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Abstract  
 

Analysing the buckling behaviour of the two kinds of sandwich beams, the first one with functionally graded material faces and 

homogeneous core and the second one with functionally graded material core and homogeneous faces are presented in this paper based on a 

high order sandwich beam theory. Properties of the constituent materials are assumed temperature dependent and functionally graded 

materials are modelled by a power law rule. Even and uneven porosity distributions are considered to improve the accuracy of the model. 

Minimum potential energy principle is used to obtain the govern equations and Galerkin method is applied used to solve the equations in a 

clamped free boundary conditions. Lateral displacement, and thermal stresses of the core and Lagrange strains are considered. To verify the 

procedure, the results of the present study are compared with the literature. Thickness, length, porosity, wave number and temperature 

effect on the critical load are investigated too. 
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1. Introduction  
  

To have a structure with an excellent efficiency, great 

bending rigidity and light weight, the concept of sandwich 

which are composed of two firm and slim skins that cover 

a soft and thick core have been proposed and used in the 

advanced industries such as reactors, aerospace, 

construction and satellite. In high temperature 

environments, using ordinary composite materials and 

laminates in the sandwich panels leads to delamination, 

stress concentration and failure. So, to eliminate these 

problems, the microscopic inhomogeneous functionally 

graded materials have been used which the properties 

vary through the thickness smoothly. Since during the 

manufacturing the FGMs, some micro voids, porosities, 

are appeared that affect the materials properties, some 

porosity distributions have been proposed to modify the 

models of FGM in the analysis. Also, in high thermal 

conditions, these properties reduces. So, material 

properties changing with temperature should be 

considered (Rahmani et al., (2019)-a; Rahmani et al., 

(2020)-b).  

In the classical theories, the core is considered as an 

inflexible layer, but it is a transversely flexible one, 

therefore, to accurate investigation of the mechanical 

behavior of sandwich structures, considering this effect, 

the sandwich panel high order theory was proposed 

(Frostig et al., (1992)). Also, by applying various theories, 

researchers have been interested in analyzing the beams 

buckling and post-buckling. Mayandi and Jeyaraj studied 

the mechanical behaviors of FG-CNTR polymer 

composite beam such as buckling by using finite element 

method (Mayandi and Jeyaraj, (2015)). Mammano and 

Dragoni presented the approximate equations of buckled 

beam based on the elastica solution for low-stiffness 

elastic suspensions (Scirè Mammano and Dragoni, 

(2017)). Chai et al. analyzed the buckling and bending 

responses of laminated composite beam-column based on 

Euler—Bernoulli beam and classical lamination theory 

(Chai et al., (2010)). Alijani and et al. studied the elasto-

plastic nonlinear buckling responses of FGM beams based 

on finite element method (Alijani et al., (2015)). 

Majumdar and Das analyzed the thermal buckling 

behavior of clamped FG beams based on the Euler-

Bernoulli theory (Majumdar and Das, (2018)). Yap et al. 

investigated the flexural modulus of the laminated 

composite beam effect on the buckling behavior, based on 

Euler-Bernoulli beam theory (CW et al., (2008)). Koissin 

et al. studied the physical nonlinearity effect on the 

buckling responses of the sandwich beam with a foam 

core experimentally, theoretically and numerically 

(Koissin et al., (2010)). Tran et al. studied the bending 

and buckling behavior of sandwich FG beam based on 

third order shear deformation theory and finite element 

method in thermal conditions (Tran et al., (2019)). 

Osofero et al. investigated the vibration and buckling of 

FG sandwich beams by using a quasi-3D theories 

(Osofero et al., (2016)). Challamel and Girhammar 

studied the buckling behavior of partial composite beam-

columns by using the variational theories and by 

considering the shear and axial effects (Challamel and 

Girhammar, (2011)). Bhangale and Ganesan analyzed the 

thermoelastic buckling and vibration behavior of FG 

sandwich beam with viscoelastic core by using a finite 

element procedure (Bhangale and Ganesan, (2006)). By 

applying a unified higher order shear deformation beam 

theory, Hamed et al. studied the buckling behavior of 

composite laminated sandwich beam rested on elastic 

foundation by considering the effect of in-plane varying 

compressive force (Hamed et al., (2020)). Li et al. 
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analyzed the thermal post buckling of the negative 

Poisson's ratio FG sandwich beams with a honeycomb 

core by using finite element simulations (Li et al., 

(2019)). Liu et al. studied the thermal-mechanical 

coupling buckling analysis of porous FG sandwich beams 

by using the high-order sinusoidal shear deformation 

theory (Liu et al., (2019)). Paul and Das investigated the 

nonlinear buckling behavior of tapered FG beam by using 

Timoshenko beam theory (Paul and Das, (2017)). Malikan 

studied the buckling of a SWCNT based on the refined 

beam theory (Malikan, 2019). Almitani studied the 

buckling behavior of different types of FG beams based 

on the Euler-Bernoulli beam theory and a finite element 

model (Almitani, 2018). Fouda et al. investigated the 

bending, buckling and vibration of FG porous beam based 

on a finite element model (Fouda et al., 2017). Gao et al. 

analyzed the buckling behaviors of the FG cylindrical 

beams with radially and axially varying material in-

homogeneities by a high-order cylindrical beam model 

(Gao et al., 2021). Basaglia and Camotim studied 

buckling behavior of thin-walled steel structural systems 

by using the application of beam finite element models 

based on generalized beam theory for different support 

conditions and subjected to various loadings (Basaglia 

and Camotim, 2015). Akbas studied the post-buckling 

analysis of an edge cracked cantilever beam composed of 

functionally graded material (FGM) subjected to axial 

compressive loads by using the total Lagrangian 

Timoshenko beam element approximation (Akbaş, 2015). 

Dinzart et al. studied the thermo-mechanical response of 

beams made up of thermoplastic under cyclic bending. 

The stability of steady-state solution was done by a 

perturbation method (Dinzart et al., 2008). Janevski et al. 

studied the thermal buckling and vibration behavior of 

Euler-Bernoulli FG nanobeams based on a higher order 

nonlocal strain gradient theory (Janevski et al., 2020). 

Magnucki et al. studied the deflection of a laminate 

sandwich beam under bending (Magnucki et al., 2013). 

By reviewing various references, the author decided to 

investigate the buckling of two kinds of sandwich beams 

in the uniform temperature distributions for clamped-free 

boundary conditions, by applying a modified high order 

sandwich beam theory. There are two FG skins and a 

homogeneous core in the first model, and two 

homogeneous skins and a FG core in the second one. 

FGMs are modelled by a power law rule by considering 

the porosity distributions. Temperature dependency of all 

materials is considered. High order and in-plane stresses 

and lateral flexibility of the core, and thermal stresses of 

the layers are considered. The minimum potential energy 

principle and a Galerkin procedure are applied to obtain 

and solve the equations. To verify the procedure, the 

results of the present study are compared with the 

literatures. Thickness, length, porosity, wave number and 

temperature effect on the critical load are studied. 

2. Basic equations 

Consider two models of sandwich beams as shown in Fig. 

1. There are two FG skins and metal core in the first 

model, and a FG core with ceramic and metal skins in the 

second one. 

 
Fig .1. Different sandwich beams with FG layers 

It is considered that metal, ceramic and FGMs 

properties change by temperature based on the following 

equation (Rahmani et al., (2020)-a): 
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Where "P"s are unique thermal coefficients for 

material properties and ―ΔT=T-T0‖, which ―T0‖ is the 

room temperature. The material properties of FGM by 

considering even and uneven porosity volume fraction are 

modelled based on a power law rule. For the sandwich 

type-I with even porosity the equations are as follows 

(Rahmani et al., (2020)-a): 
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And for type-II is as follows (Rahmani et al., (2020)-

a): 
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g(z) is ceramic volume fraction; "N" is the 

nonnegative power law index; "ζ" is the even porosity 

volume fraction; "c" refers to the core and "t", "b" are top 

and bottom skins, respectively.  

On the other hand, in the modelling of uneven porosity it 

is considered that the voids are condensed at the middle of 

the FG layers and there are not voids near the edge of the 

layers. As a result, for the sandwich type-I, the material 

properties are modified as follows (Rahmani et al., 

(2020)-a): 
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And for sandwich type-II, the equation is as follows 

(Rahmani et al., (2020)-a): 
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The equations of buckling behavior of sandwich 
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beams ore obtained by applying the principle of minimum 

potential energy (Rahmani et al., (2019)-b): 

 

(8) 

―δV‖, is the external load potential variation; and 

―δU‖ is the total strain energy variation. ―δU‖ is presented 

as follows which in-plane stresses of the core are 

considered too. 

In ―δU‖, the linear part of strains are considered with 

mechanical stresses and nonlinear part of strains are 

considered with thermal stresses. Lagrange multipliers are 

appeared due to the compatibility constrained which fixed 

the skins and the core to each other. ―dxx‖ and ―dzz‖ are 

the nonlinear parts of normal and shear; ―σ
T

xx‖ and ―σ
T

zz‖ 

are the thermal stresses; and ―λx‖ and ―λz‖ are the 

Lagrange multipliers. FGMs properties are displacement 

and temperature. 

 The variation of the external loads as follows: 
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―  
 
‖ (j=t, b) are the in-plane external loads of the 

skins; and ―  ‖ are the lateral distributed loads applied on 

skins, respectively. The displacement fields of the skins 

are modelled by the first order shear deformation theory. 
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(12) 

where ―  
 
‖ are the longitudinal and   

 
(j = t, b) are 

the lateral displacements of the mid-plane of the skins; 

"ϕ" is rotation of the normal line of the middle of the 

layer. The displacement equations of the core are 

polynomials which contain seven unknown coefficients 

(Rahmani and Dehghanpour, (2020)): 
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The strains of the skins are considered based on the 

Lagrange strain tensor as follows (Rahmani and 

Dehghanpour, (2020)): 
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The strains components in the core are presented as: 
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In Eq. (9) and Eq. (10), all parameters are replaced 

with displacement of the core and skins and by using the 

compatibility conditions and some algebraic operations, 

thirteen equations are derived: 
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Based on the Eqs. (21-24) the skins displacements are 

dependent to the core ones, so the unknown decrease to 

nine and the number of the governing equations are nine. 
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In the skins equations, "N"s, "M"s and "Nxz"s refer the 

in-plane stress resultants, the moment resultants and the 

out of plane shear stress resultants, respectively, which 

presented as follows (Rahmani and Dehghanpour, 

(2020)): 
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―A‖, ―B‖ and ―D‖ are the constant coefficients of 

stretching, the bending-stretching, and bending stiffness: 
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"N
T
" and "M

T
" display the thermal high order stress 

and momentum resultants in the skins: 
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―E‖, ―ν‖ and ―α‖ are the Elastic modulus, the 

Poisson‘s ratio and the thermal expansion coefficient, 

respectively. The high order stress resultants in the core 

can be defined as follows: 
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On the other hand, ( )c
j

x lN w  is (Kheirikhah et al., 

(2012)): 
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(42) 

where  ̂ 
 
are the in-plane external loads applied to the 

skins and the core, which are the parts of total external 

load,  ̂ , as follows: 

0

t b c

x x xN N N N     
(43) 

The uniform state of strain for the face sheets and the 

core is considered. At edges ‗x=0‖ or ―x=L‖ and with a 

little simplification the equilibrium equations are 

presented as: 
t b c

x x x

t t b b c c

N N N

h E h E h E
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(44) 

where  ̅   is the equilibrium elasticity modulus of the 

layers that are defined as: 
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 Hence, by using of Eq. (44) and (45), the in-plane 

external loads applied to the face sheets and the core 

along the ―x‖ direction can be obtained as: 
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3. Galerkin method and the numerical results 

 

To solve the buckling equations of sandwich beams, 

Galerkin method is used for clamped free boundary 

condition. Nine shape functions of this state is presented 

as(Rahmani and Mohammadi, (2021)): 
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where ― /ma m L  ‖; ―m‖ depicts the wave number 

and ― , ,uk wk jC C C
‖are the unknown constants. The nine 

equations are displayed as matrix form as follows: 

0( ) 0m mmk N G C  
 

(52) 

Nine eigen vectors are Cm; ―G‖ is the geometric 

matrix and ―K‖ is the stiffness matrix. In order to validate 

the results of the present approach, they are compared 

with the results of literatures (Vo et al., 2014) and (Vo et 

al., (2015)), which are shown in Table 1 and Table 2, for 

the simply supported (S-S) and clamped (C-F) boundary 

conditions. It‘ seen that there are good agreements 

between the present results and the literatures. 

 

 

 

 

Table 1 

Critical load parameters of present results and literatures (Vo et 

al., 2014) and (Vo et al., (2015)) for (S-S) 
N Theory 2-1-2 1-1-1 1-8-1 

L/h=5 

0 Vo et al. (HOBT) 

(Vo et al., 2014) 

48.5959 48.5959 48.5959 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

49.5906 49.5906 49.5906 

Present 50.7611 50.7611 50.7611 

1 Vo et al. (HOBT) 

(Vo et al., 2014) 

22.2108 24.5596 38.7838 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

22.7065 25.1075 39.6144 

Present 23.0681 25.1621 39.8011 

L/h=20 

0 Vo et al. (HOBT) 

(Vo et al., 2014) 

53.2364 53.2364 53.2364 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

53.3145 53.3145 53.3145 

Present 55.7922 55.7922 55.7922 

1 Vo et al. (HOBT) 

(Vo et al., 2014) 

23.4211 25.9588 41.9004 

Vo et al. (quasi-

3D) 

23.4572 25.9989 41.9639 

Present 23.5221 26.0847 41.0498 

Table 2 
Critical load parameters of present results and literatures (Vo et 
al., 2014) and (Vo et al., (2015)) for (C-F) 

N Theory 2-1-2 1-1-1 1-8-1 
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L/h=5 

0 Vo et al. (HOBT) 

(Vo et al., 2014) 

13.0594 13.0594 13.0594 

Vo et al. (quasi-

3D) (Vo et al., 

(2015))   

13.1224 13.1224 13.1224 

Present 13.3934 13.3934 13.3934 

1 Vo et al. (HOBT) 

(Vo et al., 2014) 

5.7921 6.4166 10.3093 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

5.8244 6.4516 10.3581 

Present 5.9931 6.6112 10.3973 

L/h=20 

0 Vo et al. (HOBT) 

(Vo et al., 2014) 

13.3730 13.3730 13.3730 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

13.3981 13.3981 13.3981 

Present 13.4421 13.4421 13.4421 

1 Vo et al. (HOBT) 

(Vo et al., 2014) 

5.8713 6.5083 10.5174 

Vo et al. (quasi-

3D) (Vo et al., 

(2015)) 

5.8832 6.5214 10.5375 

Present 6.0257 6.7978 10.7712 

To investigate the numerical results, two models of 

sandwich beams are considered. The functionally graded 

layers are made of Silicon nitride and Stainless steel as 

ceramic and metal phases which gradually distributed 

across the thickness. To see the thermal constants of the 

material properties in Eq. (1) refer to reference (Reddy, 

(2003)). Sandwich structures are introduced based on the 

thickness of the layers. For example, 1-4-1 sandwich is a 

structure that the core thickness is four times of the skins 

thicknesses. To simplify the results, the non-dimensional 

critical load parameter is presented as: 

0

910
cr

N
N 

 

(53) 

The material properties of structures are affected in 

high temperature conditions. The critical load parameter 

changing via the temperature for different models of 1-8-1 

sandwich beams with clamped-free boundary condition is 

shown in Fig. 2. Geometrical parameters are ―h=0.02m, 

L/h=5, m=1‖. Based on Eq. (1), when temperature is 

raised, Elastic modulus of constituent reduces. As a result, 

the panels strength decreases, which is an important factor 

of reducing the critical load in thermal surrounding. In the 

case of N=0, the functionally graded layers are composed 

of ceramic only, so, the thermal resistant and stability 

against the high temperature conditions are more than the 

other values of ―N‖, so its critical load parameters are 

higher than others. When ―N‖ is increased, the percentage 

of ceramic decreases in the layers which affects the 

material properties. So, stability, stiffness and buckling 

load of the sandwich beams reduces. In 1-8-1 model, 

since ceramic of sandwich type-II which has a FG core is 

higher than the type-I, the stiffness, resistant and the 

critical buckling load of the type-II is higher and this type 

of sandwich is more sensitive in changing the ―N‖. In 

both sandwiches and in the higher value of ―N‖, the 

percentage of ceramic tend to zero, so the stability of the 

beams decreases impressively. In sandwich type-I, when 

―N=0‖, by rising the temperature, the critical load 

parameter reduces 74.93%, for ―N=1‖ and ―N=2‖ it 

decreases 85.55%, and 89.52%, respectively. And in 

sandwich type-II, when ―N=0‖, by increasing the 

temperature, the critical load parameter decreases 53.84%, 

for ―N=1‖ and ―N=2‖ it decreases 69.54%, and 73.15%, 

respectively.  

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .2. Critical load changing with temperature in FG sandwich 

beams. 

Length and thickness are important parameters in the 

sandwich beams. Effect of a non-dimensional ratio of 

length (L/h) to thickness on the buckling load is depicted 

in Fig. 3. Geometrical parameters are ―h = 0.02m, 

T=300K, m=1‖ in the 1-8-1 FG sandwich beams. 

Increasing the ratio in a constant ―N‖ leads to decrease the 

stability of the structure and the critical load parameter. 

So, it shouldn‘t be considered the long length in 
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structures. It has been shown that in sandwich type-I, the 

critical load parameters are lower than sandwich type-II.  

Also, it is obvious that, by rising the ―N‖, the critical load 

parameters decrease, but in this case effect of variation of 

the length is dominant parameter and its variation has an 

impressive effect on the stability. For example, in 

sandwich type-I, for ''L/h=5'', by increasing ―N‖, the 

critical load parameter decrease 11.60%, but for ―N=0‖, 

by increasing this ratio, the critical load parameter 

decreases 4267%. And, in sandwich type-II, for ''L/h=5'', 

by increasing ―N‖, the critical load parameter decrease 

14.06%, but for ―N=0‖, by increasing this ratio, the 

critical load decreases 4367%. Also, it should be noted 

that when the ratio is more than 12, the slope of the 

variation of the critical load decrease significantly. 
 

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .3. Critical load changing with L/h ratio in the FG sandwich 

beams. 

 

Effect of the core to skins thickness ratio, ―hc/ht‖, on 

the critical load in a constant total thickness is shown in 

Fig. 4 for different ―N‖. Geometrical parameters are 

―h=0.02m, T=300K, m=1, L/h=10‖. ―hc/ht=0.5‖ shows 

that the thickness of the core is half of the skins 

thicknesses, which refers to 2-1-2 sandwich. Also, 

―hc/ht=8‖ refers to 1-8-1 sandwich. The highest 

percentage of ceramic is in the 2-1-2 sandwich type-I. By 

rising the ratio, ceramic decreases and the panels become 

softer, so the critical load parameter reduces. Also it is 

obvious that, the 2-1-2 case has more ceramic than 1-8-1 

one, so buckling load of 2-1-2 is higher. There are 

different results in sandwich type-II. 1-8-1 case has the 

most ceramic. In a constant thickness, when the ratio is 

raised, the percentage of ceramic increases at the lower 

―N‖, especially in ―N=0‖. Also, it is obvious that the 

critical buckling load in 1-8-1 is higher than 2-1-2, due to 

the ceramic amount. As shown in the Fig. 4, after a 

certain value of ―N‖, when ―N‖ is increased, 2-1-2 case 

has a higher critical load than 1-8-1 one. It means that in a 

constant thickness, after that value of ―N‖, increasing the 

―N‖ results in the lower ceramic in FG layers, so at all 

ratio, the critical load parameters reduce in both model of 

sandwich beams. For sandwich type-I, in ―hc/ht=0.5‖, the 

critical load parameter decreases 14.82% when ―N‖ is 

increased, and in ―hc/ht=8‖, the critical load parameter 

decrease 12.17% when ―N‖ is increased. Also, for ―N=0‖, 

by increasing this ratio, the critical load decreases 

19.87%, but for ''N=2'', it decreases 17.38%. For sandwich 

type-II, in ―hc/ht=0.5‖, the critical load parameter decrease 

0.692% when ―N‖ is increased, and in ―hc/ht=8‖, the 

critical load parameter decrease 13.42% when ―N‖ is 

increased. Also, for ―N=0‖, by increasing this ratio, the 

critical load increases 8.79%, but for ''N=2'', it decreases 

5.14%. 

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .4. Critical load changing via the ―hc/ht‖ ratio in FG 

sandwich beams. 
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The total thickness of beam changing effect, ―h‖, on 

the critical load parameter for different ―N‖, and is shown 

in Fig. 5. Geometrical parameters are ―T=300K, m=1, 

L/h=10‖. It is obvious that by rising the ―h‖ in the 

constant ―L/h‖, the critical load parameter decreases. The 

slope of reducing the critical load in lower than 0.02m is 

high for both models of sandwich, but in the larger ―h‖, 

the slope of reducing is lower. It means after a certain 

value, rising the thickness has a little effect on the critical 

load. For example, when ―L/h=10‖ and ―N=0‖, by 

increasing the ―h‖, the critical load decrease 2292.43% for 

sandwich type-I, and 2345.86% for sandwich type-II. But, 

it is seen that after the ―h=0.02m‖, the rate of variation is 

decreased for both sandwiches. For ―h=0.01m‖, by 

increasing ―N‖, the critical load parameter decrease 

11.60% for sandwich type-I and 14.06% for sandwich 

type-II. 

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .5. Critical load changing via thickness in FG sandwich 

beams. 
The wave number, ―m‖, effect on the critical load 

parameters for in different ―N‖ and constant total 

thickness is shown in the Fig. 6. Geometrical parameters 

are ―h=0.02m, T=300K, m=1, L/h=10‖. It is obvious that 

increasing the wave number increases the critical load 

parameters. Although in the lower wave numbers, the 

critical load parameter of both sandwiches are close to 

each other, but in the larger ―m‖, the critical load 

parameters in the sandwich type-II are higher. 

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .6. Critical load changing via wave number. 
To show the porosity effect on the critical load, two 

porosity distributions, even and uneven, are investigated, 

which shown in Fig 7. And Fig. 8. It is clear that, in both 

models of beam, by rising the porosity volume fraction, 

the critical load parameter decreases. In the even porosity 

distribution, the decreasing of the critical load is more 

than uneven one for both models of sandwich beam. It is 

considered that the voids are spread across the cross 

section in the even case, but these voids are piled up in the 

central area of the cross section in the uneven case. In 

sandwich type-I, and for the even case and ―N=0‖, by 

increasing the volume fraction of the porosity, the critical 

load decreases 26.47%, and in the uneven case in ―N=0‖, 

by increasing the volume fraction of the porosity, the 

critical load decreases 13.54%. And, in sandwich type-II, 

and for the even case and ―N=0‖, by increasing the 

volume fraction of the porosity, the critical load decreases 

22.61%, and in the uneven case in ―N=0‖, by increasing 

the volume fraction of the porosity, the critical load 

decreases 5.89%. 
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a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .7. Critical load changing via even porosity. 

 

 

a. sandwich Type-I 

 

b. sandwich Type-II 

Fig .8. Critical load changing via uneven porosity. 

4. Conclusion 
 

Analyzing the buckling behavior of the sandwich beams 

with functionally graded material faces and homogeneous 

core and with functionally graded material core and 

homogeneous faces were discussed in this paper based on 

a high order sandwich beam theory. Properties of 

constituent materials were considered temperature 

dependent and functionally graded materials were 

modelled by adding porosity effects. Minimum potential 

energy principle and Galerkin method were used to obtain 

and solve the equations in a clamped-free boundary 

conditions. Lateral displacement, and thermal stresses of 

the core and Lagrange strains were considered.  

Thickness, length, porosity, wave number and 

temperature effect on the critical load were investigated 

too. By studying the results it is concluded that: 

 When the temperature is raised, the critical load 

parameters reduce. 

 In thermal surrounding, FG core sandwich beams 

have higher stability and resistant than FG faces 

ones.  

 When the power law index is raised, the critical 

load parameters reduce. 

 When the length to thickness ratio is increased, 

the critical load parameter reduce. 

 In FG face sandwich beams, when the core to 

skin thickness ratio is raised, the critical load 

parameters reduce. In FG core sandwich beams, 

at the lower ―N‖, the critical load parameters 

increase, but after a special value of ―N‖, when 

power law index is increased, the critical load 

parameters reduce. 

 When the total thickness is increased, the critical 

load parameters reduce. 

 When the wave number is raised, the critical load 

parameter increases. 
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 When the amount of the both porosities are 

increased, the critical load parameters reduce. 

Critical load changing in even model is larger 

than uneven one. 
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