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Abstract 

Data envelopment analysis (DEA) provides performance evaluation for a set of homogeneous decision 

making units (DMUs) in the sense that all DMUs evaluated with the same criteria setting. In some 

settings, however, the assumption of having a common input and output bundle may not hold. Such can 

occur in universities, for example, since they may have different departments, or in hospitals where have 

different wards. This motivates to the issue of how to fairly evaluate efficiency when inputs and outputs 

configurations are different. This paper proposes a three-process methodology that aims at evaluating of a 

set of DMUs when the requirement of homogeneity among inputs and outputs is relaxed. In the first step, 

based on the duality theory a multiplier directional distance function (DDF) model is developed to 

determine an appropriate split of inputs and output. In step 2, the efficiency of a DMU is evaluated in 

terms of each scaled down inputs and outputs. Finally, the overall efficiency score of a DMU is viewed as 

a weighted combination of a set of product lines efficiencies. To demonstrate the validity and 

practicability of the proposed method, we apply it to evaluate the performance of a hypothetical data set. 

The results show that the methodology has the ability to discriminate performance for data with 

nonhomogeneous inputs and outputs. 

Keywords: data envelopment analysis, non-homogeneous inputs and outputs, efficiency evaluation, 

combined-oriented DEA models, linear programming 

1. Introduction 

Data envelopment analysis (DEA), originally introduced by Charnes et al. [7], is a nonparametric 

linear programming (LP) methodology which measures the relative efficiencies of a set of 

decision making units (DMUs). Last four decades has witnessed the great theoretical 

developments and practical applications in DEA literature. The enthusiastic reader is referred to 

some useful surveys includes Cook and Seiford [8], Emrouznejad et al. [11] and Seiford [15]. In 

the conventional DEA models it is assumed that in a multiple-input multiple-output setting, all 

outputs are affected by all inputs. Moreover, these models are based on the assumption that all 

DMUs use the same set of inputs and produce the same set of outputs, making the set of DMUs 

homogeneous.  

In some situations, regarding using the same technology, the assumption of homogeneity among 

DMUs may be violated. As an example, consider the case of a set of food manufacturing 

companies where certain foods do not need nutrition labeling or packaging.  In such setting, if 

one of the inputs is labeling or packaging resources, the mentioned certain foods will not 

influenced by the labeling or packaging resources. Imanirad et al. [12] referred to this as partial 

input to output impacts and extends the conventional DEA methodology to address the problem 



of measuring the technical efficiency in such situations. Cook et al. [9, 10] proposed DEA-based 

models to demonstrate the problem of non-homogeneity of DMUs on the output side. They 

considered a set of steel fabrication plants for evaluating the relative efficiencies of a set of 

DMUs where the input set is common across all DMUs but some plants choose not to 

manufacture certain products. Li et al. [13] investigated the problem of lack of homogeneity on 

the input side and extended the earlier researches of Cook et al. [9, 10] to cover the case where 

different input configurations across a set of DMUs. They developed a DEA-based methodology 

to deal with this situation and applied it to a set of 31 provinces in China in which one of the 

inputs is the quantity of natural resources available to the region and not all regions have the 

same natural resources. Barat et al. [1] developed a three-step procedure to assess cost efficiency 

of nonhomogeneous DMUs with different output configuration. A network DEA methodology is 

proposed by Barat et al. [2] to address the problem of nonhomogeneity in settings where subunits 

operate in the mixed network structure. To deal with the problem of evaluating the relative 

efficiencies of a set of DMUs whose internal structures are nonhomogeneous Barat et al. [3] 

suggested a DEA methodology and applied it to a set of 40 branches of the largest private bank 

in a country in the Middle East.   

There are other situations in which lack of homogeneity on both input and output sides prevails.  

As an example, comparing a set of universities where not all institutions have the same 

departments and hence violated the assumption of homogeneity among both inputs and outputs 

captures the idea. In another setting, consider a set of hospitals acting as the DMUs. Those 

without ICU ward cannot be directly compared to those that do have such ward. A related 

problem that has been widely investigated in the literature and might conceivably be used to treat 

this problem is the missing data problem (see e.g., Thompson et al. [16]). In the current setting, 

however, the issue is not that the data for some inputs and outputs is missing for some DMUs, 

but rather that the DMU does not have those inputs or those certain outputs are not produced. In 

the case of hospitals considering as DMUs, those without ophthalmology ward cannot fairly be 

directly compared to those that have such ward. On the other hand, in the case where a DMU for 

any reason cannot produce a certain products (even decides not to produce that output) or does 

not have a certain input, it would be leaded distorted results if artificially substituting a zero 

value or some average value for the missing measure.  

To handle the problem of DMUs with nonhomogeneous inputs and outputs, one might 

potentially propose dividing the set of DMUs into multiple groups in which all of the members 

of a group using the same inputs and producing the same outputs, and then applying a separate 

DEA evaluation on each group. By using this approach, a DMU is evaluated in comparison to 

those DMUs whose inputs and outputs profiles are identical to its own, specifically only true 

peers. Cook et al. [10] claimed that at least two problems may arise with this approach. The first 

problem is that in some situations to reflect true peers the set of DMUs may be required to be 

split into multiple small subsets. This would cause difficulty to assess meaningful evaluation. 

The other problem is that excluding considerations of partial peers, whose inputs and outputs 



profiles overlap with but not identical to, those of under evaluation DMU may cause failure in 

identifying true best practices. This gives rise to the issue of how to include all DMUs in the 

comparison set to fairly compare a DMU to the others. In this paper we extend the previous 

researches of Cook et al. [10], and Li et al [13] to encompass the general case which is non-

homogeneity on both input and output sides. Generally, this is brought about by viewing the 

process of inputs generating outputs and the process of outputs producing by inputs as being 

divided into some separate processes. We develop a DEA type methodology based on directional 

distance function approach to evaluate these processes.   

The rest of the paper is organized as follows. Section 2 is devoted to the development of DEA-

based model for dealing with the general case of non-homogeneity on both input and output 

sides. Section 3 applies the new methodology to a data set of 25 hypothetical DMUs. 

Conclusions and recommendations appear in section 4.  

2. DEA Model for DMUs with Different Input and Output Configurations 

2.1 Background 

Consider a set J consists of n  DMUs, with input levels, , 1, ,ijx i m , output levels 

, 1, ,rjy r s . In particular, an under evaluation unit is denoted by o J .   Suppose that the 

constant returns to scale (CRS) technology is deemed and 0, 1, ,j j n   are the intensity 

variables. The production possibility set (PPS) is then defined as: 
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By introducing a directional function 
1 1( , ) ( , , , , , ) 0x y x mx y syd d d d  d d d  Chambers et al. 

[4, 5] defined the directional distance function on PPS and proposed the generic directional 

distance model as follows: 
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Model (2) is known as combined-oriented CCR model and ( , )x yd d  shows the moving direction 

in which leads DMUo
 to lie down on efficient frontier. Input-oriented and output-oriented 

models can easily be derived from model (2) by considering 
y d 0  and x d 0 , respectively.  

In the combined-oriented CCR model (2), 0 1o  , and 1 o  is the efficiency score of 

DMUo . If 0 1o  , DMUo  is inefficient, moreover, o iox  shows the amount in which DMUo  

should apply to decrease input i , and 
o roy indicates the amount of extension that has to be 

applied to output r , to make DMUo  efficient. 

It is worth mentioning that when input and output measures are positive, the observed inputs and 

outputs are the usual choice for the directional vectors ( , )x yd d (Portela et al. [14]). The specific 

value of number o  is the inefficiency value obtained as the optimal solution of the next linear 

problem: 
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Model (3) is the envelopment form of the combined-oriented CCR model. Based on the duality 

theory, the fractional multiplier form of the combined-oriented model is as follows: 
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where, the input and output weights are denoted by v  and u , respectively. 0  , is a small non-

Archimedean number used to avoid ignoring any factor in calculating efficiency (Charnes and 

Cooper [6]). In optimality, *

oz  gives the inefficiency score of DMUo , and *1 oz  is the efficiency 

score of DMUo . 

 In models (3) and (4) it is assumed that all the DMUs are homogeneous. Now, consider the 

problem where not all the resources are held by all DMUs and more over not all the products are 

produced by all DMUs. This leads to the case where DMUs have different inputs and outputs 



configurations. We wish to derive the efficiency scores of DMUs in such settings; since not all 

inputs and outputs are common to all DMUs, using the conventional model (3) would not seem 

to be appropriate. In the following subsection we proposed a methodology to address this 

problem. 

2.2 A Directional Distance Function Approach 

Now, we wish to examine a general setting, as in a case of hospitals with various wards, and 

evaluate the efficiencies of a set of DMUs in a situation where not all inputs and outputs are 

common to all DMUs. Assume that DMUs with similar inputs and outputs have been fall into P  

mutually exclusive groups which is denoted by , 1, ,pN p P . Suppose that 
pNI  is the subset of 

inputs that is held by DMUs in 
pN  and 

pNR denotes the subset of outputs that is produced by all 

DMUs in 
pN . To illustrate, consider a simple example where five DMUs have the following 

profiles: 

 Inputs Outputs 

DMU no. I1 I2 I3 I4 Y1 Y2 Y3 

1   -    - 

2 -     -  

3   -     

4 -     -  

5      -  

 

These five DMUs are organized into three subgroups 1N , 2N  and 3N , with those in 1N  

consume three inputs 1 2 4, ,i i i  to produce two outputs 1 2,y y , whereas those in 2N use 2 3 4, ,i i i  to 

produce 1 3,y y , and  DMUs in 3N have all four resources and two outputs 1 2,y y . 

To handle the problem of evaluating the efficiency of a given DMU in such settings, we propose 

proceeding in a three-step procedure. In step 1, we determine an appropriate split of the inputs 

and outputs and denote the proportions by 
ijr  and 

rji , respectively. In fact, for DMU j
, 

ijr  is 

the appropriate proportion of input i  which is consumed by output r . Similarly, 
rji  is the 

appropriate proportion of output r  which is produced by input i . In step 2 the efficiency of a 

DMU in terms of each of its scaled down input and output is evaluated. Step 3 takes a weighted 

average of the efficiency scores as derived in step 2, to get the overall efficiency score of the 

DMU. In the following, we discuss the three steps in detail. 

Step 1. Deriving the split of Inputs and Outputs 

In the first step, for any given DMU, determining proper allocations of each of its input to each 

of its output is of interest. It is worth mentioning that, according to the rule of product there are 



m s  ways to match each input to each of the outputs. We refer to each of the way as splitting 

product line. Since DMUs are nonhomogeneous through different inputs and outputs, all the 

splitting product line do not belong to all the DMUs. Moreover, DMUs in the same DMU group 

(
pN ) have the same product lines. Now, for any DMU in each of the DMU groups we have split 

the production function into the number of its splitting product lines. We argue herein that for 

under evaluation unit, DMUo , if dividing up the inputs and outputs is done in a way that results 

in the best overall or aggregate efficiency score across all of its splitting product lines, it may be 

the best reasonable and acceptable technique to allocate the most appropriate values to alpha and 

beta variables. Additionally, we propose to reasonably present the overall efficiency score of 

DMUo  as the weighted average (convex combination) of the individual splitting product lines 

efficiencies (across all splitting product lines in which are related to 
op

NI  and 
op

NR ). We should 

emphasize that this discussion is on the base of the assumption that a DMU is the sum of its parts 

and there are no economies or dis-economies of scope; in cases where such economies or dis-

economies exist the idea of considering the aggregate efficiency may not be applicable. This 

situation has a connection to concept of non-homogeneity of outputs and non-homogeneity of 

inputs as discussed in Cook et al. [10] and Li et al. [13], respectively. 

As is mentioned earlier, to derive the aggregate or overall efficiency of DMUo  we consider 

representing it as a convex combination of the splitting product line efficiencies. Since both 

inputs and outputs are nonhomogeneous we argue to develop the determination of the   split 

and   split using the fractional multiplier form of the combined-oriented model and via the 

objective of maximizing the overall score. Additionally, the optimal objective value of model (4) 

gives the inefficiency value associated to a specific unit of the sample. Hence, in general terms, 

the following combined-oriented model for DMUo  captures the idea: 
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where, 
prN i  denotes the proportion of output r  for a DMU, pj N which is produced by input i, 

and 
piN r  is the proportion of input i which is used by output r.  

In deriving the inefficiency score for any DMU ,j pj N  by the proposed model (5), we suggest 

that the multipliers be chosen such that the weighted ratio of outputs to inputs for each of the 

splitting product lines to be at or under unity. By doing this, while our model captures the overall 

inefficiency of the DMU, it derives the inefficiency of the splitting product lines for those 

DMUs, simultaneously. In model (5), we impose constraints on the separated splitting product 

lines. At the same time we connect the product lines through the splitting variables   and  , 

specifically by imposing the convex constraints. 

As mentioned earlier, weights
op

iN rw  should be designated in a way that reflects the relative 

importance or contribution of the respective production line (splitting production line that uses 

input i  to produce output r ). One reasonable choice of weights would be to choose them 

according to the contribution of respective production line make to overall production. As we 

adopt combined-oriented model herein, an appropriate and logical choice for the weights from an 

accounting points of view, would be the proportion of sum up the total outputs generated and the 

aggregate inputs consumed by the products line. Hence, we define the weights 
op

iN rw  to be 

assigned to any products line as 
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It is worth noting that model (5) provides different set of alpha and beta splitting variables for 

each DMU j
 in comparison with those of the other sets. 

Model (5) is nonlinear in the present form. Along the lines of the Charnes and Cooper [6], 

transformation model (5) is equivalently converted into a linear problem. First, we should note 

that by the definition of the weights 
op

iN rw  as given by (6), the objective function of model (5) 

mathematically becomes: 
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Then, make the change of variables iNr i iNrz v  and rNi r rNiu  , and note that 
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It is worth noting that the solution of model (8), gives a set of optimal variables * * * *, , ,
p pr i iN r rN i     

which are specific to under evaluation DMU. The optimal proportion of inputs and outputs are 

derived from the foregoing variable transformations, which are given by, * * *

piNr iN r i    and 

* * *

prNi rN i r   . Using these variables the scaled down inputs and outputs can then be allocated 

to the respective splitting product line, namely *

ijr iNr ijx x  and *

prji rN i rjy y , 
pj N . 

Step 2. Deriving the splitting product line efficiency scores 

The purpose of the first step is to determine an appropriate set of scaled down inputs and outputs 

of each product lines for an under evaluation DMU. In step 2, the conventional combined-

oriented CCR model can be applied to each of the splitting product lines. Specifically, we form 

mutually exclusive splitting line subgroup , 1, ,kP k K , where kP  denotes the subset of 

splitting product lines with the property that all of its members appear as the measures of exactly 

the same set of DMUs. Then, let i

kP  and r

kP  denote inputs and outputs of the splitting product 

line set kP , respectively. Moreover, define 
pNL  contains those kP  forming the full splitting 

product line set for any DMU in 
pN , and 

kPT is the set of all DMU groups that have kP  as a 

member, specifically 

{ such that }
k pP p k NT N P L                                                                                                   (9) 



Now, for each DMUo , and each 
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k NP L , solve the following combined-oriented DEA model: 
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The subgroup efficiency score of DMUo , is derived by 1
o ok k

P Pe z  .  

Step 3. Deriving the aggregate efficiency scores 

In the final step the overall efficiency score of DMUo is obtained by taking a weighted average 

of the splitting product lines scores derived from step 2 using the weights defined in (6). It 

should be noted that in computing
op

iN rw , a proper set of ru  and iv  should be used. These values 

are calculated by solving model (8). Moreover, the total value of all resources and the total value 

of all products which are respectively consumed and produced by DMUo  is given by 

N Np p
r ro i ior R i I
y x 

 
   which is scaled to unity as per the first constraint of model (8). 

Therefore, the reduced weights 
o o op p p

iN r rN i ro iN r iow y x   can be considered as an appropriate 

set of weights. Specifically, 
o ok pi r

o ok k

P iN r

i P r P

w w
 

    . 

Theorem. A DMU can be efficient if and only if all of its splitting product line sets are efficient 

as well. 

Proof. On the contrary, assume that a DMU is efficient and at least one of its splitting product 

line is not efficient (specifically, 1
ok

Pe  ). According to the proposed methodology, 

1 1

, 1
o o ok k k

K K

o P P P

k k

e w e w
 

   , and 1
iko

o

Pe  . Since 1
ok

Pe  , then 1oe  , which violates the 

assumption of being efficient of DMUo, hence all of the splitting product lines of under-

evaluating DMU are efficient. On the other hand, suppose that all of the splitting product lines of 

DMUo are efficient. The efficiency of DMUo is the weighted average of these efficient product 

lines, hence the overall efficiency score of DMU is one, and the DMU is efficient. This 

completes the proof.   □ 

3. Numerical Example 



This section includes a numerical illustration of the use of the methodology proposed in the 

foregoing section. We apply the proposed methodology to a set of hypothetical data set involving 

25 DMUs with three inputs and three outputs but with different inputs and outputs 

configurations; both on the input side and output side the commonality of inputs and outputs 

among DMUs is missing. In other words, some DMUs choose not to manufacture certain 

products, and input configuration existing in DMUs might be different from the configuration in 

other DMUs. The DMUs fall into 3 groups as shown in Table 1. Seven of the DMUs have inputs 

I1, I2, and outputs O1 and O2, consisting group N2. DMU group N3, contains inputs I1, I3, and 

outputs O1 and O3. The ten member of group N1 have all three resources and all three products. 

There are nine splitting product lines involved in generating outputs for each DMU in N1 group, 

namely product line 1 which uses input I1 and produce output O1, product line 2 which uses 

input I2 to produce output O1 and so on. DMUs in groups N2 and N3, involves four product 

lines. Table 2 displays data on 25 hypothetical DMUs. 

Now, we use the methodology proposed in the foregoing section and calculate the efficiency 

scores of DMUs. Recall that the purpose of step 1 (model (8)) is to determine the   split and 

  split for each splitting product lines of a DMU such that results in the best overall efficiency 

score (minimum overall inefficiency score) across all of its product lines. Applying model (8), 

the alpha and beta variables for each DMUo  in , 1,2,3pN p   have been derived. The results are 

displayed in Tables 3 and 4. The alpha and beta variables obtained from (8) describe the portions 

of each input and each output in a DMU group that are paired up with each other. Tables 5, 6 

contain the scaled data for the three DMU groups as described in step 1.  

It can be shown that for the DMU profiles in Table 1 the splitting product line sets and the 

respective inputs and output sets i

kP  and r

kP are 
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Then, using the appropriately adjusted data, model (10) is applied to each splitting product line 

subgroups related to under evaluation DMU. The resulting aggregate efficiency scores are 

demonstrated along with their relevant subgroup scores in Table 8. Data which are displayed in 

Table 7 are the product line weights arising from the solution of (8) and are used to derive the 



aggregate efficiency scores. Table 8 demonstrates that DMU 14 has the lowest efficiency score, 

0.44, and DMU 19 with score 1 has the highest efficiency among all DMUs. It is worth 

mentioning that a DMU is efficient if and only if all of its subgroups are efficient as well. 

Moreover, within each subgroup 
kPT at least one of the DMUs is efficient. We note that 9 out of 

25 DMUs show a mix of efficient and inefficient subgroup efficiencies. 

To complete the analysis of this section, we compare the efficiency results obtained by the 

proposed methodology with what the conventional DEA analysis had been rendered by simply 

inserting zero data for any missing inputs and outputs. The results are displayed in the last 

column of Table 8. It is worth noting that having replaced all blank spaces with zeros, a major 

number of DMUs are yielded technically efficient. 10 out of 25 DMUs are reported as efficient 

in evaluating by the conventional combined-oriented DEA model (4) and DMU 15 has the 

lowest efficiency score, 0.70. The results from the conventional DEA analysis and the proposed 

method are not the same to each other. However, there still exist some consistencies, for 

example, if the results from our method identify one DMU is inefficient then the other method 

provide similar conclusions on that DMU. Another interesting phenomenon is that, except for the 

three DMUs, all the efficiency scores by the proposed method are less than the efficiency scores 

by the conventional DEA model. For these three DMUs the efficiency scores of both methods 

are approximately the same. 

4. Conclusions and Further Directions 

In this paper the usual assumption of examining the efficiency of a set of DMUs, requirement of 

homogeneity among DMUs, is relaxed. This motivates us to measure the relative efficiency in 

the presence of different inputs and different outputs configurations across a set of DMUs. This 

environment is related to the problem of missing data which has been extensively addressed in 

the literature, however in the context that the missing value exists but is not available to the 

DMU or the DMU intended to produce it but for a reason none was actually created. Herein, we 

argue that the input/output bundle can differ from one DMU to another and the assumption of 

homogeneity is violated. To address this non-conventional situation in DEA literature we 

develop a DEA-based methodology which considers a DMU as a set of splitting production 

lines. The overall efficiency of a DMU is derived by proceeding in three steps which allows the 

overall efficiency to be viewed as the weighted average of the efficiency scores for the 

subgroups that make up the DMU. To show the practical aspect of the proposed methodology we 

applied our proposed model to a hypothetical data set. The results obtained from the proposed 

approach shown that a DMU will be evaluated efficient if (and only if) it is efficient in all of its 

splitting product line sets. 

The methodology developed in this paper is based on the assumption that no economies or 

diseconomies of scope exists. More explicitly, in this paper it is assumed that subgroups 

efficiencies can be aggregated via a weighted average to provide the overall efficiency score of a 

DMU. Further research is needed to cover the cases where scope consideration is necessary. 



Another suggestion for the extension of research is to accommodate special variables such as 

dual-role factors, undesirable outputs, ordinal data, and bounded data into the models. 

Availability of data The proposed methodology are applied to a set of hypothetical data that is 

inserted in the manuscript. 
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Table 1. DMU profiles 

 Inputs Outputs 

DMU Group I1 I2 I3 O1 O2 O3 

N1       

N2   -   - 

N3  -   -  

 

Table 2. Data 

DMUs  I1 I2 I3 O1 O2 O3 

DMU1 70 123 44 10 3 20 

DMU2 89 162 20 14 9 20 

DMU3 62 137 39 20 5 20 

DMU4 69 136 40 15 4 24 

DMU5 51 147 22 18 8 20 

DMU6 55 132 24 18 5 20 

DMU7 43 140 50 16 7 20 

DMU8 39 170 30 11 8 24 

DMU9 61 145 33 18 6 22 

DMU10 62 147 50 18 4 25 

DMU11 81 146 - 7 9 - 

DMU12 84 117 - 5 8 - 

DMU13 44 161 - 11 7 - 

DMU14 78 135 - 6 3 - 

DMU15 91 167 - 5 5 - 

DMU16 52 162 - 9 7 - 

DMU17 87 149 - 10 7 - 

DMU18 42 - 45 9 - 22 

DMU19 42 - 28 14 - 21 

DMU20 88 - 36 10 - 23 

DMU21 82 - 48 13 - 22 

DMU22 75 - 30 14 - 22 

DMU23 58 - 33 9 - 24 

DMU24 92 - 45 16 - 22 

DMU25 37 - 45 11 - 25 

 

Table 3. Alpha values 

DMUs 1N1 1N2 1N3 2N1 2N2 2N3 3N1 3N2 3N3 

DMU1 0.03 0.37 0.60 0.82 0.03 0.15 0.94 0.03 0.03 

DMU2 0.04 0.37 0.59 0.81 0.04 0.15 0.93 0.04 0.04 

DMU3 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU4 0.03 0.37 0.60 0.81 0.03 0.15 0.93 0.03 0.03 

DMU5 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU6 0.03 0.37 0.60 0.82 0.03 0.15 0.94 0.03 0.03 

DMU7 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU8 0.03 0.37 0.60 0.81 0.03 0.15 0.94 0.03 0.03 

DMU9 0.03 0.37 0.60 0.81 0.03 0.15 0.93 0.03 0.03 

DMU10 0.03 0.37 0.59 0.81 0.03 0.15 0.93 0.03 0.03 

DMU11 0.97 0.03 - 0.03 0.97 - - - - 

DMU12 0.98 0.02 - 0.02 0.98 - - - - 



DMU13 0.98 0.02 - 0.02 0.98 - - - - 

DMU14 0.98 0.02 - 0.02 0.98 - - - - 

DMU15 0.97 0.03 - 0.03 0.97 - - - - 

DMU16 0.98 0.02 - 0.02 0.98 - - - - 

DMU17 0.97 0.03 - 0.03 0.97 - - - - 

DMU18 0.62 - 0.38 - - - 0.01 - 0.99 

DMU19 0.62 - 0.38 - - - 0.01 - 0.99 

DMU20 0.61 - 0.39 - - - 0.02 - 0.98 

DMU21 0.61 - 0.39 - - - 0.02 - 0.98 

DMU22 0.62 - 0.38 - - - 0.02 - 0.98 

DMU23 0.62 - 0.38 - - - 0.02 - 0.98 

DMU24 0.61 - 0.39 - - - 0.02 - 0.98 

DMU25 0.62 - 0.38 - - - 0.01 - 0.99 

 

Table 4. Beta values 

DMUs 1N1 1N2 1N3 2N1 2N2 2N3 3N1 3N2 3N3 

DMU1 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU2 0.02 0.96 0.02 0.96 0.02 0.02 0.51 0.47 0.02 

DMU3 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU4 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU5 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU6 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU7 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU8 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU9 0.02 0.97 0.02 0.97 0.02 0.02 0.52 0.47 0.02 

DMU10 0.02 0.96 0.02 0.96 0.02 0.02 0.52 0.47 0.02 

DMU11 0.99 0.01 - 0.01 0.99 - - - - 

DMU12 0.99 0.01 - 0.01 0.99 - - - - 

DMU13 0.99 0.01 - 0.01 0.99 - - - - 

DMU14 0.99 0.01 - 0.01 0.99 - - - - 

DMU15 0.99 0.01 - 0.01 0.99 - - - - 

DMU16 0.99 0.01 - 0.01 0.99 - - - - 

DMU17 0.99 0.01 - 0.01 0.99 - - - - 

DMU18 0.98 - 0.02 - - - 0.30 - 0.70 

DMU19 0.99 - 0.01 - - - 0.30 - 0.70 

DMU20 0.98 - 0.02 - - - 0.30 - 0.70 

DMU21 0.98 - 0.02 - - - 0.30 - 0.70 

DMU22 0.98 - 0.02 - - - 0.30 - 0.70 

DMU23 0.98 - 0.02 - - - 0.30 - 0.70 

DMU24 0.98 - 0.02 - - - 0.31 - 0.69 

DMU25 0.98 - 0.02 - - - 0.30 - 0.70 

 

Table 5. Scaled inputs 

DMUs 1 1jx   
1 2jx  

1 3jx  
2 1jx  

2 2jx  
2 3jx  

3 1jx  
3 2jx  

3 3jx  

DMU1 2.09 26.09 41.81 100.31 3.68 19.01 41.37 1.32 1.32 

DMU2 3.13 32.96 52.92 131.31 5.70 25.01 18.60 0.70 0.70 

DMU3 2.00 23.05 36.96 111.41 4.42 21.16 36.48 1.26 1.26 

DMU4 2.25 25.64 41.12 110.56 4.43 20.99 37.39 1.30 1.30 

DMU5 1.56 19.00 30.45 119.78 4.50 22.74 20.65 0.67 0.67 

DMU6 1.60 20.52 32.88 107.74 3.85 20.41 22.60 0.70 0.70 

DMU7 1.35 16.00 25.66 113.97 4.39 21.65 46.87 1.57 1.57 

DMU8 1.25 14.50 23.25 138.31 5.43 26.25 28.08 0.96 0.96 

DMU9 1.98 22.66 36.35 117.88 4.72 22.41 30.85 1.07 1.07 



DMU10 2.15 22.97 36.87 119.21 5.10 22.71 46.52 1.74 1.74 

DMU11 78.91 2.08 - 3.75 142.23 - - - - 

DMU12 82.10 1.89 - 2.64 114.36 - - - - 

DMU13 42.94 1.05 - 3.84 157.14 - - - - 

DMU14 76.21 1.79 - 3.10 131.91 - - - - 

DMU15 88.48 2.52 - 4.62 162.38 - - - - 

DMU16 50.72 1.27 - 3.95 158.03 - - - - 

DMU17 84.66 2.33 - 3.99 144.99 - - - - 

DMU18 25.92 - 16.08 - - - 0.65 - 44.34 

DMU19 25.95 - 16.05 - - - 0.38 - 27.62 

DMU20 54.04 - 33.95 - - - 0.67 - 35.33 

DMU21 50.30 - 31.71 - - - 0.94 - 47.06 

DMU22 46.13 - 28.87 - - - 0.52 - 29.48 

DMU23 35.77 - 22.24 - - - 0.51 - 32.50 

DMU24 56.35 - 35.66 - - - 0.94 - 44.06 

DMU25 22.83 - 14.18 - - - 0.67 - 44.33 

 

Table 6. Scaled outputs 

DMUs 1 1jy   
1 2jy  

1 3jy  
2 1jy  

2 2jy  
2 3jy  

3 1jy  
3 2jy  

3 3jy  

DMU1 0.16 9.68 0.16 2.90 0.05 0.05 10.34 9.34 0.32 

DMU2 0.26 13.47 0.26 8.66 0.17 0.17 10.30 9.32 0.37 

DMU3 0.34 19.31 0.34 4.83 0.09 0.09 10.32 9.33 0.34 

DMU4 0.26 14.48 0.26 3.86 0.07 0.07 12.38 11.20 0.42 

DMU5 0.29 17.41 0.29 7.74 0.13 0.13 10.34 9.34 0.33 

DMU6 0.28 17.44 0.28 4.84 0.08 0.08 10.35 9.34 0.31 

DMU7 0.27 15.46 0.27 6.77 0.12 0.12 10.33 9.33 0.33 

DMU8 0.19 10.63 0.19 7.73 0.14 0.14 12.39 11.20 0.41 

DMU9 0.31 17.38 0.31 5.79 0.10 0.10 11.35 10.26 0.38 

DMU10 0.33 17.33 0.33 3.85 0.07 0.07 12.88 11.66 0.46 

DMU11 6.90 0.10 - 0.12 8.88 - - - - 

DMU12 4.94 0.06 - 0.10 7.90 - - - - 

DMU13 10.86 0.14 - 0.09 6.91 - - - - 

DMU14 5.93 0.07 - 0.04 2.96 - - - - 

DMU15 4.93 0.07 - 0.07 4.93 - - - - 

DMU16 8.88 0.12 - 0.09 6.91 - - - - 

DMU17 9.86 0.14 - 0.10 6.90 - - - - 

DMU18 8.86 - 0.14 - - - 6.63 - 15.37 

DMU19 13.80 - 0.20 - - - 6.32 - 14.69 

DMU20 9.80 - 0.20 - - - 6.99 - 16.01 

DMU21 12.73 - 0.27 - - - 6.70 - 15.30 

DMU22 13.74 - 0.26 - - - 6.67 - 15.33 

DMU23 8.85 - 0.15 - - - 7.24 - 16.76 

DMU24 15.65 - 0.35 - - - 6.71 - 15.28 

DMU25 10.83 - 0.18 - - - 7.54 - 17.46 

 

Table 7. Weights 

DMUs w1N1 w1N2 w1N3 w2N1 w2N2 w2N3 w3N1 w3N2 w3N3 

DMU1 0.008 0.107 0.193 0.407 0.014 0.105 0.154 0.005 0.006 

DMU2 0.011 0.133 0.201 0.461 0.019 0.109 0.060 0.003 0.003 

DMU3 0.008 0.099 0.167 0.462 0.016 0.108 0.130 0.005 0.006 

DMU4 0.009 0.102 0.186 0.434 0.016 0.112 0.131 0.005 0.006 

DMU5 0.007 0.101 0.153 0.516 0.017 0.121 0.079 0.003 0.004 

DMU6 0.007 0.100 0.170 0.493 0.015 0.117 0.090 0.003 0.004 



DMU7 0.006 0.082 0.130 0.469 0.016 0.112 0.171 0.006 0.007 

DMU8 0.005 0.079 0.126 0.528 0.020 0.133 0.100 0.004 0.005 

DMU9 0.008 0.100 0.167 0.475 0.017 0.115 0.109 0.004 0.005 

DMU10 0.008 0.088 0.163 0.446 0.017 0.112 0.153 0.006 0.007 

DMU11 0.353 0.009 - 0.016 0.622 - - - - 

DMU12 0.407 0.009 - 0.013 0.571 - - - - 

DMU13 0.241 0.005 - 0.018 0.736 - - - - 

DMU14 0.370 0.008 - 0.014 0.607 - - - - 

DMU15 0.349 0.010 - 0.018 0.624 - - - - 

DMU16 0.259 0.006 - 0.018 0.717 - - - - 

DMU17 0.374 0.010 - 0.016 0.600 - - - - 

DMU18 0.295 - 0.192 - - - 0.007 - 0.506 

DMU19 0.379 - 0.213 - - - 0.006 - 0.403 

DMU20 0.407 - 0.261 - - - 0.006 - 0.327 

DMU21 0.382 - 0.233 - - - 0.007 - 0.378 

DMU22 0.425 - 0.252 - - - 0.005 - 0.318 

DMU23 0.360 - 0.238 - - - 0.005 - 0.397 

DMU24 0.411 - 0.242 - - - 0.007 - 0.339 

DMU25 0.285 - 0.184 - - - 0.007 - 0.524 

 

Table 8. Efficiency results 

DMUs 
1

o

pe   
2

o

pe  
3

o

pe  
4

o

pe  
Overall 

Efficiency 

Conventional 

Combined-

oriented 

Efficiency 

DMU1 0.25 0.74 0.55 0.96 0.69 0.73 
DMU2 0.27 1 1 1 0.99 1 
DMU3 0.49 1 0.94 0.96 0.97 0.96 
DMU4 0.36 0.87 0.76 1 0.84 0.85 
DMU5 0.52 1 1 1 0.99 1 
DMU6 0.49 0.99 0.94 1 0.97 0.98 
DMU7 0.54 1 0.9 1 0.96 1 
DMU8 0.44 0.92 0.84 0.99 0.9 1 
DMU9 0.46 0.96 0.92 0.99 0.94 0.92 

DMU10 0.45 0.94 0.88 0.98 0.92 0.91 
DMU11 0.28 0.99 - - 0.73 1 
DMU12 0.2 1 - - 0.67 1 
DMU13 0.64 1 - - 0.91 1 
DMU14 0.26 0.55 - - 0.44 0.78 
DMU15 0.19 0.63 - - 0.47 0.7 
DMU16 0.5 0.96 - - 0.84 0.96 
DMU17 0.36 0.84 - - 0.66 1 
DMU18 0.78 - 0.91 - 0.87 0.91 
DMU19 1 - 1 - 1 1 
DMU20 0.51 - 0.92 - 0.75 0.92 
DMU21 0.64 - 0.83 - 0.75 0.76 
DMU22 0.72 - 1 - 0.88 0.99 
DMU23 0.64 - 0.98 - 0.85 0.98 
DMU24 0.69 - 0.94 - 0.83 0.83 
DMU25 0.94 - 1 - 0.98 1 

 



 

 


