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ABSTRACT
The present study investigates free vibration and flutter instability 
analyses of a sandwich microbeam subjected to supersonic fluid 
flow. The microbeam comprises functionally graded (FG) porosity 
cores, with top and bottom sheets reinforced by carbon nanotubes 
(CNTs). Mechanical properties of FG porous-nanocomposite 
sandwich microbeam are determined using the rule of mixture and 
the Ashleby-Mori-Tanaka method. Euler-Bernoulli, Timoshenko, 
and Reddy beam theories are used while the modified couple stress 
theory (MCST) accounts for size effects. linearized piston theory 
and Pasternak foundation is considered to model supersonic fluid 
flow and elastic medium. In the analysis of free vibrations, natural 
frequencies and corresponding mode shapes are extracted and in 
flutter analysis, the variations in natural frequencies with respect to 
the aerodynamic pressure of the fluid flow are plotted to calculate 
the critical pressure. A parametric study is conducted to investigate 
the impact of various characteristics include the geometric 
properties porosity and distribution pattern of pores, mass fraction, 
type and distribution pattern of CNTs, length scale parameter, and 
boundary conditions. Based on the results, it can be concluded that 
using CNTs with smaller chiral indices leads to a maximum 
increase in the microbeam's natural frequencies and achieves the 
highest aeroelastic stability. The findings of this research can be 
utilized in the design and analysis of microturbines as well as 
equipment used in biomechanical engineering.
                               

Keywords: Free vibration; Flutter; Supersonic fluid flow; Sandwich 
microbeam; Composite materials; Porous core.

______
*Corresponding author. Tel.: +98 31 55912450, Fax: +98 31 55912424.
E-mail address: aghorban@kashanu.ac.ir (A. Ghorbanpour Arani)



119                                M.H. Hashempour et al.

Journal of Solid Mechanics Vol. 17, No. 2 (2025)  

1    INTRODUCTION

UE to the importance of investigating free vibrations and aeroelastic stability analysis of microbeams and 
nanobeams, many researchers have focused on studying the free vibrations and flutter of these structures. The 

main difference between the studies conducted lies in the material of the structure and the theory used to model size 
effects for microbeams and nanobeams. Among the materials used in such structures, considering their properties, 
are porous materials and CNTs. Porous materials are those with many tiny pores incorporated in them, thereby 
causing their density to be considerably low. When these materials are used in a structure, they reduce the mass of 
the structure significantly. However, the density of porous materials is not the only positive attribute; they are also 
highly recyclable, good sound insulators, highly energy absorbent, and have a low thermal conductivity coefficient 
at zero. These benefits have further improved the use of porous materials in various engineering fields such as 
aerospace, automotive, civil, and biomechanics. CNTs exhibit exceptional mechanical properties, including high 
tensile strength, high elastic modulus, and low density. These properties make CNTs an attractive reinforcement 
material for composites, offering significant improvements in strength, stiffness, and toughness. Additionally, CNTs 
possess unique electrical and thermal properties, making them promising candidates for various applications in 
electronics, energy storage, and sensors. Subbaratnam [1] in a study, developed a precise analytical solution using 
the Energy Method to predict the dynamic instability bounds of simply supported beams on an elastic foundation, 
with an emphasis on dynamic stability boundaries. They used a single-term trigonometric function to determine the 
regions of dynamic instability. For the analysis, they employed the Euler-Bernoulli beam theory (EBT) and found 
that as the value of the elastic foundation parameter increases, the width of the dynamically unstable zones 
decreases, making the beam less susceptible to dynamic instability phenomena under periodic loads. Magnucki et al.
[2] investigated the dynamic stability of a simply supported three-layer beam subjected to a pulsating axial force. 
They developed two analytical models of this beam; one model considers the nonlinear hypothesis of cross-section 
deformation, while the other adheres to the standard "broken line" hypothesis. Based on Hamilton's principle, they 
determined the equations of motion for each of these models. They calculated the stable and unstable regions for 
three cases of pulsating loading.

Sourani et al. [3] studied the nonlinear dynamic stability of a viscoelastic piezoelectric nano/microplate 
reinforced with CNTs under time-dependent harmonic biaxial compressive mechanical loading. They found that 
incorporating a smart foundation reduces the dynamic instability region by over 60% for a constant magnetic field 
intensity. The stability responses with the smart foundation also show better convergence. Additionally, the system’s 
stability shifts toward higher excitation frequencies and greater overall stability. Addou et al. [4] investigated the 
effect of porosity on the static and dynamic behavior of laminated composite shells using a novel high-order shear 
deformation theory. The proposed model considers five unknown variables with a new sinusoidal shear function that 
accurately distributes transverse shear stresses through the shell thickness. For this purpose, three different porosity 
distributions along the thickness are considered in this study. In the first model, the same percentage of micro-holes 
is present throughout the thickness. In the second model, the porosity percentage is higher at the top and bottom 
surfaces, and conversely, in the third model, the porosity percentage is highest at the middle axis. In another study, 
Van et al. [5] investigated the static bending and natural vibration characteristics of FG material (FGM) doubly 
laminated plates equipped with shear connectors. The fundamental equations were comprehensively described and 
developed in this research using the finite element method (FEM) in conjunction with the well-known first-order 
shear deformation theory (FSDT). They also conducted parametric studies to investigate the effect of geometrical 
and material properties on the structural response of FGM plates, focusing on thickness variation and distribution of 
shear connectors. They demonstrated that the numerical results obtained from this study can serve as a valuable 
benchmark for further research efforts in this area. Madhumita Mohanty et al.[6] analyzed the parametric stability of 
a non-uniform Timoshenko sandwich beam using computational methods, which is situated on a Pasternak 
foundation with a non-constant spring stiffness parameter. The governing equation of motion and the associated 
boundary conditions are defined using Hamilton's principle and are non-dimensionalized using the main principle of 
the Galerkin method. They examined the regions of parametric instability considering the effects of several system 
parameters and geometric parameters, and presented the results through a series of plots.Civalek et al. [7] 
investigated the dynamics of functionally graded porous microbeams made of metal foam with deformable 
boundaries. They used the nonlocal strain gradient elasticity theory to account for scale effects and utilized Stokes’ 
transformation along with Fourier sine series to solve the governing differential equations. Their results showed that 
porosity distribution, type of material distribution, elastic environment, and rotational stiffness affect the free 
vibration frequencies of micro beam. Also, the deformation of the boundaries reduces the natural frequencies of the 
micro beam. Ghorbanpour-Arani et al. [8] investigated the frequency response of a smart sandwich plate composed 
of magnetic face sheets and a nanofiber-reinforced core. The analysis employed the third-order shear deformation 
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theory (Reddy's theory). It revealed insightful details regarding the influence of various parameters, including in-
plane forces, elastic foundation modulus, core-to-face sheet thickness ratio, and velocity feedback gain controller on 
the dimensionless frequency of the sandwich plate. Due to the significance of investigating free vibrations and 
analyzing the aeroelastic stability of microbeams and nanobeams, numerous researchers have focused on studying 
these structures' free vibrations and flutter. The main difference between the conducted studies lies in the structure's 
material and the theory used to model the size effects for microbeams and nanobeams. Notably, while the number of 
research studies conducted on the analysis of free vibrations of microbeams and nanobeams is considerable, the 
number of research studies presented on the aeroelastic stability analysis of microbeams and nanobeams is limited. 
In a recent study, Gia et al. [9] investigated the size-dependent nonlinear vibration of functionally graded carbon 
nanotubes reinforced composite (FG-CNTRC) and piezoelectric layers in thermal environments. They accurately 
analyzed and investigated the influence of the nonlocal parameter, material length scale parameter, geometric 
properties of the microbeam, temperature change, applied voltage, distribution pattern, and volume fraction of CNTs 
on the nonlinear free vibration behavior of FG-CNTRC microbeams. The results demonstrated that the nonlocal 
parameter, material length scale parameter, temperature change, applied voltage, and distribution pattern of CNTs 
have a significant impact on the nonlinear free vibration frequencies of the FG-CNTRC microbeams. They 
concluded that the FG-CNTRC microbeams vibrate with lower nonlinear vibration frequencies in a warmer 
environment. The researchers studied the influence of the pore distribution pattern and porosity coefficient on the 
natural frequencies of the microbeam. Free vibration analysis of cracked microbeams was investigated by Wu et al. 
[10]. They employed the Timoshenko beam theory (TBT) and the MCST to model the microbeam. They 
demonstrated that the presence of a crack in the microbeam leads to a decrease in natural frequencies, depending on 
its location and depth. Free vibration and flutter analyses for FG nanobeams were investigated by Moatallebi et al. 
[11]. They incorporated surface effects into their modeling and demonstrated that the significance of surface effects 
increases as the aspect ratios of width-to-length and thickness-to-length for the nanobeam decrease. Static bending, 
mechanical buckling, and free vibration analyses of porous microbeams with a two-dimensional distribution of pores 
across the thickness and length of the microbeam were investigated by Karamanli and Wu [12]. They employed the 
modified strain gradient theory to model the microbeam and assumed that the length scale parameter varies along 
the longitudinal direction. They further studied the impact of this variation on the static deflection, critical buckling 
load, and natural frequencies of the microbeam. Free vibration analysis of a sandwich microbeam with a porous 
fluid-saturated core and graphene nanoplatelet-reinforced polymer faces was investigated by Arshid and Amir [13]. 
They studied the influence of various parameters on the microbeam's natural frequencies, including the core's 
porosity coefficient and the mass fraction of graphene nanoplatelets (GNPs) added to the faces. Vibration analysis of 
porous FG microbeams was investigated by Tlidgi et al. [14]. A salient feature of this study was the employment of 
a MCST coupled with a quasi-3D beam theory for modeling the microbeam. The researchers studied the influence 
of the pore distribution pattern and porosity coefficient on the natural frequencies of the microbeam. Haghparast et 
al. [15] investigated the influence of fluid-structure interaction (FSI) on the vibration of a moving sandwich plate 
with a balsa wood core and nanocomposite face sheets. This study presents a theoretical analysis of the vibrations of 
a vertically moving sandwich plate floating on a fluid. The plate comprises a balsa wood core and two 
nanocomposite face sheets vibrating as an integrated sandwich. The FSI effect on the stability of the moving plate is 
considered for both ideal and viscous fluid conditions. The results indicate that the dimensionless frequencies of the 
moving sandwich plate decrease rapidly with increasing water levels and become almost independent of the fluid 
level when it exceeds 50% of the plate length.  Static bending, mechanical buckling, and free vibration analyses of 
porous nanobeams were investigated by Enayat et al. [16] They employed the nonlocal strain gradient theory to 
model the nanobeam. They found that increasing the porosity coefficient leads to an increase in static deflection, a 
decrease in the critical buckling load, and an increase or decrease in natural frequencies depending on the pore 
distribution pattern.  Vibration and flutter analysis of rotating sandwich nanobeams with a magneto-rheological core 
and variable cross-section was investigated by Ghorbanpour Arani and Soleimani [17]. They employed the modified 
strain gradient theory to model the nanobeam and demonstrated that increasing the rotational speed of the nanobeam 
enhances its aeroelastic stability. Amir et al. [18] investigated the free vibration of sandwich microbeams with a 
porous core under thermal loading. They based the microbeam modeling on the MCST. They demonstrated that 
increasing the porosity coefficient and ambient temperature leads to a decrease in the natural frequencies of the 
microbeam. Wang et al. [19] investigated bending and free vibration analyses of thick porous microbeams. They 
employed the sinusoidal shear deformation theory to model the beam and incorporated size effects using the 
modified strain gradient theory. Due to using the exact Navier solution method for the governing equations, their 
results were only reported for supported microbeams.

This study focuses on the free vibration and flutter (aeroelastic instability) analyses of a sandwich microbeam 
exposed to supersonic fluid flow, presenting several innovative contributions to the fields of microbeam analysis and 
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aeroelastic stability. The integration of functionally graded (FG) porous cores in the microbeam design represents a 
novel approach, enabling a customized distribution of material properties to improve both the performance and 
stability of the structure. Reinforcing the microbeam, particularly with CNTs  featuring smaller chiral indices, 
significantly boosts its natural frequencies and aeroelastic stability. The study's originality lies in its inventive 
combination of advanced materials, sophisticated modeling techniques, and thorough parametric analysis, providing 
deeper insights into the behavior and optimization of sandwich microbeams in aeroelastic environments. Moreover, 
it can be emphasized that the simultaneous analysis of multiple factors within a single problem introduces further 
innovation. The findings of this research offer valuable contributions to the development of microturbine designs 
and biomechanical engineering applications.

2    MATHEMATICAL MODELING

In Fig.1, a sandwich microbeam is placed over an elastic foundation and exposed to a supersonic fluid flow with a 
density of  and at a velocity of U . A sandwich microbeam is characterized by a length L and a thickness h , 

containing a porous core with a thickness ch , whereas the two polymer-based facings reinforced with CNTs with 

equal thickness b th h .

                  

Fig . 1

The geometry of an FG porous-nanocomposite sandwich microbeam.

In the following research, porous materials, core, top and bottom sheets, and CNTs are explained. Then, the 
method for calculating the mechanical properties of the core, top and bottom sheets is investigated. Finally, using 
these calculations and applying Hamilton's principle, the system energy is calculated.

3    MATHEMATICAL FORMULATION

3.1 Porous Core Modeling 

Based on what was mentioned in the introduction, three types of porosity distributions can be considered: Uniform 
distribution (U), Symmetric Type I (SI), and Symmetric Type II (SII) (as shown in Fig. 2).The size of pores for the 
Uniform distribution is constant for the whole core, so the core is homogeneous. For the type SI and type II, the size 
changes along the thickness of the microbeam core, so the core is inhomogeneous. In this study, a porous material 
with a porosity distribution of SI and of type drain has been used. Drain porous materials are engineered substances 
designed to facilitate the flow of fluids, such as water or air, through their porous structure. They are commonly 
used in applications like drainage systems, filtration, and soil stabilization to prevent water buildup and promote 
proper drainage. These materials typically feature interconnected pores that allow fluid to pass while filtering out 
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solids or other unwanted particles. Their high permeability and durability make them ideal for managing fluid flow 
in various environmental and industrial contexts.

The variation of the active core in terms of the elastic modulus is defined in [20,21,22].

(a) Uniform

(b) Symmetric I (SI)

(c) Symmetric II (SII)

Fig. 2

Holes distribution pattern in the porous core [22].

According to Fig. 2, in the Symmetric Type I distribution pattern, the pores near the mid-surface  0z  are 

larger, and the size of the pores decreases as one moves toward the lower and upper surfaces of the core 
( 0.5 cz h  ), such that there are no pores present at the core surfaces. In contrast, the Symmetric Type II 

distribution pattern exhibits a completely opposite trend, where the pores near the lower and upper surfaces of the 
core are larger, and the size of the pores decreases as one moves toward the mid-surface, resulting in no pores at the 
mid-surface.

 0cE E f z          (1)

In Eq.(1),  f z is used to denote different distributions. Moreover, in the subsequent expressions, the subscript 

c is represented for the mechanical properties of the core and the subscript 0 is for the mechanical properties of 
porous material. The equation is defined as: 
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Assuming that porosity coefficients are given by from which a positive value means that the size of the pores is 
increasing. 0E  is the elastic modulus of the core when it is not porous, that is 0 1 2η η η 0   .

In porous materials, the following dependency between date elastic modulus and density c holds [22] . 

 
2.73

0 0

c cE
f z

E




 
  
                                                                                                                          (3)

This leads to the following equation for the density of the porous core:
      (4) 0c g z 

                                              

Where ρ represents the density of the nucleus in the non-porous state, and the function g(z) is given as follows:
    (5)

       
1

2.73g z f z     

Eq.( 6) contains several values of the porosity coefficient 1η of porosity coefficient which is given with 

corresponding values of porosity coefficients 0η and 2η that can be seen in [21].

6 5 4 3 2
0 1 1 1 1 1 11.944 3.417 2.278 0.6708 0.122 0.6362           

3 2
2 1 1 10.4269 0.009286 1.732            (6)

It should be noted that in the case of porous materials, the Poisson’s ratio (ߥ) is constant [20], and under the 

condition of isotropic behavior for such materials, its shear modulus can be expressed as 
 2 1

E
G





[23].

3.2 Composite face sheets 

A brief explanation of CNTs and their properties and applications has been provided. Symbols A and V represent 
the heterogeneous distribution of nanotubes within the matrix, which in some cases follows the pattern of these 
letters. This variation in distribution has a significant impact on the mechanical properties of such materials. Based 
on what was mentioned in the introduction, three types of CNT distributions in the face sheets can be considered: 
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the Uniform U distribution and two graded inhomogeneous distributions in the shapes of A and V. In the Uniform 
distribution case, the volumetric fraction of CNTs is the same at all points and forms a homogeneous structure. A
and V graded distributions differ from each other in that the volumetric fraction of CNTs is constant on the entire 

path between 0 and 2, and linearly increases in both faces. Since the volume fraction of CNTs varies by the 
distribution pattern of CNTs, it is best expressed as stated below [24,25]:

 

 

 

:                  

2
: 2

2
: 2  

b
r r

b c
r r

c

b
r r

c

U V z V

h z
A V z V

h h

h z
V V z V

h h











     (7)

which is written in the Eq. (7) as positive for face sheets  0.5h z 0.5c h  and negative for bottom sheets 

 0.5h z 0.5hc    .

The distribution in the volume fraction along the thickness of facesheets is shown in Fig.3.

(a) U (b) A (c ) V

Fig . 3

Distribution patterns of CNTs in the face sheets.

In Eq.(7), the variable rV means the volume fraction of CNTs, which is xpressed as 
1

1
1 1

r

r

m r

V

w





 

  
 

[24].

where rw is the mass fraction , ρm is the density of the polymer matrix and ρr is the density of the CNTs.Hence, 

the volume fraction of the polymer matrix in of the microbeam can be derived as:
1 , ,i i

m rV V i b t        (8)

The orientation and aggregation of CNTs do not affect the density of the nanocomposite structure; therefore, the rule 
of mixtures can be used to calculate it as follows:

,i i
i m m r rV V i b t           (9)
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Whereb and t indicate the bottom sheet and top sheet, respectively. Additionally, the subscripts m and r indicate 
the parameters and variables of the mechanical properties of the matrix phase polymer and reinforcement phase 
CNTs, respectively. Even though the CNTs are anisotropic it is not taken into account for the calculation since they 
scatter throughout the polymeric matrix isotropically. Since the rule of mixtures cannot accurately calculate the 
elastic moduli and agglomeration sizes, the Eshelby-Mori-Tanaka method is used. Due to the isotropic structure of 
the faced overlay coatings, the following equation is used to calculate i E  and i  modulus [26]:

9 3 2
                         ,                               ,

3 6 2
i i i i

i i
i i i i

K G K G
E i b t

K G K G



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 

     (10)

In Eq. (10),  *
2 0 01G G i  and  *

2 0 01G G i  represent the shear modulus and the bulk modulus of the face 

sheets respectively, which are calculated as follows [20]:
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(11)

     

The superscripts ‘in’ and ‘out’ relate to the nanotubes inside and outside the agglomeration regions, and the 
corresponding elastic coefficients are as calculated [30]:
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of and indicate the shear modulus and the bulk modulus 

of the polymer matrix, which, respectively, are written in terms of the elastic modulus mE and Poisson’s 

ratio  υm due to the isotropy of the system [26].  

In Eqs. (11) and (12), μ and  are dimensionless coefficients known as concentration factors. Additionally, 

αr ، β δ،r r ،and ηr are coefficients defined as follows [27]:
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      (13)

Hill constants, represented by rn , rm , rl  , and r k , are proportional to the elastic properties of a CNTs as an

individual object. The Hill constants can be seen as dependent on the chiral indices of the tube and, therefore, on its 
shape. Eq. (13) also uuses η and μ for dimensionless coefficients.

η and μ are dimensionless coefficients known as aggregation factors and are represented as 

   agg cluster

r

W W
and

W W
   . where W is the total volume of the nanocomposite structure, Wr  is the total volume 

CNTs, aggW is the volume of the aggregated regions and Weluster is the volume of CNTs inside these regions of 

aggregation. According to the notion, the more η is closer to 1, the greater the number of nanotubes for which the 

aggregation effect occurs, and the less μ is, the more densely located are these areas of aggregation. In other words, 
the closer η is to 1 and μ is to zero, the more aggressive the phenomenon of aggregation, which leads to the greater 

loss of elastic characteristics of a nanocomposite structure.
The following three scenarios can be considered for these coefficients: 
a) μ η 1  , which means that some modules of the nanocomposite structure aggregate. 

b) Further, (b) μ η 1  implies that all modules of the nanocomposite structure are already aggregated. 

c) Finally, μ η 1  states that there is no aggregation at all. Hence, kinetic coefficients dominate over time, 

as illustrated in Eq.

3.3 Beam theory for sandwich structure

Three theories, namely, EBT, TBT, and Reddy beam theory (RBT), are simultaneously used for microbeam 
modeling. Then, the displacement field in a general form can be expressed as follows [16]:

           1

,
, , , ,

w x t
u x z t u x t c z z c z x t

x



      

   2 , , , 0u x z t v x t 

   3 , , ,u x z t w x t

     (14)
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where 1u , 2u  , and 3u  are the displacements in the x, y, and z directions, respectively. In turn, u, v and w determine 

the corresponding displacements at the mid-surface z=0. After that,  determines the rotation about the y-axis and 

the function c(z) is defined as following [16]:

 
 

 
3

2

EBT: 0

TBT:

4
RBT:

3

c z

c z z

z
c z z

h




 
     (15)

Lowers drive modes of a beam constantly include transverse vibrational models, and therefore, only transverse 
modes participate in the flutter phenomenon, while longitudinal ones do not affect the flutter occurrence. Thus, it is 
assumed that only transverse vibrations of the beam arise in this study. 

The components of all the strain tensors may be written via the strain-displacement relationships as follows [28]:

31 2

3 32 1 1 2

                   ,              ,             

, ,

xx yy zz

yz xz xy

uu u

x y z

u uu u u u

z y z x y x

  

  

 
  
  

    
     
     

(16)

    

Here, εij and γij refer to the normal and shear components of the strain tensor, respectively. It can be shown, after 

substituting Eq.(15) into Eq.(16), that the strain tensor has only two non-zero components:
0yy zz yz xy      

   
2

2xx

w
c z z c z

xx

  
     

 xz

w
c z

x
     



    (17)

     

3.4 Stress-strain relations 

The stress tensor, based on Hooke’s law, is expressed as:

 xz

w
c z

x
     


      (18)

Now, with E and G being the elastic and shear moduli, respectively. sk is introduced as shear correction factor, 

which in Euler-Bernoulli, Timoshenko, and Reddy beam theories are respectively 0sk  , 
5

6sk  , and 1sk  , so 

the two components of the stress tensor to be expressed:

   
2

2xx c

w
E z z c z

xx

  
  



 'xz s

w
k Gc z

x
 

 


(19)

     

Substituting the function c(z) from Eq.(15) in Eq. (19), and also considering the values of the shear correction factor 
for the appropriate theories, it is obtained that the components of the stress tensor for three theories:
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(20)

     

3.5 Modified couple stress theory  

According to the MCST,  in addition to the classical tension tensor, obtained from the force vector passing through 
each point of the object, a non-classical tension tensor is synthesized from the moment or couple acting on each 
object point. These components appear as follows [26].

22ij ijm Gl       (21)

Where, l is the length scale parameter and χ ij is curvature tensor, which is calculated using Booth’s equation [21]:

2 21
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n n
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e e

x x x x


  
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    (22)

where ijke is the permutation tensor. The non-zero components of the non-classical stress tensor due to couple stress 

can be written as:
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(23)

     

In Eq. (23), by replacing c(z) from Eq.(16) in Eq.(23), the non-zero components of the non-classical tensor due 
to couple stress will be written as: 
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(24)
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4    GOVERNING EQUATIONS USING THE ENERGY METHOD

Hamilton’s principle gives the governing equations for the dynamic behavior of a structure and the corresponding 
boundary conditions. Hamilton’s principle can be obtained:

 
2

1

. . 0
t

f n c

t

T U U W dt      
      (25)

where δ is a variation operator, and  1 2,t t is any time interval. T is the kinetic energy of the microbeam, U, is the 

potential energy of the microbeam, Uf is the potential energy of the substrate, and . ,n cW is the work of external 

forces. The kinetic energy of the microbeam is given by Eq. (14).
22

311
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T dV

t t

               

�
       (26)

and variation in kinetic energy is given by:
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

(27)

Where l is microbeam rotational inertia, and it is defined in the following expression:
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(28)

     

Using MCST, the potential energy of a microbeam can be expressed as:

 1

2 ij ij ij ij
V

U m dV   �
(29)

      

and, in accordance with the previously given Eqs, (18) and (24), it can be rewritten as:

 1
2 2

2 xx xx xz xz xy xy yz yz
V

U m m dV        �
       (30)

4.1 External Work 

4.1.1 Elastic Medium 

According to Pasternak foundation, the substrate potential energy is given by [29,30]:
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        (31)

Where wk and pk are respectively referred to as the Winkler foundation coefficient and the Pasternak foundation 

coefficient. 

The external force q the total upper surface of the microbeam is given by the work . .

0

L

n cW b qwdx  and the strain 

of this work can be expressed as . .

0

L

n cW b q wdx   . 

4.1.2 Aerodynamic pressure 

Aerodynamic pressure refers to the pressure generated by the movement of an object through a fluid (typically air). 
This pressure arises from the interaction between the fluid flow and the surface of the object and is directly related 
to the flow velocity and the density of the fluid. Aerodynamic pressure plays a critical role in the design and analysis 
of various structures, including aircraft, automobiles, and buildings, as it can significantly influence phenomena 
such as lift and drag. Furthermore, a proper understanding of aerodynamic pressure is essential in engineering 
applications to enhance the performance and safety of structures. Aerodynamic pressure is approximated using 

linearized piston theory when supersonic fluid flows with Mach number (M_∞) in the range of 2 5M   , [20, 

31]:
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      (32)

In this relation, P and μ are known as the aerodynamic pressure and aerodynamic damping, respectively, which 

are derived by the following equation:
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Then, by substituting Eq.(28) into Eq.(26), the governing equation is obtained:
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In which
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where   , , , ,    xy xy xy xz xx xxt r S Q M and P are the resultant forces and moments. In flutter analysis, the aerodynamic 

damping term does not significantly affect flutter boundaries and increases the computational effort to solve an 
eigenvalue problem due to the non-standard creation. Therefore, in papers associated with supersonic flutter 
analysis, the term aerodynamic damping is often neglected 0    [32, 33]:

5    SOLUTION PROCEDURE

Dimensonless motion equations can be written by defining time  variable m

m

Et

L



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L
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a dimensionaless from using separation of variable in the from of Eq.(37):
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      (37)

λ is a dimensionless eigen value.
Based on the above discussion, the dimensionless boundary conditions can be expressed as follows:

0, 0, 0
dW

W
d

                   for clamped boundary condition

2

2
0, 0, 0

d W d
W

dd 


               for simple boundary condition

        (38)

4.1 Differential quadrature method (DQM)

The DQM was first introduced in the early 1970s by Bellman and Casti [34], and Bellman and his colleagues [35]. 
Since then, it has been used by many researchers, especially for solving problems in mechanical engineering. In this 
method, the solution interval of the problem is first discretized into a set of grid points. Then, the derivatives of each 
function in the governing differential equations at each of these points are estimated based on the values of that 
function at all points in the solution interval. The result of this estimation is the formulation of the governing 
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equations and boundary conditions as algebraic equations, which are then solved to compute the values of the 
unknown functions.
Let  f x  be a continuous and differentiable function of 0 x L  . Once blocked into a mesh with N points, the 

values of the function at these dots will be a column vector as shown below:
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The ݊ݐ� derivative values at this discrete distribution points:    
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      (40)

In Eq.(37), the matrix of coefficient weights associated to the ݊ݐ� derivative is given by (([ ))].A n . That for the first 

derivative is  [33,34]: 
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While that for higher derivatives using [36.37]:
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        (42)

As for the function itself, i.e., the zero-th derivative, its value can be given as:

     N N
f I f


      (43)

The optimal pattern is given by quittance to the interval 0 x L  is the Chebyshev-Gauss-Lobatto pattern 
which is produced by Ehrenfrest’s method is expressed as [33,34]:         
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(44)

By employing Eqs.(40) and (43) to write down governing equations, one can have: 

     2K s M s         (45)

Where  K and  M and  S are the stiffness and mass matrices and the total displacement vector. By nulling out 

the governing equations at the boundary points, results in the:
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The obtained eigenvectors from the eigenvalue problem solve are the mode shapes of the microbeam vibrations 
and let complex eigenvectors be obtained as R Ii    , where the real part and the imaginary correspond to λR . 

By using Eqs.(39) and (45): 

         exp exp exp cos sinR I R I Ii i                       (47)

The λ I  essentially represent the dimensionless natural frequency of the microbeam and λR indicates the stability or 

instability of the microbeam vibrations while the fluid flows along its path.

4.2 Navier solution

By Navier method, an accurate solution for the analysis of the free vibration of a microbeam with simple support 
conditions and removing the fluid flow is provided. The results obtained from this exact solution are used to validate 
the numerical solution presented using the DQM.
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(48)

That is, which generates different vibrational modes as 1, 2,3,m   . For free vibration that occurs without fluid 

flow and damping, then the eigenvalues shall be purely imaginary, expressed as  λ iλ I , and the magnitude of the 

imaginary part indicates the natural frequencies. Hence, it is expressed as. From the solution of the eigenvalue of Eq. 
(48), it is determined the natural frequencies of a microbeam with simple support conditions.
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        (49)

6    NUMERICAL RESULTS AND DISCUSSION

6.1 Verification

Table 1 shows a comparison of the first four vibrational modes’ natural frequencies using simple supports 
microbeam. Theory exact value according to Navier of natural frequencies and its approximation with respect of 4 
decimals compared with the natural frequencies value. It is evident that these approximate natural frequency values 
of the Navier method are no difference from the real natural frequency values of the microstructure. However, after 
decimal 4, it has been shown that simple supports microbeam differences from the exact value. Further investigation 
represented more decimal places, and this table does not visible these minor differences in subsequent decimal 
digits.
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Table 1
Comparison of the results for different theories

λ1 λ2 λ3 λ4

EBT DQM 1.4685 2.6234 4.3518 6.6041

Navier 1.4685 2.6234 4.3518 6.6041

TBT DQM 1.4675 2.5886 4.1527 6.0167

Navier 1.4675 2.5886 4.1527 6.0167

RBT DQM 1.4675 2.5858 4.1384 5.9806

Navier 1.4675 2.5858 4.1384 5.9806

One-layer porous beam: Poisson’s ratio 1/ 3  , porosity coefficient 1 0.5e  , distribution pattern SI, no 

substrate, * * 0w pk k  . The free vibration analysis in the absence of fluid flow assumes the beam based on the 

TBT. The dimensionless form of the natural frequency is as follows:

 2
0

0

1
L

E

 



       (50)

Non-dimensional natural frequencies of the first vibration mode of microbeams are presented in Table 2 for 
various boundary conditions and different thickness-to-length ratios. The corresponding values reported by Chen et 
al. [38] based on the Ritz method and ANSYS software are also presented in this table. A comparison between the 
results obtained in this study and those reported by Chen et al. [38] demonstrates the accuracy of the analysis. In the 
flutter analysis, the effect of aerodynamic pressure on natural frequencies and damping coefficients of microbeams 
is investigated for the first ten vibration modes to identify and show the modes that play a role in the flutter 
phenomenon. The results show that for the microbeam with the selected characteristics, the first two vibration 
modes are involved in flutter. Therefore, in the following, the flutter analysis only presents the diagrams of the 
changes in the imaginary part of the eigenvalues (natural frequencies) and the corresponding real part only for the 
first two vibration modes as a function of changes in aerodynamic pressure. With the help of these diagrams, which 
represent the boundaries of aeroelastic stability (flutter boundaries), the critical aerodynamic pressure that leads to a 
positive real part (negative damping coefficient) in one of the vibration modes is determined.
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Table 2
Dimensionless natural frequencies (Ω) of a porous single-layered beam in its first vibrational mode

CC CS SS CF

h/L=0.02 Peresent DQM 0.1331 0.0919 0.0589 0.0210

]39[chen et al. RITZ  0.1291 0.0891 0.0571 0.0204

]39[chen et al. AVSYS 0.1289 0.0891 0.0571 0.0204

h/L=0.05 Peresent DQM 0.3270 0.2273 0.1466 0.0524

]39[chen et al. RITZ 0.3166 0.2203 0.1419 0.0508

]39[chen et al. AVSYS 0.3176 0.2201 0.1419 0.0508

h/L=0.1 Peresent DQM 0.6175 0.4392 0.2887 0.1040

]39[chen et al. RITZ 0.5944 0.4242 0.2798 0.1008

]39[chen et al. AVSYS 0.6101 0.4227 0.2778 0.1007

6.2 Results

The presented results are for a microbeam clamped -simple (CS): clamped at x=0 and simple at x=L with length 
scale parameter κ 0.01 and the geometric specifications / 0.1h L  and 0 5/ .ch h  on a substrate of 

characteristics * 0.1wk  and. The porous core consists of an epoxy polymer with a type SI porosity pattern, and the 

face sheets are reinforced with single-walled carbon nanotubes   (10,10SWCNT , adhering to the A and V patterns 

for the upper and lower face sheets, respectively. All specifications are detailed in Table 3. It is important to note 
that all results are presented in dimensionless forms.

Table 3
Properties of the materials in the microbeam under study

Item
mE m m 1η rw         β

   The porous core         2.1        0.34       1150        0.25           -         -

SWCN           -           -           -           -        0.01       0.25
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In Table 3, 1η represents the porosity factor, rw indicates the mass fraction, and β correspond to the 

agglomeration coefficients for the CNTs.
It is also important to mention that the flutter analysis focuses on a diagram of changes in the natural frequencies, 

(imaginary part of the eigenvalues denoted by λ I ), and the corresponding eigenvalues’ real part termed  λR as a 

function of changes in the aerodynamic pressure of the fluid flow, *p .

Table 4 demonstrates the natural frequencies of the microbeam in the first four vibrational modes using the three 
theories of Euler-Bernoulli, Timoshenko, and Reddy at various points for a number of points in the solution using 
the DQM. As can be seen, the obtained numerical solution has a very good convergence speed, and reliable results 
can be obtained using N=23 for the first four vibrational modes’ natural frequencies. From Table 4, one can see that 
the microbeam’s natural frequency value in each vibrational mode using the Euler-Bernoulli is greater than the 
corresponding values for the Timoshenko and Reddy theories. The reason for this could be attributed to the fact that 
the Euler-Bernoulli theory neglects the effects of shear tractions, which makes the microbeam’s stiffness to be 
underestimated. Thus, the obtained values are higher but inaccurate.

For the case of simple supports at both ends of the microbeam, the natural frequencies of the first four vibration 
modes were compared for different theories with the corresponding exact values obtained using the Navier solution 
method. As can be seen, with an approximation of the results up to four decimal places, there is no difference 
between the approximate values obtained from the DQM and the exact values obtained from the Navier method. 
Investigations show that slight differences are observed in the subsequent decimal places, which are not visible in 
this table.

Table 4
Convergence the results in DQM

Theory Mode N=11 N=13 N=15 N=17 N=19 N=21 N=23 N=25

EBT 1 1.5673 1.5674 1.5674 1.5674 1.5674 1.5674 1.5674 1.5674

2 2.8887 2.8890 2.8889 2.8889 2.8889 2.8889 2.8889 2.8889

3 4.7727 4.7865 4.7859 4.7859 4.7859 4.7859 4.7859 4.7859

4 7.6559 7.1440 7.1994 7.1939 7.1943 7.1943 7.1943 7.1943

TBT 1 1.5549 1.5524 1.5512 1.5505 1.5500 1.5498 1.5496 1.5495

2 2.7948 2.7862 2.7813 2.7783 2.7765 2.7753 2.7745 2.7739

3 4.4394 4.4197 4.4088 4.4024 4.3984 4.3958 4.3941 4.3930

4 6.3992 6.3181 6.3018 6.2897 6.2821 6.2771 6.2738 6.2716

RBT 1 1.5530 1.5509 1.5498 1.5493 1.5490 1.5488 1.5488 1.5487

2 2.7879 2.7792 2.7743 2.7715 2.7700 2.7691 2.7686 2.7683

3 4.4107 4.3945 4.3850 4.3799 4.3771 4.3757 4.3749 4.3746

4 6.3615 6.2705 6.2566 6.2459 6.2398 6.2364 6.2345 6.2336
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Natural frequencies of microbeams for various boundary conditions are reported in Table 5, and the 
corresponding vibration mode shapes are shown in Fig. 4. As can be seen, for all vibration modes, the highest 
natural frequencies always belong to the double-clamped microbeam. This is due to the maximum rigidity of the 
boundaries in this type of boundary condition. The table also shows that the lowest natural frequencies belong to the 
cantilever microbeam, which is due to the free end of the microbeam and the absence of any constraint at this 
boundary.

Table 5
Influence of boundary conditions on the natural frequencies of the sandwich microbeam

λ1 λ2 λ3 λ4

CC 1.6474 2.9638 4.6150 6.4859

CS 1.5488 2.7686 4.3749 6.2345

SS 1.4675 2.5858 4.1384 5.9806

CF 1.1597 2.0636 3.4020 5.0804
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                                                          a.C-C boundary conditions

  

b. C-S boundary conditions  
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Fig. 4
Mode shapes of the sandwich microbeam under various boundary conditions.
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7    INSTABILITY ANALYSIS

In this section, the influence of boundary conditions has been considered without applying any additional pressure. 
As illustrated, when Aerodynamic pressure (increase in fluid velocity) increases and, more accurately, at one 
specific point, the bodies of the real parts of the eigenvalues split in a way that the real part of one of them turns 
positive. Hence, the damping coefficient of the corresponding mode turns negative and, therefore, dynamic 
instability of linear type occurs in the microbeam, which, here, is flutter [36].

The influence of boundary conditions on the aeroelastic stability boundaries of microbeams is investigated in 
Fig.5. As observed, with an increase in aerodynamic pressure (increase in fluid velocity) beyond a critical value, the 
real parts of the eigenvalues experience a bifurcation, coinciding with the superposition of the first and second 
vibrational modes, marking the onset of flutter. Specifically, critical aeroscope forces of the microbeam with CC 
boundary conditions are the highest, and those of the microbeam with just one clamped end are the lowest; in other 
words, the microbeam with the smallest number of degrees of freedom at its boundaries has the most restricted 
motion in the lateral direction. At the same time, the difference between these values is as significant as 37%.
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Fig. 5

Influence of boundary conditions on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of frequency 

and (b) The real part of frequency.

Figure 5.b refers to the imaginary part of the frequency, where a decrease or increase can be observed. The 
imaginary part of a frequency, often referred to in the context of complex eigenvalues, is associated with damping in 
dynamic systems. When analyzing the stability of a system, the frequency can be expressed as a complex number, 
where the real part represents the oscillation frequency, and the imaginary part indicates the damping behavior.

Specifically, a negative imaginary part suggests that the system experiences damping, leading to a decrease in 
amplitude over time. Conversely, a positive imaginary part indicates instability, where oscillations may grow 
without bound. Thus, the imaginary component is crucial for understanding how quickly a system returns to 
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equilibrium after being disturbed, with its magnitude directly related to the rate of energy dissipation or the speed of 
damping.

In Figs. 7, 9, 11, 13, 14, 16, 17, 20, 22, and 24 alongside the curves taken from the real part of the vibration 
frequency, the image part is also depicted.

The impact of the length scale parameter on the natural frequencies and aeroelastic stability of the microbeam is 
illustrated in Fig.6 and Fig. 7, respectively. As the length scale parameter increases, the natural frequencies of the 
microbeam increase, revealing an enhanced aeroelastic stability. As indicated in Fig. 7, as the dimensionless length 
scale parameter rises from 0  to 0.03  , the critical aerodynamic pressure increases by nearly 9 percent.
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Fig .6

Influence of the length scale parameter on the natural frequencies of the sandwich microbeam.
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Fig. 7

Influence of the length scale parameter on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.

Fig. 8 and Fig. 9 focus on analyzing the effects of the thickness-to-length ratio on the natural frequencies and 
aeroelastic stability boundaries of the microbeam. At any given length of the microbeam, increasing its thickness 
leads to a significant increase in its stiffness, improving its aeroelastic stability boundaries as evidenced by Fig. 9. 
Following that figure the critical aerodynamical pressure increases by approximately 17% from / 0.11h L  to 

/ 0.08h L   . Increasing the thickness of the microbeam also results in an increase in the mass of the microbeam 
associated with its increased stiffness, as observed in Fig. 8.
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Fig. 8

Influence of the thickness-to-length ratio on the natural frequencies of the sandwich microbeam.

.

(a)                                                                                    (b)

Fig.9

Influence of the thickness-to-length ratio on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.
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By specifying a certain value for the total thickness of a microbeam, the influences of the core thickness ratio to 
the total thickness upon the natural frequencies and aeroelastic stability boundaries of the microbeam are presented 
in Figs.10 and Fig.11. Pores in the core make it less stiff or more flexible compared with nanocomposite facings 
reinforced with CNTs and at the same time mass is less due to the lower density. Therefore, by having a certain 
value for the total thickness of a microbeam, by increasing the thickness of the porous core, the stiffness and mass of 
the microbeam reduce simultaneously. Reduction in stiffness decreases the aeroelastic stability, which is seen in Fig. 
11. This figure illustrates that increasing the core thickness ratio to the total thickness from 0 5/ .7c hh  to 

0/ch h  to, critical aerodynamic pressure reduced by about 6 %.

1 2

3 4

Fig.10

Influence of the core thickness ratio to the total thickness on the natural frequencies of the sandwich microbeam.
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Fig . 11

Influence of the core thickness ratio to the total thickness on the aeroelastic stability of the sandwich microbeam. (a) The 

imaginary part of frequency and (b) The real part of frequency.

Fig.12 and Fig.13 investigate the effects of the porosity coefficient on the natural frequencies and aeroelastic 
stability boundaries of microbeams. Increasing the porosity coefficient implies a reduction in the microbeam's 
stiffness, which, as shown in Fig.13, leads to a decrease in the aeroelastic stability of the microbeam. According to 
Fig.13, the reduction in critical aerodynamic pressure of the microbeam is negligible for a significant increase in 
porosity coefficient, such that with an increase in porosity coefficient from 0 to 0.5, the critical aerodynamic 
pressure decreases by less than one percent. The reason for the small magnitude of this effect is that a very small 
percentage of the microbeam's stiffness is attributed to its porous core, and a higher percentage is attributed to the 
nanocomposite skins.
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Influence of the porosity coefficient on the natural frequencies of the sandwich microbeam.
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Influence of the porosity coefficient on the aeroelastic stability of sandwich microbeam. (a) The imaginary part of frequency 

and (b) The real part of frequency.
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Table 6, as well as Fig. 14, allows the evaluation of the impact of the pore distribution pattern on the natural 
frequencies and aeroelastic stability of the microbeam. Comparing the data in Table 6, it can be seen that SI
distribution has the highest frequencies. At the same time, as shown in Fig. 14, this pattern achieves the best 
performance in terms of aeroelastic stability. This can be explained by examining Fig. 2, which exhibits that SI 
distribution implies larger pores closer to the beam’s mid-surface. Thus, there is the least reduction in the bending 
stiffness of the beam. Table 6, as well as Fig. 14, demonstrate that the pore distribution pattern has a minimal effect 
on the natural frequencies and aeroelastic stability of the microbeam, similar to the porosity coefficient. Indeed, the 
critical aerodynamic pressure in the best case is less than one percent above the value in the worst option. This is 
because the porous core is less significant in determining the microbeam’s stiffness compared to the nanocomposite 
facings.

Table 6
Influence of pore distribution patterns on the natural frequencies of the sandwich microbeam

λ1 λ2 λ3 λ4

UD 1.5486 2.7676 4.3737 6.2344

SI 1.5488 2.7686 4.3749 6.2345

SII 1.5481 2.7665 4.3742 6.2401

I R

(a)                                                                                   (b)

Fig. 14

Influence of pore distribution patterns on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.
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The influence of the CNTs mass fraction on both the natural frequencies and the aeroelastic stability of the 
microbeam is shown in Fig.15 and Fig.16. It was shown above that CNTs have very high elastic constants and a 
slightly lower density compared to the polymer matrix. Therefore, increasing the carbon nanotube mass fraction 
slightly reduces the mass of the microbeam and significantly increases its stiffness. The latter leads to an increase in 
the natural frequencies of the microbeam and therefore, an improved aeroelastic stability, which is visible in Fig. 15 
and Fig. 16 . From the data presented in Fig. 15, by increasing the CNT mass fraction from 0 to 1.5% it is possible to 
improve the critical aerodynamic pressure by about 11%, according to Fig. 6. One should note that the addition of 
very significant quantities of CNTs is neither effective nor cost-efficient due to their high cost and, at very high 
mass fractions, due to the increased occurrence of aggregation phenomena.

Fig. 15

Influence of carbon nanotube mass fraction on the natural frequencies of the sandwich microbeam.
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Fig. 16

Influence of carbon nanotube mass fraction on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.

The study presented in Table 7 shows the effect of the type of CNTs on the natural frequencies of the 
microbeam, while Fig. 17 presents the effect on aeroelastic stability boundaries. Since CNTs with lower chiral 
indices have lower diameters, they also exhibit higher elastic constants, as indicated in Table 2. Thus, the use of 
CNTs with lower chiral indices as reinforcements is expected to increase the natural frequencies of the microbeam. 
Similarly, such beams are more stable due to reduced aeroelastic oscillations. As clearly shown in Table 6 and Fig.
17, this is the case. The effect of the CNTs types is profound such that the critical aerodynamic pressure of a 
microbeam under SWCNT beam 5,5 is 42% more than that under SWCNT beam 50, 50.

Table 7
Influence of the type of CNTs on the natural frequencies of the sandwich microbeam

λ1 λ2 λ3 λ4

SWCNT (5,5) 1.5668 2.8483 4.5443 6.5034

SWCNT (10,10) 1.5488 2.7686 4.3749 6.2345

SWCNT (15,15) 1.5414 2.7355 4.3034 6.1196

SWCNT (20,20) 1.5372 2.7167 4.2623 6.0530

SWCNT (50,50) 1.5278 2.6739 4.1677 5.8986
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I R
(a)                                                                                   (b)

Fig. 17

Influence of the type of CNTs on the aeroelastic stability boundaries of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.

Table 8 shows the impact of the CNT distribution pattern on the natural frequencies of the microbeam, and this 
fig. 18   shows it is influencing the aeroelastic stability boundaries. It can be seen that the only combination with the 
highest values of both natural frequencies and critical aerodynamic pressure is AV. In contrast, the lowest values 
belong to the VA combination. From this point, it can be inferred that to maximize the natural frequencies of the 
microbeam and attain the greatest benefit from an improvement in aeroelastic stability, CNTs should be distributed 
as close as possible to the microbeam’s top and bottom surfaces. The explanation for this statement is that this 
distribution pattern causes the maximum rise in the bending stiffness of the microbeam. However, the impact of the 
CNTs distribution pattern is not very great, as even in the best scenario of AV, it is only 3% better than in the worst 
of VA. the maximum rise in the bending stiffness of the microbeam. However, the impact of the CNT distribution 
pattern is not very great, as even in the best scenario of AV, it is only 3% better than in the worst of VA .

Table 8
Influence of the carbon nanotube distribution pattern on the natural frequencies of the sandwich microbeam

λ1 λ2 λ3 λ4

UU 1.5461 2.7575 4.3533 6.2038

AV 1.5488 2.7686 4.3749 6.2345

VA 1.5409 2.7344 4.3046 6.1274

AA or VV 1.5449 2.7519 4.3410 6.1836



151                                M.H. Hashempour et al.

Journal of Solid Mechanics Vol. 17, No. 2 (2025)  

0.14 0.145 0.15 0.155 0.16

p*

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95
Modes 1 & 2

UU, Mode 1
UU, Mode 2
AV, Mode 1
AV, Mode 2

VA, Mode 1
VA, Mode 2
AA (VV), Mode 1
AA (VV), Mode 2

0.14 0.145 0.15 0.155 0.16

p*

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Modes 1 & 2

(a)                                                                                     (b)

Fig. 18

Influence of the carbon nanotube distribution pattern on the aeroelastic stability of the sandwich microbeam. (a) The 

imaginary part of frequency and (b) The real part of frequency.

Fig. 19 and Fig. 20 show the influence of the agglomeration coefficient  on the natural frequencies and the 

aeroelastic stability of the microbeam. According to Eq. 17,the increase of the agglomeration coefficient  means 

that a higher percentage of CNTs have accumulated.Since the agglomeration leads to a decrease in the elastic 
constants of the nanocompsite,as shown in fig. 19 and fig. 20,by increasing the agglomerationcoefficient  ,the 

natural frequencies decrease in all vibration modes and the aeroelastic stability of the microbeam decreases.Fig.20 
shows that by increasing the agglomeration factor  from 0.2 to 0.8 , the critical aerodynamic pressure decreases by 

about 5%. 
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1 2

3 4
Fig. 19

Influence of the agglomeration coefficient on the natural frequencies of the sandwich microbeam.

(a)                                                                                     (b)

Fig. 20

Influence of the agglomeration coefficient η on the aeroelastic stability of the sandwich microbeam. (a) The imaginary part of 

frequency and (b) The real part of frequency.
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Fig. 21 and Fig. 22 display the impact of the elastic coefficient of the substrate on the natural frequencies and the 
aeroelastic stability of the microbeam. From Eq. 32, a decrease in wk implies a commensurate reduction in the 

potential energy of the substrate, hence a lowering of high potential energy that enables high natural frequencies of 
all the vibrational modes. Consequently, on the expectation, the aeroelastic stability should be lowered by reducing 
implied potential energy exposure. However, Fig. 22 asserts a contrary state of affairs. Fig. 21 shows that when the 

wk rises, there is a commensurate rise in potential energy, which generates high natural frequencies with higher 

aeroelastic stability. However, Fig. 22 reveals that in the second mode of Fig. 22, with increasing wk , the two 

natural frequencies high natural frequencies. High increase and eventually become equal at a lower aerodynamic 
pressure, thus triggering the flutter behavior at the first mode. Fig. 22 demonstrates that with an increase in the wk

value from 0.1 to 0.4, the critical aerodynamic pressure declines by just over 1%.

1 2

3 4

Fig. 21

Influence of the elastic coefficient of the substrate on the natural frequencies of the sandwich microbeam.
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(a)                                                                                (b)

Fig. 22

Influence of the elastic coefficient of the substrate on the aeroelastic stabiity of the sandwich microbeam. (a) The imaginary 

part of frequency and (b) The real part of frequency.

The effects of the foundation shear coefficient on the natural frequencies and flutter instability boundaries of the 
microbeam are investigated in Fig. 23and 24. As can be seen from Eq. 32, increasing the foundation shear 
coefficient increases the foundation potential energy, which, as shown in Fig. 24, results in an increase in the natural 
frequencies of the microbeam in all vibration modes, similar to what was observed for the effect of the foundation 
elastic coefficient. Fig.24 shows that, in contrast to what was observed for the foundation elastic coefficient, 
increasing the foundation shear coefficient not only increases the values of the natural frequencies in the first and 
second vibration modes but also increases the difference between them, which results in an increase in the critical 
aerodynamic pressure value and an improvement in the flutter instability of the microbeam. As can be seen from 
Fig.24, with an increase in the foundation shear coefficient in the dimensionless form from 0 to 0.015, the critical 
aerodynamic pressure increases by about 400%, which shows the significant effect of this foundation coefficient.
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Fig. 23

Influence of the shear coefficient of the substrate on the natural frequencies of the sandwich microbeam.

I R

(a)                                                                                    (b)

Fig. 24

Influence of the shear coefficient of the substrate on the aeroelastic stability of the sandwich microbeam. (a) The 

imaginary part of frequency and (b) The real part of frequency.
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8    CONCLUSION

In this paper, the free vibration and flutter analyses of sandwich microbeams with FG porous core and FG 
accumulated CNTs face sheets under supersonic fluid flow. The sandwich microbeam was modeled according to 
different theories, such as the EBT, TBT, and RBT; also, the side effects were taken into account by coupling the 
MCST with beam theories. The piston theory was used to estimate the aerodynamic pressure because of the fluid 
flow, and the Pasternak foundation was considered to model the elastic foundation. Moreover, Hamilton’s principle 
was used to derive the governing equations and boundary conditions. For the approximate solution of the governing 
equations under various boundary conditions, the DQM was used. Also, the accurate solution for microbeam was 
proposed by solving the boundary value problem using the Navier method.
In summation, the key results from this study can be generalized as:

 The aeroelastic stability of the microbeam increases as the level of constraint on the boundaries of the 
microbeam increases thus the highest critical aerodynamic pressure will be present in a clamped-clamped 
microbeam while the smallest in a clamped-free microbeam.

 As the core porosity ratio increases, the natural frequencies of the microbeam increase, but the aeroelastic 
stability decreases.

 To achieve the highest natural frequencies and improve aeroelastic stability, the distribution of holes in the 
microbeam core should be such that the larger holes are located as close as possible to the mid-surface of 
the microbeam.

 To maximize the increase in natural frequencies and achieve the maximum improvement in the aeroelastic 
stability of the microbeam, CNTs distributed as close as possible to the top and bottom sheets of the 
microbeam.

 By increasing the elastic and shear coefficients of the foundation, the natural frequencies of the microbeam 
increase in all vibration modes.As the shear modulus of the foundation increases, the aeroelastic stability 
of the microbeam improves. However, increasing the elastic modulus of the substrate leads to a decrease 
in the aeroelastic stability of the microbeam.
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