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Abstract 
This study deals with the scheduling of operating room networks of collaborative hospitals with the arrival of emergency patients. In this 

study, a set of independently owned hospitals form a virtual alliance network to increase resource utilization and reduce patient waiting time. 

Each hospital, in collaboration with other members, is primarily responsible for providing services to its patients and may have a different 

objective function, which has a priority over the overall objective function of the virtual distributed scheduling collaborative hospitals. So, 

the objective function of the problem is divided into two categories, but the overall objective function of the network is to reduce the cost of 

allocating patients to hospitals and surgeons, along with the cost of operating room overtime. In this study, to make the situation more realistic, 

the transshipment of the patient from one hospital to another is also taken into account. For this problem, a mixed-integer mathematical 

programming model is presented, and the Benders decomposition algorithm is designed. The efficiency of the algorithm was compared with 

experiments performed with the CPLEX solver, and finally, the results were reported. The results in the one-day planning horizon show a 

better performance of about 5% in the Benders algorithm in all three objective functions, which is achieved in 50% of the runtime by the 

proposed algorithm. In the two-day planning horizon, despite the closeness of the results of the second and third objective functions in the 

two methods, the results of the Benders algorithm were seven times better in the makespan, which was obtained in a quarter of the runtime. 

Here, the more important point is the possibility of solving problems with larger dimensions with the Benders algorithm in a situation that 

was not possible by CPLEX due to the inherent complexity of the problem. 
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1. Introduction 

In recent decades, healthcare systems in different countries 

have faced problems such as an increase in patients' 

demand, service delivery, limited government support, and 

increased competition. Also, one of the common problems 

in healthcare systems in recent years is the simultaneous 

growth of service demand and patients' expectations of 

service quality and increasing healthcare costs (Chen et al. 

2019). The rapid and increasing cost of healthcare systems 

is such that how to control these costs has become a 

significant problem in the healthcare systems of various 

countries. As a result, today, hospital managers and 

officials are always looking to reduce costs and improve 

the financial situation of hospitals in order to overcome the 

existing problems. Managers, on the other hand, strive to 

provide the highest level of patient satisfaction and seek 

innovative approaches that address most of these problems. 

These factors have led managers and decision-makers in 

the field of healthcare systems to try to increase 

productivity and the efficiency of healthcare systems. 

Therefore, productivity and efficiency in healthcare 

systems increase by creating proper planning and 

scheduling for all activities involved in this industry 

(Farughi et al., 2019). 

Given that operating rooms in hospitals account for a large 

share of costs and are the most valuable section of the 

hospital, it can be said that operating room scheduling is 

one of the vital sections of a hospital (Abdeljaouad et al. 

2020). Operating room scheduling also has a significant 

impact on other parts of the hospital, such as the intensive 

care unit, general wards, laboratories, and emergency 

department. As a result, much research has been done on 

the problem of operating room planning and scheduling 

(Noorizadegan & Seifi 2018). In the real world, increasing 

productivity and competitiveness has led hospital 

management always to try to improve performance and 

increase patient satisfaction. Therefore, they seek to 

establish parallel communication and collaborative 

hospitals that are from hospitals with independent 

ownership and separately can work together. Distributed 

operating rooms and sharing operating room blocks in 

collaborative hospitals have been proven to be a cost-

effective way to improve the efficiency and productivity of 

operating rooms and surgeons (Roshanaei et al. 2017b).  

In this study, in order to improve the competitive situation, 

in order to achieve the best objective function, flexibility, 

and cost competitiveness, an attempt has been made to 

address the problem of collaborative hospital operating 

room scheduling. In this type of network, each hospital 

may have a different objective function, which has a 

priority compared to the overall objective function of the 

virtual distributed scheduling network. Also, by 

considering two groups of patients (elective and 

emergency) and transferring the patient from one hospital 

to another according to the time of patient transportation, 

the conditions of the system under-study have been tried to 

be as close as possible to the real-world healthcare system. 

For this purpose, after modeling the operating room 

scheduling problem in collaborative hospitals in the form 
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of a multi-objective model, the Benders decomposition 

algorithm method is proposed to solve the problem.  

In the following, in Section 2, the related papers are 

reviewed. Section 3 is dedicated to problem definition, 

mathematical model, and problem complexity. In Section 

4, the Benders decomposition algorithm and how to 

implement it in the proposed model are introduced. In 

Section 5, numerical results will be reported. Finally, after 

concluding, future researches are suggested for future 

studies in Section 6. 

2. Literature Review 

The operating room scheduling was first studied in 1953 by 

Adair (Adair 1953). In most of the optimization research 

based on operating room scheduling, simple hypotheses 

have been used, which often include: deterministic in the 

duration of surgery, lack of emergency patient arrival, 

sufficient resources, and centralized operating room 

scheduling problems. In the following, some papers in this 

field are discussed. 

Tyler et al. (2003) used a simulation method to increase 

efficiency by about 85% to 90% in operating room 

scheduling. He has considered the reduction of patients' 

waiting time in the hospital. He has also identified the 

factors affecting the optimal and efficient use of resources 

in the operating room scheduling. Jebali et al. (2006) 

introduced a two-stage programming approach to operating 

room scheduling. The first stage involves assigning 

surgeries to operating rooms. The second stage involves 

determining the order and sequence of operations assigned 

to operating rooms for optimal use, taking into account the 

various resource constraints. 

Arnaout and Kulbashian (2008) considered the operating 

room scheduling problem as a parallel machine scheduling 

problem with sequence-dependent setup times in order to 

minimize completion time. Then they presented a new 

heuristic method to solve the model. In their study, 

Zonderland et al. (2010) considered the single operating 

room scheduling hypothesis and developed the planning 

and scheduling process of elective and semi-urgent 

surgeries based on Markov's decision theory. Their 

objective function was to treat semi-urgent patients and 

canceled elective patients to treat urgent patients due to the 

capacity of the operating room for a long time. In Van 

Essen et al. (2012), for emergency surgeries, operating 

room scheduling for elective surgeries was introduced by 

breaking the elective surgery planning. Addis et al. (2016) 

presented a model with two approaches combining off-line 

and online decisions and scheduling with the objective 

function of minimizing patient tardiness penalties. In the 

model presented by them, off-line scheduling is 

implemented and modified due to the existence of canceled 

surgeries or their rescheduling, along with the arrival of the 

emergency patients by the results obtained during in-line 

scheduling. Ceschia et al. (2016) developed a dynamic 

scheduling model for operating room scheduling, taking 

into account elective patients with new patient arrivals. 

They also sought to reduce overtime and unauthorized 

operating room tardiness. They designed a solution based 

on local search and explored the search space using a 

composite neighbourhood method. Hamid et al. (2018) 

proposed a multi-objective model for planning and 

scheduling the surgery of elective patients in operating 

rooms with three objective functions: minimization of the 

total waiting time of patients based on patient preference, 

minimization of the costs related to the use of operating 

rooms, and minimization of the total completion time of 

patients’ surgeries. They used the Epsilon-constraint 

method to solve the presented model. 

In recent years, due to the importance of the problem of 

distributed scheduling in multi-factory networks, 

researchers have tried to expand this topic in the field of 

healthcare systems. Additionally, in most of the 

optimization research based on operating room scheduling, 

simple hypotheses have been used, most of which include: 

operating room scheduling in a single hospital, the 

deterministic surgery time, lack of dynamic patient 

emergency arrival, and availability of resources. For this 

reason, Wang et al. (2016) have applied operating room 

scheduling in Toronto, Canada, to hospital networks with 

the hypothesis of stochastic surgical duration, emergency 

arrival, and limited and shared resources between hospitals. 

In this study, the objective function of minimizing the cost 

of surgery according to the type of surgery, the cost of 

operating room openness, the cost of allocating patients to 

hospitals, and the cost of tardiness of patients' surgery to 

the next scheduling horizon were considered. Roshanaei et 

al. (2017b) believe that operating room scheduling plays an 

essential role in the profitability of hospitals and their 

optimal use leads to reducing the cost of surgical services 

to patients, reducing the waiting time for surgery, and 

increasing patient satisfaction. Therefore, in their paper, 

they addressed the problem of operating room planning and 

scheduling in an independent hospital that has been 

extended to a strategic multi-hospital network. In the 

proposed model, a set of patients, surgeons, and operating 

rooms work together to achieve different objective 

functions. These objective functions include minimizing 

operating room costs, surgeons' costs, and the additional 

cost of the operating room, as well as maximizing the 

allocation of elective patients to the planning horizon. In 

their research, Roshanaei et al. (2017a) planned and 

scheduled the operating room, from an independent 

hospital to several hospitals, in collaboration with a 

distributed strategic network; So that the proposed model 

assigns each patient to the hospital and the daily planning 

horizon according to the waiting time and health status. 

Then, the new approach of propagating logic-based 

Benders' decomposition approach to solve the scheduling 

problem was presented. They also used a mixed-integer 

programming model to schedule distributed operating 

rooms. Roshanaei et al. (2020) studied the collaborative 

scheduling of the distributed operating room as a location-

allocation model. Here, two levels of balancing decisions 

are studied: (i) daily macro imbalance among collaborating 

hospitals, and (ii) daily micro imbalance among open 

operating rooms in each hospital according to the number 

of patients assigned to each operating room. This model is 

formulated as a nonlinear mixed-integer programming 

mathematical model and consists of two exact solution 
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techniques based on the new single-stage and two-stage 

branch-and-check method. 

Rabbani et al. (2022) studied the patient appointment 

scheduling problem considering clustered patients in 

outpatient chemotherapy clinics. To minimize the 

completion time of all treatments, and maximize the use of 

nurses' skills, the authors proposed a bi-objective 

mathematical programming model. They also utilized a 

hybrid approach based on Torabi-Hassini to solve this 

problem in large sizes. Lotfi and Behnamian (2022) studied 

the operating room scheduling of hospital networks with 

virtual alliance. In that research, by considering the elective 

patients and non-elective patients, first, a mixed-integer 

mathematical programming model was proposed. Then, 

the authors proposed an NSGA-II and memetic-based 

algorithm with the learning mechanism. Yang et al. (2023) 

studied multi-stage resource-constrained operating room 

scheduling problem. First, they modeled this problem as a 

mixed integrated programming. Second, the authors 

proposed a slack speed-up-based discrete artificial bee 

colony algorithm. Bargetto et al. (2023) considered an 

integrated operating room planning and scheduling 

problem that includes sequence, capacity and due date 

constraints and human resources. In that research, a model 

of the sequence-dependent operating room cleaning times 

was proposed. To solve this model, they designed a branch-

and-price-and-cut algorithm based on the time-indexed 

formulation where a column generation scheme relies on a 

label-correcting algorithm. Wang et al. (2023) studied the 

impact of emergency arrival uncertainty on operating room 

planning under a non-operative anesthesia mechanism. For 

different operating room settings, they showed that the 

non-operative anesthesia mechanism can significantly 

improve the operating room utilization in comparison with 

the traditional one. Gür et al. (2024) considered stochastic 

operating room scheduling under the uncertainty of 

operation times. They determined separate coefficients of 

variability for each operation, taking into account the 

variability factors. To evaluate the variability factors, based 

on the PROMETHEE method, in this study, the analytical 

network process method was used. Fallahpour et al. (2024) 

studied the complexities of integrated operating room 

planning and scheduling with a focus on elective and 

emergency patients in an uncertain environment. They 

developed a mixed integer programming model to 

minimize inactivity and patient wait times while 

optimizing high-priority resource allocation. Here, also, an 

enhanced epsilon constraint method was used for the 

proposed model. Rahmani Manshadi (2024) proposed a 

robust mixed-integer binary programming model 

considering different preferences for hospitals, surgeons, 

and patients. To simultaneously maximize the efficiency of 

available resources, minimizing the patients waiting time, 

and minimizing surgery costs, the author utilized the 

augmented epsilon constraint approach. Based on the 

stochastic programming method proposed by Bertsimas 

and Sim, in this model, a rolling horizon method was 

applied to reschedule the program after cancellation. 

Table (1) summarizes the reviewed papers on operating 

room scheduling. As it is clear, no research has discussed 

operating room scheduling concerning virtual alliances. In 

this research, the proposed solution method, along with 

modeling the problem under-study, is also quite innovative.  

 

             Table 1 
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Zonderland et al. (2010)            

van Essen et al. (2012)            

Meskens et al. (2013)            

Wang et al. (2014)            

Xiang et al. (2015)            

Wang et al. (2016)            

Roshanaei et al. (2017a)            

Roshanaei, et al. (2017b)            

Silva and de Souza (2020)            

Behmanesh and Zandieh (2019)            

Roshanaei et al. (2020)            
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Rabbani et al. (2022)            

Lotfi and Behnamian (2022)            

Yang et al. (2023)            

Bargetto et al. (2023)            

Wang et al. (2023)            

Gür et al. (2024)            

Fallahpour et al. (2024)            

Rahmani Manshadi (2024)            

Present study            

 

According to Table 1, it can be said that although a limited 

number of research have tried to solve multi-objective 

problems, but most of the research carried out in the field 

of single-objective scheduling. As expected, the number of 

studies conducted in hospital networks is small, and among 

these studies, Virtual Alliance has not been investigated in 

almost any study. Considering that uncertain conditions are 

closer to the real world, although the number of research 

conducted in this situation is complex, solving the problem 

with uncertainty is almost equal to solving the problem 

with certainty. According to the review conducted here, in 

most studies, elective patients have been considered in 

scheduling. Also, despite the Np-hard nature of the studied 

scheduling problem and the need to use (Meta)heuristic 

algorithms to solve it, most researchers have been 

interested in presenting exact methods in the articles and in 

the meantime, very few papers have used simulation to 

solve the problem. 

3.  Problem Definition and Modeling 

Operating rooms play a key role in healthcare systems and 

are one of the most valuable resources available in any 

hospital for two reasons; (i) deal with the health of the 

patient, and (ii) spend a lot of money and resources from 

hospitals on operating rooms (Heydari & Soudi, 2016). 

Therefore, high flexibility and reduction of operating room 

costs can play an important role in healthcare systems. As 

a result, the involvement of several hospitals and the 

creation of a collaborative hospital is felt more than ever 

today. Hospital managers are also interested in creating 

collaborative hospitals so that they can work in such 

networks to improve the competitive situation and increase 

their patient satisfaction. Sharing distributed resources 

(operating rooms, surgeons, nurses, staff, equipment, and 

transportation) creates collaborative hospitals, one of 

which is the formation of a virtual alliance network. In 

virtual collaborative hospitals, each hospital needs to offer 

services to patients. However, this can be affected by things 

like the technology available in each hospital, how many 

operating rooms they have, and the speed and skills of their 

surgeons. So, in these networks, the main issue is how to 

manage the network’s limited resources based on the needs 

of the hospitals. Therefore, this type of collaboration is part 

of a short-term collaboration and lasts as long as hospitals 

achieve more benefits than when they work individually 

(Behnamian 2014). Also, in this type of network, each 

hospital may have different objective functions to each 

other, which are prioritized compared to the overall 

objective function of the virtual alliance distributed 

scheduling network. Following Lotfi and Behnamian 

(2022), the main assumptions of the model of collaborative 

hospital scheduling of elective and non-elective patients 

are as follows: 

 There are 𝐻 heterogeneous parallel hospitals that 

have parallel operating rooms. 

 Patients are divided into elective patients and non-

elective patients. 

 Non-elective patients are emergency patients. 

 Elective patients should be scheduled that are 

independent of each other. 

 The number of elective and non-elective patients and 

their arrival time is deterministic.  

 Non-elective patients can be postponed to the future 

for a short period in the absence of facilities.  

 Each patient must be assigned to precisely one of the 

hospitals. 

 First, the elective patients and then the emergency 

patients are assigned to the operating rooms. 

 The arrival of the last emergency patient is before the 

end of the surgery of the last elective patient. 

 Surgeons are considered to be the shared resources of 

hospitals. 

 By considering the transportation of patients between 

hospitals, the patient can go to another hospital to 

reduce the waiting time and the completion time. 

 There are always enough ambulances to transport 

patients between hospitals. 

Assuming that each hospital is responsible for providing 

health services to its patients, in order to balance the 

improvement of the overall objective function of the 

network and increase patient satisfaction to reduce waiting 

time, it is possible to transfer patients to a hospital other 

than the hospital of origin for surgery. This can only 

happen, if it is possible to move patients from one hospital 

to another that has an available operating room, or if the 

total time for the patient’s treatment is shorter than the time 

at the hospital they are currently in. Therefore, considering 
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the time of transportation between hospitals has made the 

problem more practical in the real world.  

3.1 Mathematical model 

In this section, based on Lotfi and Behnamian (2022), a 

mixed-integer linear programming model is explained. The 

used indices, parameters, and decision variables are 

introduced below. 

Indices 

𝑝, 𝑝’ = 1, … , 𝑃 Set of elective patients  p, p′ 
𝑒, 𝑒’ = 1, … , 𝐸 Set of emergency patients e, e′ 
i = P ∪E, 𝑖=|𝑃| + |𝐸| Set of patients for surgery 𝑖, 𝑗, 𝑘 
ℎ, 𝑞, 𝑞′ = 1, … , 𝑛 − 1, 𝑛, 𝑛 + 1, … , 𝐻 Set of hospitals ℎ, 𝑞, 𝑞′ 
𝑑 = 1, … , 𝐷 Days of the week, scheduling horizon 𝑑 
𝑠 = 1, … , 𝑆 Set of surgeons 𝑠 

Parameters 
The time interval between hospitals ℎ and 𝑞 thq 
Patient 𝑗 surgery time aj 
Number of operating rooms in each hospital Oh 
If patient 𝑗 is first in hospital ℎ for surgery, he will get a value of one; otherwise, its value will be 

zero 

wjh 

Deadline for emergency patient 𝑒 De 
Skill and speed of the surgeon 𝑠 Vs 
The setup time of the operating room for the patient's surgery 𝑗 prej 

Time to clean the operating room after the patient's surgery 𝑗 cleanj 

Total surgery time of patient 𝑗 includes (setup time, surgery time of patient 𝑗 by surgeon 𝑠 and 

cleaning time of the operating room), 𝑇𝑡𝑗𝑠 = 𝑝𝑟𝑒𝑗 +  (𝑎𝑗/𝑉𝑠)  + 𝑐𝑙𝑒𝑎𝑛𝑗  

Tt(j,s) 

Servicing time of operating rooms in hospital ℎ in day 𝑑 Bhd 

The cost of assigning patient 𝑗 to hospital ℎ by surgeon 𝑠 costjhs 

Cost of overtime opening of the operating room in hospital ℎ in day 𝑑 coshd 

A positive big number M 
Number of patients n 

Decision variables 

If patient 𝑗 is assigned to hospital ℎ on day 𝑑 to surgeon 𝑠 is equal to 1, otherwise 0 yjhds 

If patient 𝑗 is assigned immediately after patient 𝑖 to hospital ℎ on day 𝑑 to surgeon 𝑠 on surgery 𝑑 

is equal to 1, otherwise 0 

xijhds 

If surgeon s in hospital h on day d is equal to 1, otherwise 0 zshd 

A continuous variable of the completion time of surgery of patient j in hospital h on day d Fjhd 

Continuous variable to determine the completion time of surgery of patient j in the hospital of 

origin h 

cjh 

The longest completion time for surgery at the hospital of origin h cmaxh 

The longest completion time of surgery CMmax 

Maximum operating room overtime in hospital h on day d overhd 

In this study, two dummy patients, numbered 0 and 𝑛 +
 1, are created that take no time to process in any hospital 

(𝑐0ℎ = 0). Also, in order to reduce the number of problem 

decision variables, the indices of the number of operating 

rooms in each hospital have been omitted. Additionally, 

zero jobs represent the operating rooms in each hospital. 

The objective function for the first group of hospitals (from 

1 to 𝑛) is the total completion times of surgery. The second 

group (from 𝑛 +  1 to 𝐻) focuses on the time it takes to 

complete the last surgery. 

 

min 𝑧1 = ∑ ∑ 𝑐𝑗ℎ  

𝑛

ℎ=1

𝑛

𝑗=1

 (1) 

min 𝑧2 = 𝐶𝑀𝑚𝑎𝑥 (2) 

min 𝑧3 = ∑ ∑ 𝑐𝑜𝑠𝑡𝑗ℎ . 𝑦𝑗ℎ𝑑𝑠

𝐻

ℎ=1

𝑛

𝑗=1

+ ∑ ∑ 𝑐𝑜𝑠ℎ𝑑

𝐷

𝑑=1

𝐻

ℎ=1

. 𝑜𝑣𝑒𝑟ℎ𝑑  (3) 

𝑠. 𝑡. : ∑ ∑ ∑ 𝑦𝑝ℎ𝑑𝑠

𝑆

𝑠=1

𝐷

𝑑=1

= 1

𝐻

ℎ=1

                              ∀ 𝑝 ∈ {1, … , 𝑛} (4) 
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∑ ∑ ∑ 𝑦𝑒ℎ𝑑𝑠

𝑆

𝑠=1𝑑=𝑑𝑒

= 1

𝐻

ℎ=1

                                       ∀ 𝑒 ∈ {1, … , 𝐸} (5) 

∑ ∑ ∑ ∑ 𝑥𝑝𝑝′ℎ𝑑𝑠

𝑆

𝑠=1

= 1                              ∀ 𝑝′ ∈ {1, … , 𝑃}  

𝐷

𝑑=1

𝐻

ℎ=1

𝑝

𝑝=0
𝑝≠𝑝′

 
(6) 

∑ ∑ ∑ ∑ 𝑥𝑝𝑒ℎ𝑑𝑠

𝑆

𝑠=1

≤ 1

𝐷

𝑑=1

𝐻

ℎ=1

𝑝

𝑝=1

                                ∀ 𝑒 ∈ {1, … , 𝐸} (7) 

∑ ∑ ∑ ∑ 𝑥𝑒𝑒′ℎ𝑑𝑠

𝑆

𝑠=1

≤ 1

𝐷

𝑑=1

𝐻

ℎ=1

𝐸

𝑒=1
𝑒≠𝑒′

                               ∀ 𝑒′ ∈ {1, … , 𝐸} (8) 

∑ ∑ 𝑥0𝑗ℎ𝑑𝑠

𝑆

𝑠=1

= 𝑂ℎ

𝑛

𝑗=1

                                             ∀ ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷} (9) 

∑ ∑ ∑ 𝑥0𝑗ℎ𝑑𝑠

𝑆

𝑠=1

≤ 1                                       ∀ 𝑗 ∈ {1, … , 𝑛}             

𝐷

𝑑=1

𝐻

ℎ=1

 (10) 

∑ 𝑥𝑖𝑗ℎ𝑑𝑠 = 𝑦𝑗ℎ𝑑𝑠

𝑛

𝑖=0
𝑖≠𝑗

                                              ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(11) 

∑ 𝑥𝑗𝑘ℎ𝑑𝑠 = 𝑦𝑗ℎ𝑑𝑠

𝑛+1

𝑘=1
𝑘≠𝑗

                                             ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(12) 

∑ ∑ ∑ 𝑥𝑖𝑗ℎ𝑑𝑠

𝑆

𝑠=1

≤ 1                                        ∀ 𝑖 ∈ {1, … , 𝑛}, 𝑑 ∈ {1, … , 𝐷}            

𝐻

ℎ=1

𝑛

𝑗=1
𝑗≠𝑖

 
(13) 

∑(

𝐻

ℎ=1

𝑥𝑖𝑗ℎ𝑑𝑠 + 𝑥𝑗𝑖ℎ𝑑𝑠) ≤ 1                                  ∀𝑖 ∈ {1, … , 𝑛 − 1}  , 𝑗 > 𝑖 , ∀𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} (14) 

∑ 𝑧ℎ𝑑𝑠 ≤ 1                                                         ∀

𝐻

ℎ=1

 ℎ ∈ {1, … , 𝐻}, 𝑠 ∈ {1, … , 𝑆} (15) 

𝑦𝑗ℎ𝑑𝑠 ≤ 𝑧ℎ𝑑𝑠                                                     ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(16) 

∑ 𝑥𝑖𝑗ℎ𝑑𝑠

𝑛

𝑗=1
𝑗≠𝑖

≤ 1                                                      ∀𝑖 ∈ {0, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(17) 

∑ 𝑇𝑡𝑗𝑠 .

𝑛

𝑖=0
𝑖≠𝑗

𝑥𝑖𝑗ℎ𝑑𝑠  ≤ 𝐵ℎ𝑑                                        ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} (18) 

𝑓𝑗ℎ𝑑 ≥ 𝑇𝑡𝑗𝑠 ∑ 𝑥𝑖𝑗ℎ𝑑𝑠  

𝑛

𝑖=0
𝑖≠𝑗

                                        ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(19) 

𝑓𝑗ℎ𝑑 − 𝑓𝑖ℎ𝑑 ≥ 𝑇𝑡𝑗𝑠 − 𝑀(1 − 𝑥𝑖𝑗ℎ𝑑𝑠)                ∀𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈

                                                                                 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆}                                                                               
(20) 
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𝑐𝑗ℎ ≥ 𝑤𝑗ℎ(𝑓𝑗𝑞𝑑 + 2𝑡(ℎ, 𝑞). 𝑦𝑗𝑞𝑑𝑠)                    ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ, 𝑞 ∈ {1, … , 𝐻}, 

                                                                                𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆}       (21) 

𝑐𝑚𝑎𝑥h ≥ 𝑤𝑗ℎ(𝑓𝑗𝑞𝑑 + 2𝑡(ℎ, 𝑞). 𝑦𝑗𝑞𝑑𝑠)            ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ, 𝑞 ∈ {𝑛 + 1, … , 𝐻}, 

                                                                                𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} 
(22) 

𝐶𝑀𝑚𝑎𝑥 ≥ 𝑐𝑚𝑎𝑥ℎ                                          ∀ ℎ ∈ {𝑛 + 1, … , 𝐻} (23) 

𝑜𝑣𝑒𝑟ℎ𝑑 ≥ 𝐹𝑗ℎ𝑑 − 𝐵ℎ𝑑                                     ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷} 
(24) 

𝑥𝑖𝑗ℎ𝑑𝑠, 𝑦𝑗ℎ𝑑𝑠 , 𝑧𝑠ℎ𝑑  ∈ {0,1}                                𝐶𝑚𝑎𝑥 ≥ 0, 𝐶𝑀𝑚𝑎𝑥  ≥ 0, 𝐶𝑗ℎ ≥ 0, 𝑓𝑗ℎ𝑑 ≥ 0 , 𝑜𝑣𝑒𝑟ℎ𝑑 ≥ 0 (25) 

Objective functions (1) and (2) show the goals of the 

network. Objective function (3) calculates the cost of 

assigning a patient to a hospital and a surgeon, as well as 

the cost of overtime for operating rooms in the entire 

network. Constraint (4) means that each surgery for 

selected patients can only be performed in one hospital, 

takes one day, and requires one surgeon during the 

scheduled time period. Constraint (5) means that each 

emergency patient is associated with one hospital and one 

surgeon on the day of arrival. Constraint (6) states that each 

elective patient in each hospital must be operated on by one 

surgeon only after another in only one hospital. Constraints 

(7) and (8) say that each emergency patient in each hospital 

can only have surgery in one operating room, and this will 

happen only after the elective patients have their surgeries. 

Constraint (9) says that each operating room in every 

hospital must have one dummy patient to start its process. 

Constraint (10) states that after the dummy patient, to each 

operating room, at most one patient can be assigned. 

Constraints (11) and (12) say that if a patient is assigned to 

hospital ℎ on day 𝑑, there is exactly one patient before and 

after her/him. Constraint (13) says that in each operating 

room, only one patient can be operated at a time. Constraint 

(14) prevents situations in which a patient cannot be both 

the next patient and the previous patient for another 

patient. Constraint (15) says that each surgeon can work at 

only one hospital each day. Constraint (16) makes sure that 

if a patient is at hospital ℎ on day 𝑑, then surgeon 𝑠 is also 

in that hospital. Constraint (17) says that at most one 

surgery can be done after each surgery. Constraint (18) 

states that the total completion time taken for the surgery 

must be smaller equal to the time the operating room is 

available. Constraint (19) figures out how long each 

patient's surgery will take at the hospital they are assigned 

to. Constraint (20) shows the relationship between the 

completion time of patient surgery 𝑖, 𝑗, which are 

immediately followed in one operating room. Constraint 

(21) represents the completion time of each patient's 

surgery at her/his origin hospital, including the time 

required to transfer the patient to hospital ℎ. Constraints 

(22) and (23) refer to the makespan. Constraint (24) shows 

the maximum overtime that any hospital can has in its 

operating room for each day. In the end, the model 

variables are explained by Constraint (25). 

3.2 The complexity of the problem 

Given that the parallel machine scheduling problem with 

the objective function of makespan is NP-hard 

(Behnamian, 2014), considering parallel operating room 

scheduling in a hospital is at least as difficult as this. 

Therefore, the scheduling of operating rooms in a 

collaborative hospital has at least the difficulty of a single 

hospital scheduling problem, and thus the distributed 

scheduling of operating rooms will be an NP-hard problem. 

4. Benders' Decomposition Algorithm 

Benders' decomposition model was proposed in 1962 by 

Benders with the objective that instead of solving a large 

and time-consuming problem, smaller problems can be 

solved iteratively, leading to more efficient problem-

solving and reduced solution time (Benders, 1962). The 

flowchart of the Benders' decomposition algorithm is 

shown in Figure (1). 

The general idea of this algorithm is to divide the problem 

into two master problems (MP) and sub-problems 

(ZahediAnaraki & Esmaeilian 2021). The sub-problem 

usually consists of continuous variables, and the master 

problem consists of discrete and mixed variables. So this 

method is widely used in solving mixed-integer 

programming problems (Benders, 2005). After 

decomposing the model into two master and sub-problems, 

the discrete and mixed variables in the master problem 

(MP) are solved, and the solution obtained from the mixed 

variables is fixed and given to the sub-problem (SP). 

Through the following problem, according to the results of 

mixed-fixed variables, other variables of the model are 

solved, and the constraints of the model can be checked 

(Ghezavati 2015). If the mentioned problem solutions 

become infeasible, it leads the model towards convergence 

by producing Bender's cuts (based on repetition).  
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Fig. 1. Benders' decomposition algorithm 

4.1 Multi-objective problem  

In this section, the multi-objective problem must first be 

turned into a single-objective problem. In this regard, the 

epsilon-constraint method is used. In this method, the 

number of objective functions decreases, and the number 

of problem constraints increases. In the epsilon-constraint 

method, among the available objective functions, one of 

them is selected for an objective function. The other 

objective functions are added to constraints by taking into 

account values such as the epsilon (ε), which is determined 

by the decision-maker. The problem then becomes a single-

objective programming model. In the minimization 

problem, a lower bound (epsilon value) is considered for 

those objective functions that are added to the problem as 

a new constraint. Then, the problem is solved with a single-

objective function (Rahimi et al. 2017). Therefore, for this 

reason, we consider an initial value of epsilon (ε) that can 

be changed to create the Pareto frontier to find the 

constraints of the objective function. Then, the desired 

problem is divided into two sections: the master problem 

(MP) and the sub-problem (SP) using the Benders 

decomposition algorithm. 

 

4.2 Implementation details 

In this subsection, the presented model is solved using the 

Benders decomposition algorithm method. According to 

the model, 𝑥𝑖𝑗ℎ𝑑𝑠, 𝑦𝑗ℎ𝑑𝑠 , 𝑧𝑠ℎ𝑑  are part of discrete variables 

and mixed variables, while the variables 

 𝐶𝑚𝑎𝑥 , 𝐶𝑀𝑚𝑎𝑥  , 𝐶𝑗ℎ, 𝑓𝑗ℎ𝑑 ,𝑜𝑣𝑒𝑟ℎ𝑑  are simple continuous 

variables. As a result, the master problem (MP) and the 

sub-problem (SP) are as follows: 
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Master problem: 

min ∑ ∑ 𝑐𝑜𝑠𝑡𝑗ℎ . 𝑦𝑗ℎ𝑑𝑠

𝐻

ℎ=1

𝑛

𝑗=1

 (26) 

Constraints (4) until (18).  (27) 

Equation (26) is part of the discrete variable of Equation 

(3). The solutions obtained from the master problem are 
given in the form of (�̅�, �̅�) with fixed values to the sub-

problem to continue solving the model. 

Sub-problem: 

min ∑ ∑ 𝑐𝑜𝑠ℎ𝑑

𝐷

𝑑=1

𝐻

ℎ=1

. 𝑜𝑣𝑒𝑟ℎ𝑑 (28) 

𝑠. 𝑡. : ∑ ∑ 𝑐𝑗ℎ  ≥ 𝜀1 

𝑛

ℎ=1

𝑛

𝑗=1

 (29) 

𝐶𝑀𝑚𝑎𝑥 ≥ 𝜀2 (30) 

𝑓𝑗ℎ𝑑 ≥ 𝑇𝑡𝑗𝑠 ∑ �̅�𝑖𝑗ℎ𝑑𝑠  

𝑛

𝑖=0
𝑖≠𝑗

        ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} (31) 

𝑓𝑗ℎ𝑑 − 𝑓𝑖ℎ𝑑 ≥ 𝑇𝑡𝑗𝑠 − 𝑀(1 − �̅�𝑖𝑗ℎ𝑑𝑠)        ∀𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗,    ℎ ∈ {1, … , 𝑛}, 𝑑 ∈ {1, . . , 𝑛} , 𝑠 ∈

{1, … , 𝑆} 
(32) 

𝑐𝑗ℎ ≥ 𝑤𝑗ℎ(𝑓𝑗𝑞𝑑 + 2𝑡(ℎ, 𝑞). �̅�𝑗𝑞𝑑𝑠)              ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ, 𝑞 ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠 ∈ {1, … , 𝑆} (33) 

𝑐𝑚𝑎𝑥h ≥ 𝑤𝑗ℎ(𝑓𝑗𝑞𝑑 + 2𝑡(ℎ, 𝑞). �̅�𝑗𝑞𝑑𝑠)         ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ, 𝑞 ∈ {𝑛 + 1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}, 𝑠

∈ {1, … , 𝑆} 
(34) 

𝐶𝑀𝑚𝑎𝑥 ≥ 𝑐𝑚𝑎𝑥ℎ                    ∀ ℎ ∈ {𝑛 + 1, … , 𝐻} (35) 

𝑜𝑣𝑒𝑟ℎ𝑑 ≥ 𝑓𝑗ℎ𝑑 − 𝐵ℎ𝑑              ∀ 𝑗 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷} (36) 

𝐶𝑚𝑎𝑥 ≥ 0, 𝐶𝑀𝑚𝑎𝑥  ≥ 0, 𝐶𝑗ℎ ≥ 0, 𝑓𝑗ℎ𝑑 ≥ 0, 𝑜𝑣𝑒𝑟ℎ𝑑 ≥ 0 (37) 

Dual Benders sub-problem is presented below: 

max 𝑧𝑑𝑠𝑝 = 𝜀1𝑙𝑜 + 𝜀2𝑟𝑜 + ∑ ∑ ∑ ∑ ∑(𝑇𝑡𝑗𝑠 . �̅�𝑖𝑗ℎ𝑑𝑠)

𝑆

𝑠=1

𝐷

𝑑=1

𝐻

ℎ=1

𝑛

𝑗=1

𝑛

𝑖=0
𝑖≠𝑗

. 𝑤𝑜𝑗ℎ𝑑𝑠   

+ ∑ ∑ ∑ ∑ ∑ (𝑇𝑡𝑗𝑠 − 𝑀(1 − �̅�𝑖𝑗ℎ𝑑𝑠))

𝑆

𝑠=1

𝐷

𝑑=1

𝐻

ℎ=1

𝑛

𝑗=1

𝑛

𝑖=1
𝑖≠𝑗

. 𝑢𝑜𝑖𝑗ℎ𝑑𝑠

+ ∑ ∑ ∑ ∑ ∑(𝑤𝑗ℎ . 2𝑡ℎ𝑞 . �̅�𝑗𝑞𝑑𝑠)

𝑆

𝑠=1

𝐷

𝑑=1

𝐻

𝑞=1

𝐻

ℎ=1

𝑛

𝑗=1

. 𝑎𝑜𝑗ℎ𝑞𝑑𝑠

+ ∑ ∑ ∑ ∑ ∑(𝑤𝑗ℎ . 2𝑡ℎ𝑞 . �̅�𝑗𝑞𝑑𝑠).

𝑆

𝑠=1

𝑏𝑜𝑗ℎ𝑞𝑑𝑠

𝐷

𝑑=1

𝐻

𝑞=1

𝐻

ℎ=1

𝑛

𝑗=1

+ ∑ ∑ ∑ 𝐵ℎ𝑑

𝐷

𝑑=1

𝐻

ℎ=1

𝑛

𝑗=1

∗ 𝑒𝑜𝑗ℎ𝑑  

(38) 

𝑠. 𝑡.: 
 

∑ 𝑤𝑜𝑗ℎ𝑑𝑠

𝑆

𝑠=1

− ∑ ∑ 𝑢𝑜𝑖𝑗ℎ𝑑𝑠

𝑆

𝑠=1

𝑛

𝑖=1
𝑖≠𝑗

+ ∑ ∑ 𝑢𝑜𝑘𝑗ℎ𝑑𝑠

𝑆

𝑠=1

𝑛

𝑘=1
𝑘≠𝑗

− ∑ 𝑤𝑗q′

𝐻

q′=1

× (𝑎𝑜𝑗ℎ𝑞𝑑𝑠 − 𝑏𝑜𝑗ℎ𝑔𝑑𝑠) − 𝑒𝑜𝑗ℎ𝑑 ≤ 0     ∀ 𝑗

∈ {1, … , 𝑛}, ℎ, 𝑞 ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷} 

 

(39) 

∑ ∑ ∑ ∑ ∑ 𝑎𝑜𝑗ℎ𝑞𝑑𝑠

𝑆

𝑠=1

𝐷

𝑑=1

𝐻

𝑞=1

𝐻

ℎ=1

𝑛

𝑗=1

≤ 0 (40) 
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∑ ∑ ∑ ∑ 𝑤𝑗ℎ

𝑆

𝑠=1

∗ (

𝐷

𝑑=1

𝐻

𝑞=1

𝑛

𝑗=1

𝑏𝑜𝑗ℎ𝑞𝑑𝑠 − 𝑝𝑜ℎ) ≤ 0           ∀ ℎ ∈ {1, … , 𝐻} (41) 

𝑝𝑜ℎ + 𝑙𝑜 ≤ 0                                                                ∀ ℎ ∈ {1, … , 𝐻} 
(42) 

∑ 𝑒𝑜𝑗ℎ𝑑 ≤ 𝑐𝑜𝑠ℎ𝑑                                                        ∀  ℎ ∈ {1, … , 𝐻}, 𝑑 ∈ {1, … , 𝐷}   

𝑛

𝑗=1

 (43) 

𝑙𝑜, 𝑟𝑜, 𝑤𝑜𝑗ℎ𝑑𝑠 , 𝑢𝑜𝑖𝑗ℎ𝑑𝑠,𝑎𝑜𝑗ℎ𝑞𝑑𝑠 , 𝑝𝑜ℎ , 𝑒𝑜𝑗ℎ𝑑 ≥ 0 (44) 
 

In the above model, the dual variables 

𝑤𝑜𝑗ℎ𝑑𝑠, 𝑢𝑜𝑖𝑗ℎ𝑑𝑠, 𝑎𝑜𝑗ℎ𝑞𝑑𝑠, 𝑏𝑜𝑗ℎ𝑞𝑑𝑠, 𝑝𝑜ℎ, 𝑒𝑜𝑗ℎ𝑑  lo, ro, 

respectively, corresponding to Constraints (29) to ( 36) in 

the sub-problem. The number of cuts can be exponential, 

but only a few of them are active in the optimal solution. 

After each iteration of the Benders algorithm, and checking 

the conditions of optimality and feasibility, the mentioned 

cuts are added to the master problem. Adding Benders cuts 

improves the lower bound (𝐿𝐵) and leads the algorithm to 

convergence. 

5. Computational Results 

In this section, in order to validate the proposed algorithm 

and model, in two small and medium sizes, the Benders 

decomposition algorithm and solver CPLEX GAMS 

software were tested and analyzed for sensitivity analysis. 

The results obtained from the above two methods with a 

one-day and two-day planning horizon are compared. 

5.1 Numerical results 

For this reason, the data used to solve the problem are 

randomly generated. In order to make the assumed 

conditions more realistic, the speed of each surgeon can be 

different and in the range of 𝑉𝑠 ∈ [1,2] is considered. Also, 

the number of operating rooms in each hospital is displayed 

as O(h)=(O1,O2,…). 

 

Table 2 

Compare results with a one-day planning horizon 

Planning horizon (d=1) 

CPLEX Benders decomposition  

Runtime 

(seconds) 

Network 

objective 

function 

𝐶𝑗ℎ 𝐶𝑀𝑚𝑎𝑥 
Runtime 

(seconds) 

Network 

objective 

function 

𝐶𝑗ℎ 𝐶𝑀𝑚𝑎𝑥 

Number 

of 

surgeons 

Number 

of 

operating 

rooms 

Number 

of 

hospitals 

Number of 

emergency 

patients 

Number 

of 

elective 

patients 

No 

19 66675 932.21 340 19 66675 923.21 340 5 (2,1) 2 4 6 1 

27 44770 832.14 251.25 26 44470 832.14 251.25 5 (2,2) 2 4 6 2 

31 29467 510 168.33 26 29967 492.64 172.64 7 (3,2) 2 4 6 3 

86 58882 420.5 235 42 56864 419.46 230.41 7 (1,2,1) 3 4 6 4 

103 35259 522.41 166.16 45 34920 596.88 162.5 9 (3,2,3) 3 4 6 5 

300 129948 1691.37 421.94 131 129570 1550.61 540.71 6 (2,2) 2 6 9 6 

425 109511 1693.02 412.9 136 108817 1623.12 344.09 10 (3,4) 2 6 9 7 

662 71627 1227.87 390.14 198 71058 1186.77 352.13 10 (3,2,2) 3 6 9 8 

694 11715 1032.98 240.76 209 10073 998.32 201.48 14 (4,3,4) 3 6 9 9 

1740 23923 2678.33 469.38 428 23422 2680.08 494.4 10 (4,3) 2 7 13 10 

2152 20305 1786.92 422.4 801 19306 1017.07 399.16 12 (3,3,4) 3 7 13 11 

2820 20112 2042.33 306.89 1232 19889 1967.42 284.01 17 (4,3,4,3) 4 7 13 12 

3364 19734 1083.4 218.27 1359 19021 1036.92 201.99 18 (4,5,4,3) 4 7 13 13 

3600 26002 2019.81 450.36 1980 25633 1956.45 414 14 (3,3,4) 3 10 15 14 

4007 21617 2100.19 521.77 2107 19567 2037.22 482.86 20 (3,5,4,3) 4 10 15 15 

1335.33 45969.7 1371.16 334.37 585.6 45303.46 1334.08 322.97   Average    
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            Table 3 

            Compare results with a two-day planning horizon 

Planning horizon (d=2) 

CPLEX Benders decomposition       

Runtime 

(seconds) 

Network 

objective 

function 

𝐶𝑗ℎ 𝐶𝑀𝑚𝑎𝑥 
Runtime 

(seconds) 

Network 

objective 

function 

𝐶𝑗ℎ 𝐶𝑀𝑚𝑎𝑥 

Number 

of 

surgeons 

Number 
of 

operating 

rooms 

Number 

of 

hospitals 

Number of 

emergency 

patients 

Number 
of 

elective 

patients 

No. 

22 16850 520.71 167.5 22 16850 520.71 167.5 5 (2,1) 2 4 6 1 

45 3225 510 153 45 3225 510 153 5 (2,2) 2 4 6 2 

701 7831 1303.49 296.77 198 7797 1338.18 294.36 7 (2,2) 2 6 9 3 

768 7562 1355.5 18065 203 7547 1206.42 145.49 10 (4,3) 2 6 9 4 

1224 7545 1812 317.66 316 7567 1806.84 257.23 12 (2,3,2) 3 6 9 5 

2349 7669 1382.4 356.74 683 7614 1744.09 316.36 10 (3,4) 2 7 13 6 

3022 9467 732.13 257.23 861 9439 801.42 238.85 12 (2,2,4) 3 7 13 7 

3657 9495 1896.4 282.06 1375 9487 1667.52 278.33 14 (3,1,3,2) 4 7 13 8 

4886 11148 2099.7 203.73 1844 11101 1997.94 258.62 12 (6,5) 2 10 15 9 

7323 9715 1528.1 380.38 1260 9660 1846.17 328.46 14 (3,3,2) 3 10 15 10 

9011 9817 2507 430.84 1046 9803 2445.89 415.24 16 (2,3,2,2) 4 10 15 11 

- - - - 1321 109547 5002.25 991.17 12 (4,3) 2 10 25 12 

- - - - 1860 80068 3990.87 687.81 15 (4,2,3) 3 20 25 13 

- - - - 2593 47451 5095.7 532.4 10 (4,2,2,3) 4 20 25 14 

- - - - 4320 172038 3391.77 817.13 25 (2,2,3,2,3) 5 20 25 15 

- - - - 6312 103961 7006.95 702.09 15 (6,5,6,7) 4 20 50 16 

- - - - 7995 129010 6227.13 951.68 20 (4,5,3,4,3) 4 20 50 17 

- - - - 13808 200504 7996.11 985.17 15 (6,5,6,7) 4 20 50 18 

- - - - 14496 308592 6245.06 1073.92 30 (5,6,4,3,4) 5 20 50 19 

3000.72 9120.36 1422.53 275.14 3178.26 65445 3202.17 510.202 Average 

 

According to the results obtained from tables (2) and (3), 

the high number of collaborations in hospitals in 

collaborative hospitals increases the distributed resources, 

including the number of operating rooms, the number of 

surgeons, and emergency transportation. The mentioned 

results have relatively reduced the total completion time of 

surgeries, the completion time of the last surgery, and the 

reduction of overtime of operating rooms in each hospital. 

It also reduces the costs of operating room surgeries in 

hospitals.  

5.2 Analysis of results 

Figures (2) and (3) show the extent to which the objective 

functions of the problem change relative to the distributed 

resources of operating rooms, the number of surgeons, and 

emergency transportation within the network with a one 

and two-day planning horizon. According to these figures, 

it can be obtained that by decreasing and increasing the 

distributed resources in relation to the number of patients, 

the values of the objective function become relatively 

worse and better, respectively. As a result, with the 

collaboration of more hospitals, the objective function of 

each of them independently and separately will be more 

desirable and better than the situation in which they operate 

independently.
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(b) Total completion time of surgeries (a) Makespan 

  
(d) Runtime (c) Objective function of the network 

Fig. 2. Comparison of the results with a one-day planning horizon 

According to the values of the objective function and the problem-solving runtime in Tables (2) and (3) and Figures (2) to (3), 

it can be concluded that the Benders decomposition algorithm has better performance than CPLEX, and in some cases, CPLEX 

solver cannot solve problems with more than 40 patients (𝑛 ≥ 40). Figure (4) shows the convergence of the Benders 

decomposition algorithm for an example of an operating room scheduling problem with 25 patients, four hospitals, and a two-

day planning horizon. This figure shows the upper and lower bounds of the algorithm per number of iterations. 

 

  
(b) Total completion times of surgeries (a) Makespan 

  
(d) Runtime  (c) Objective function of the network 

Fig. 3. Comparison of the results with a two-day planning horizon 
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Fig. 4. The convergence of the proposed algorithm 

 (for example with 25 patients and four hospitals with d=2) 
 

To further examine the results, statistical analysis has been performed and the results are shown in Tables 4 to 7. Figures 4 and 

5 also show the changes in the behavior of the studied algorithm according to the value of the objective function and the runtime 

for one-day and two-day planning horizons. 
 

Table 4 

 Analysis of variance to compare network objective functions with a one-day planning horizon 

Source DF Sum of squares Mean squares F Pr > F 

Model 1 3330000.833 3330000.833 0.003 0.959 

Error 28 34912515936.133 1246875569.148 
  

Corrected Total 29 34915845936.967 
   

 

Table 5 

 Analysis of variance to compare runtime with a one-day planning horizon 

Source DF Sum of squares Mean squares F Pr > F 

Model 1 4249556.033 4249556.033 3.132 0.088 

Error 28 37989524.933 1356768.748 
  

Corrected Total 29 42239080.967       

      

  
(b) Runtime (a) Network objective functions 

Fig. 5. Comparison of means with a one-day planning horizon 

  

Table 6 

 Analysis of variance to compare network objective functions with a two-day planning horizon 

Source DF Sum of squares Mean squares F Pr > F 

Model 1 2488.909 2488.909 0.000 0.988 

Error 20 216715005.455 10835750.273 
  

Corrected Total 21 216717494.364 
   

 

Table 7 

 Analysis of variance to compare runtime with a two-day planning horizon 

Source DF Sum of squares Mean squares F Pr > F 

Model 1 28762455.682 28762455.682 6.119 0.022 

Error 20 94012221.091 4700611.055 
  

Corrected Total 21 122774676.773 
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(b) Runtime (a) Network objective functions 

Fig. 6. Comparison of means with a two-day planning horizon 

As shown in Table 4 and Table 6, the difference between 

the results is not significant in terms of the overall network 

objective function of the network. The next important point 

in these analyses is the significant difference between the 

runtime results, which are shown in Tables 5 and 7. Here, 

there is complete superiority with the Benders 

decomposition algorithm, so that this algorithm was able to 

achieve a better solution in a completely shorter time. 

5.3 Managerial insights 

According to the research conducted in healthcare systems, 

it can be claimed that operating room scheduling is one of 

the most practical and popular topics among operation 

research researchers. In the meantime, proper scheduling 

of surgeries in operating rooms as expensive resources of 

the hospital has a significant impact on increasing the 

service delivery rate to patients and increasing their 

satisfaction. In this regard, in most of the operating room 

scheduling research, simple assumptions have been used, 

while the development process in health institutions, the 

huge increase in cost and the need to use shared resources 

(considering the importance of health and people's lives) 

caused health systems to move from single agent planning 

to network planning. In fact, this research showed that the 

distributed planning of operating rooms and sharing the 

operating room block in the hospital network has become 

a cost-effective method to improve the efficiency and 

productivity of operating rooms and surgeons. Based on 

tactical management (allocation of surgeons to the 

operating room) and based on the planning of the operating 

room (allocation of surgeries to the operating room), the 

results of this research indicate that collaborative planning 

and scheduling of operating rooms between hospitals 

improves the better use of shared resources and allows the 

allocation of surgeries to surgeons in the entire network in 

an optimal manner. At the same time, the sensitivity 

analysis shows that the higher the number of participants 

in the hospital network, it will relatively reduce the total 

completion time of the surgeries, the makespan and the 

overtime of the operating rooms in each of the participating 

hospitals in the network. Therefore, in order to facilitate 

network management decision-making and optimal use of 

distribution resources, the model presented in this research 

can be used as a suitable management tool for health center 

managers in all public and private hospitals. 

6. Conclusions and Future Suggestions 

Many researchers have considered operating room 

scheduling due to the high costs involved in this area. In 

most of these studies, operating room scheduling is 

considered independently in a hospital. While today, due to 

efforts to reduce system costs by reducing the cost of 

medical systems, hospital managers try to seek to increase 

patient satisfaction and increase resource efficiency. For 

this reason, they try to share the resources and the creation 

of parallel connections between hospitals and the formation 

of collaborative hospitals. In this regard, here, operating 

room planning and scheduling in collaborative hospitals 

with virtual alliances have been considered to increase 

flexibility and reduce hospital costs. In this network, a set 

of hospitals is scheduled by sharing operating rooms, 

surgeons, and emergency transport in a network to reduce 

patients' surgery completion time. In a virtual alliance, each 

hospital may have a different objective function, which has 

a priority over the overall objective function of the 

network. Patients are of both elective and emergency types. 

Considering the patient's transfer from one hospital to 

another, according to the patient's transportation time, the 

conditions of the system under-study have been tried to be 

as close as possible to the real-world systems. Due to the 

Np-hard nature of the problem, the Benders decomposition 

algorithm is proposed and the results are compared with the 

CPLEX solver of the GAMS software. The runtime and the 

results of the problem objective function indicate the 

relative efficiency of the proposed algorithm. Comparing 

the results showed that the runtime of the Benders 

algorithm is quite competitive and based on the analysis of 

variance, there is a significant difference between the 

output of GAMS and the proposed model. Due to the large 

optimization gap that existed in solving the model, the 

Benders algorithm in larger dimensions has been able to 

achieve the optimal solution. In comparison, GAMS has 

not been able to solve large-size instances. Due to the 

novelty of the research investigated in this paper, there are 

many fields of future study for those interested in the field 

of health systems, which can be mentioned on the lateness 

and cancellation of selected patients' surgeries. 

Furthermore, examining the types of effective objective 

functions in the hospital network can also be a suitable 

suggestion for further research. Considering the limited 

number of emergency transport vehicles for moving 

patients among networked hospitals can also be one of the 
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suggestions in this field. Considering nurses' shifts and 

nurses' sharing as resources in the distributed scheduling of 

operating rooms and the scheduling of surgical theaters 

along with related resources can be attractive topics for 

future research. Studying the conditions of uncertainty in 

the time of patients' transportation, surgery and the arrival 

of emergency patients are other suitable future suggestions 

to bring the conditions of the problem closer to the real 

world. In addition, considering the complexity of the 

investigated problem and the inability of exact methods to 

solve these problems in a reasonable time, the use of 

methods based on heuristics and metaheuristics can be a 

suitable research field to continue this work. As the last 

suggestion, we can mention the combination of exact 

methods with heuristic methods as matheuristic algorithms 

to solve the problem to simultaneously achieve the speed 

of the heuristic algorithm and the accuracy of the exact 

methods. 
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