐸[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]          (45) 

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
  
 

  
 
𝐴𝑉𝑎𝑅[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≤ 𝜛،

𝑆[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≥ 𝜚،

𝐾[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

 This optimization problem can be formulated in some other different kinds, such as maximizing 

skewness or minimizing kurtosis or multi-objective nonlinear programming model as  

 

m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝐸[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]

m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑆[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]

m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑉𝑎𝑅[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]

m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐾[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖]

 (46) 

  

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 {
∑𝑛𝑖=1 𝑥𝑖 = 1.

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.
 

 In order to solve this problem, consider 𝑤𝑖،𝑖 = 1،2،3،4 be positive real numbers which indicate the 

weights of the four appropriated objectives, and 𝑤𝑖 ∈ [0،1], so this multi-objective model can be 

transformed into a single-objective optimization model as  

 

m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑤1𝐴𝑉𝑎𝑅[∑
𝑛
𝑖=1 𝑥𝑖𝜂𝑖] − 𝑤2𝐸[∑

𝑛
𝑖=1 𝑥𝑖𝜂𝑖] − 𝑤3𝑆[∑

𝑛
𝑖=1 𝑥𝑖𝜂𝑖] + 𝑤4𝐾[∑

𝑛
𝑖=1 𝑥𝑖𝜂𝑖]  (47) 

  

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 {
∑𝑛𝑖=1 𝑥𝑖 = 1.

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.
 

 Note that if 𝑥∗ be an optimal solution of model (47), then 𝑥∗ will be a pareto optimal solution of 
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multi-objective nonlinear programming model (46).  

Theorem 7.  Let 𝜂𝑖 ∈ 𝐿(𝛼𝑖،𝛽𝑖) for 𝑖 = 1،2،. . . ،𝑛 be a linear uncertain variable, and 0 < 𝜆 ≤ 1. 

Then model (44) can be changed to the crisp equivalent as following form  

 m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑𝑛𝑖=1 𝑥𝑖(
𝜆𝛼𝑖

2
+ (1 −

𝜆

2
)𝛽𝑖)                            (48) 

  

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 

 
 ∑

𝑛
𝑖=1 𝑥𝑖 (

𝛼𝑖+𝛽𝑖

2
) ≥ 𝜗،

∑𝑛𝑖=1 𝑥𝑖 (
(𝛼𝑖−𝛽𝑖)

4

80
) ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

 and model (45) can be changed to the crisp equivalent as following form  

 m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑𝑛𝑖=1 𝑥𝑖(
𝛼𝑖+𝛽𝑖

2
) (49) 

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
  
 

  
 ∑

𝑛
𝑖=1 𝑥𝑖 (

𝜆𝛼𝑖

2
+ (1 −

𝜆

2
)𝛽𝑖) ≤ 𝜛،

∑𝑛𝑖=1 𝑥𝑖 (
(𝛼𝑖−𝛽𝑖)

4

80
) ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

  

Proof. Since, all of uncertain variables are linear in this mean that 𝜂𝑖 ∈ 𝐿(𝛼𝑖،𝛽𝑖) for 𝑖 = 1،2،. . . ،𝑛. 

Moreover, the expected value have obtained as 𝐸[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖(

𝛼𝑖+𝛽𝑖

2
) and the variance 

𝐴𝑉𝑎𝑅[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖(

𝜆𝛼𝑖

2
+ (1 −

𝜆

2
)𝛽𝑖) and the skewness 𝑆[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = 0 and the kurtosis 

𝐾[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖(

(𝛼𝑖−𝛽𝑖)
4

80
). Substituting the above formulas into model (44) and (45), the 

theorem will be proved.  

  

Theorem 8.  Let 𝜂𝑖 ∈ 𝑁(𝑒𝑖،𝜎𝑖) for 𝑖 = 1،2،. . . ،𝑛 be a Normal uncertain variable, and 0 < 𝜆 ≤ 1. 

Then model (44) can be changed to the crisp equivalent as following form  

 m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑𝑛𝑖=1 𝑥𝑖(𝑒𝑖𝜆 −
√3𝜎𝑖

𝜋
[𝜆𝑙𝑛𝜆 + (1 − 𝜆)𝑙𝑛(1 − 𝜆)]) (50) 

  

 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
  
 

  
 
∑𝑛𝑖=1 𝑥𝑖𝑒𝑖 ≥ 𝜗،

∑𝑛𝑖=1 𝑥𝑖 (
−36𝑒𝑖𝜎𝑖

2

𝜋2
) ≥ 𝜚،

∑𝑛𝑖=1 𝑥𝑖 (
42

10
𝜎𝑖
4 −

432𝜎𝑖
4

𝜋4
+
144𝑒𝑖

2𝜎𝑖
2

𝜋4
) ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

 and model (45) can be changed to the crisp equivalent as following form  

 m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑𝑛𝑖=1 𝑥𝑖𝑒𝑖 (51) 
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 s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 
 
 

 
 
 
 ∑

𝑛
𝑖=1 𝑥𝑖 (𝑒𝑖𝜆 −

√3𝜎𝑖

𝜋
[𝜆𝑙𝑛𝜆 + (1 − 𝜆)𝑙𝑛(1 − 𝜆)]) ≤ 𝜛،

∑𝑛𝑖=1 𝑥𝑖 (
−36𝑒𝑖𝜎𝑖

2

𝜋2
) ≥ 𝜚،

∑𝑛𝑖=1 𝑥𝑖 (
42

10
𝜎𝑖
4 −

432𝜎𝑖
4

𝜋4
+
144𝑒𝑖

2𝜎𝑖
2

𝜋4
) ≤ 𝜅،

∑𝑛𝑖=1 𝑥𝑖 = 1،

𝑥𝑖 ≥ 0،  𝑖 = 1،2،. . . ،𝑛.

 

  

Proof. Since, all of uncertain variables are Normal in this mean that 𝜂𝑖 ∈ 𝑁(𝑒𝑖،𝜎𝑖) for 𝑖 = 1،2،. . . ،𝑛. 

Moreover, the expected value have obtained as 𝐸[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖𝑒𝑖 and the variance 

𝐴𝑉𝑎𝑅[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖(𝑒𝑖𝜆 −

√3𝜎𝑖

𝜋
[𝜆𝑙𝑛𝜆 + (1 − 𝜆)𝑙𝑛(1 − 𝜆)]) and the skewness 

𝑆[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑
𝑛
𝑖=1 𝑥𝑖(

−36𝑒𝑖𝜎𝑖
2

𝜋2
) and the kurtosis 𝐾[∑𝑛𝑖=1 𝑥𝑖𝜂𝑖] = ∑

𝑛
𝑖=1 𝑥𝑖(

42

10
𝜎𝑖
4 −

432𝜎𝑖
4

𝜋4
+
144𝑒𝑖

2𝜎𝑖
2

𝜋4
). 

Substituting the above formulas into model (44) and (45), the theorem will be proved.  

5 Numerical Example  

 Example 1. Suppose that there are 10 stocks which their monthly return rates are estimated by 

experienced experts and they are Linear uncertain variables. Table 1 represents the simulated expected 

values of these stocks. An investor would like to create an optimal portfolio, and he wishes to minimize 

The Average Value at Risk, so solving model (50) to obtain the optimal portfolio is the main concern.   

 

Table 1: data of securities which are linear uncertain variables for example 1. 

 stocks 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

 𝐿(0.4،0.9) 𝐿(1.7،2.4) 𝐿(0.3،0.7) 𝐿(0.1،0.6) 𝐿(0.5،1.5) 

stocks 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 

 𝐿(2،3.3) 𝐿(0.9،1.4) 𝐿(2.1،2.3) 𝐿(0.8،1) 𝐿(1،1.2) 

 

Consider that in investor’s mind, the minimum expected return that can accept is 2.5, and the 

Avarage Value at Risk not allowed to exceed 0.6, 𝜆 = 0.1 and kurtosis is not allowed to exceed 2. Then 

the model (50) will be as follows:  

 m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  0.875𝑥1 + 2.365𝑥2 + 0.68𝑥3 + 0.575𝑥4 + 1.45𝑥5 (52) 

                 +2.235𝑥6 + 1.37𝑥7 + 2.29𝑥8 + 0.99𝑥9 + 1.19𝑥10 

 

s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 
 

 
 
 
0.65𝑥1 + 2.05𝑥2 + 0.5𝑥3 + 0.35𝑥4 + 𝑥5 + 2.65𝑥6 + 1.15𝑥7 + 2.2𝑥8 + 0.9𝑥9
+1.1𝑥10 ≥ 2.5،

0.000781𝑥1 + 0.003001𝑥2 + 0.00032𝑥3 + 0.000871𝑥4 + 0.0125𝑥5 + 0.035701𝑥6
+0.000781𝑥7 + 0.00002𝑥8 + 0.00002𝑥9 + 0.00002𝑥10 ≤ 2،

𝑥1 + 𝑥2+. . . +𝑥10 = 1،

𝑥𝑖 ≥ 0،      𝑖 = 1،2،. . . ،10.

 

 and the model (51) will be as follows: 

 

 m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  0.65𝑥1 + 2.05𝑥2 + 0.5𝑥3 + 0.35𝑥4 + 𝑥5 + 2.65𝑥6 (53) 

                      +1.15𝑥7 + 2.2𝑥8 + 0.9𝑥9 + 1.1𝑥10                  
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s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 
 

 
 
 
0.875𝑥1 + 2.365𝑥2 + 0.68𝑥3 + 0.575𝑥4 + 1.45𝑥5 + 2.235𝑥6 + 1.37𝑥7 + 2.29𝑥8
+0.99𝑥9 + 1.19𝑥10 ≤ 0.6،

0.000781𝑥1 + 0.003001𝑥2 + 0.00032𝑥3 + 0.000871𝑥4 + 0.0125𝑥5 + 0.035701𝑥6
+0.000781𝑥7 + 0.00002𝑥8 + 0.00002𝑥9 + 0.00002𝑥10 ≤ 2،

𝑥1 + 𝑥2+. . . +𝑥10 = 1،

𝑥𝑖 ≥ 0،      𝑖 = 1،2،. . . ،10.

 

The optimal solution of model (52) is 𝑥3
∗ = 0.0697, and 𝑥6

∗ = 0.9302, and 𝑥𝑖
∗ = 0،  𝑖 =

1،2،4،5،7،8،9،10, so the optimal value of objective function is 2.12651. This means that for 

minimizing the risk with the expected value rather than 2.5 and kurtosis with maximum level 2, the 

investor must allocate his capital according to 𝑥∗. The optimal solution of model (53) is 𝑥3
∗ = 0.23809, 

and 𝑥4
∗ = 0.76190, and 𝑥𝑖

∗ = 0،  𝑖 = 1،2،5،6،. . . ،10, so the optimal value of objective function is 

0.3857. This means that for maximizing the expected return with given constraints, the investor must 

allocate his capital according to 𝑥∗.  

 

 

Example 2. Suppose that there are 10 stocks which their monthly return rates are estimated by 

experienced experts and they are Zigzag uncertain variables. Table 2 represents the simulated 

expected values of these stocks. An investor would like to create an optimal portfolio, and he wishes to 

minimize The Average Value at Risk, so solving model (50) to obtain the optimal portfolio is the main 

concern.   

Table 2: data of securities which are zigzag uncertain variables for example 2. 

 stocks 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

 𝑍(−0.3،2،2.5) 𝑍(−0.3،2.8،3.2) 𝑍(−0.4،2.5،4) 𝑍(−0.2،3،3.5) 𝑍(−0.2،2.5،3) 

stocks 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 

 𝑍(−0.6،3،4) 𝑍(−0.1،2،2.5) 𝑍(−0.4،3،4) 𝑍(−0.1،1.9،3) 𝑍(−0.2،2.1،2.5) 

 

  

Consider that in investor’s mind, the minimum expected return that can accept is 3.2, and the 

Avarage Value at Risk not allowed to exceed 1.6, 𝜆 = 0.2 and Skewness will be rather than 0.1  and 

kurtosis is not allowed to exceed 6.5. then the model (44) will be as follows:  

 m𝑖𝑛𝑖𝑚𝑖𝑧𝑒  3.84𝑥1 + 5.28𝑥2 + 4.82𝑥3 + 5.56𝑥4 + 4.66𝑥5 (54) 

                     +5.88𝑥6 + 3.68𝑥7 + 5.72𝑥8 + 3.5𝑥9 + 3.94𝑥10 

  

s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 
 
 

 
 
 
 
1.55𝑥1 + 2.125𝑥2 + 2.15𝑥3 + 2.325𝑥4 + 1.95𝑥5 + 2.35𝑥6 + 1.6𝑥7 + 2.4𝑥8 + 1.675𝑥9
+1.625𝑥10 ≥ 3.2،

−0.28475𝑥1 − 0.80959𝑥2 + 0.0905𝑥3 − 0.82697𝑥4 − 0.46963𝑥5
−0.96925𝑥6 − 0.18175𝑥7 − 0.702𝑥8 + 0.121594𝑥9 − 0.30159𝑥10 ≥ 0.1،

6.771004𝑥1 + 24.65205𝑥2 + 19.68469𝑥3 + 32.38537𝑥4 + 15.85367𝑥5 + 36.27409𝑥6
+6.552548𝑥7 + 35.25416𝑥8 + 6.156293𝑥9 + 7.901944𝑥10 ≤ 6.5،

𝑥1 + 𝑥2+. . . +𝑥10 = 1،

𝑥𝑖 ≥ 0،      𝑖 = 1،2،. . . ،10.

 

 and the model (45) will be as follows:  
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 m𝑎𝑥𝑖𝑚𝑖𝑧𝑒  1.55𝑥1 + 2.125𝑥2 + 2.15𝑥3 + 2.325𝑥4 + 1.95𝑥5 + 2.35𝑥6 (55) 

                       +1.6𝑥7 + 2.4𝑥8 + 1.675𝑥9 + 1.625𝑥10                       

  

s𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

{
 
 
 
 

 
 
 
 
3.84𝑥1 + 5.28𝑥2 + 4.82𝑥3 + 5.56𝑥4 + 4.66𝑥5 + 5.88𝑥6
+3.68𝑥7 + 5.72𝑥8 + 3.5𝑥9 + 3.94𝑥10 ≤ 1.6،

−0.28475𝑥1 − 0.80959𝑥2 + 0.0905𝑥3 − 0.82697𝑥4 − 0.46963𝑥5
−0.96925𝑥6 − 0.18175𝑥7 − 0.702𝑥8 + 0.121594𝑥9 − 0.30159𝑥10 ≥ 0.1،

6.771004𝑥1 + 24.65205𝑥2 + 19.68469𝑥3 + 32.38537𝑥4 + 15.85367𝑥5 + 36.27409𝑥6
+6.552548𝑥7 + 35.25416𝑥8 + 6.156293𝑥9 + 7.901944𝑥10 ≤ 6.5،

𝑥1 + 𝑥2+. . . +𝑥10 = 1،

𝑥𝑖 ≥ 0،      𝑖 = 1،2،. . . ،10.

 

  

 The optimal solution of model (54) is 𝑥9
∗ = 1, and 𝑥𝑖

∗ = 0،  𝑖 = 1،. . . ،8،10, so the optimal value of 

objective function is 3.5. This means that for minimizing the risk with the expected value rather than 

1.6, Skewness rather than 0.1 and kurtosis not allowed to exceed 6.5, the investor must allocate his 

capital according to 𝑥∗. The minimum relevant risk is 3.5. 

The optimal solution of model (55) is 𝑥3
∗ = 0.025, and 𝑥9

∗ = 0.974, and 𝑥𝑖
∗ = 0،  𝑖 =

1،2،4،5،6،7،8،10, so the optimal value of objective function is 1.682. This means that for maximizing 

the expected return with given constraints, the investor must allocate his capital according to 𝑥∗. The 

maximum relevant return is 1.682. 

 

6 Conclusions 

 This study introduces and calculates the skewness, kurtosis, and Average Value at Risk (AVaR) of 

uncertain variables by the use of theorems and proofing techniques. Additionally, it describes uncertain 

models in relation to the mean-AVaR-skewness-kurtosis framework, which is used for optimal portfolio 

selection. In recent researches mean, variance and skewness in uncertain environment have been used 

but in some cases such as linear uncertain variables, skeewness is zero and model  will be converted to 

traditional mean-variance model; so using additional parameters such as kurtosis is useful for satisfying 

mental demands of investors. Also, the advantage of using Average Value at Risk (AVaR)  instead of 

variance is clear in the superiority of the described model.Portfolios are constructed according on 

investor preferences, taking into account increased moments in an uncertain environment and 

considering the use of AVaR as a measure of investment risk. The models that have been acquired have 

been converted into linear programming problems in certain instances involving uncertain variables. 

The outcomes derived from the developed models for addressing portfolio selection challenges 

including uncertain returns are expected to hold significant value in the fields of economics and 

financial mathematics, encompassing both theoretical and practical applications.It is suggested for 

future research, consider more parameters in the models, such as entropy and higher order moments, in 

order to gain to best optimal portfolio according to investors mental demands. Also, using of multi-

objective models in optimization portfolio models and using of different hibrid algorithms for solving 

obtained models in cases which investors encountered with too many assets and stocks are suggested 

to continue this research process. 
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