ارزيابى برخى خصوصيات جوانهزنى بذر و بنيه كياهجٍه ارقام مختلف چغندر قند با آزمون بيرى تسريع شده

$$
\begin{aligned}
& \text { الههه آزادى'، آيدين حميدى 「** ، شهرام شعاعى 「، فلورا نظرى「 } \\
& \text { ا- دانش آموخته كارشناسى ارشد علوم و تكنولورڤى بذر، گروه علوم و تكنولوزى بذر، واحـد آشـتيان، دانشــاه آزاد اسـلامى، } \\
& \text { آشتيان، ايران }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r- گ- گروه علوم وتكنولورثى بذر، واحد آشتيان، دانشگاه آزاد اسلامى، آشتيان، ايران }
\end{aligned}
$$

چچیده

بهمنظور ارزيابى برخى خصوصيات مرتبط با جوانهزنى بذر و بنيؤ گیاهحه شش رقم چچغندرقند تك جوانها آزمون پيرى تسريع شده، يثروهشى بهصورت فاكتوريل
 تيمارهاى آزمايش شامل ارقام توكان（Toucan）، دوروتيا（Doreata）، رستا（Rasta）، تربت（SBSIO04）، پارس

 ميلى متر از قابليت جوانهزنى بذر بيشتر و بنيه كياهِهُ قوى وازههاى كليدى：ارقام مونوررم چغندرقند، قابليت جوانهزنى، بنيه گیاهحچه، پيرى تسريع شده
＊＊نتارنده مسئول a．hamidi＠areeo．ac．ir
2011). قـونامنيـه، قابليـتجوانـهزنــ، بنيـهـ
 مهمهترين جنـبههاى كيفيت بذر محسوب مىگردند (Van Gastel et al., 1996).

قابليت جوانــهزنى(درصـد جوانــهزنـى نههـايى) شاخص كيفيت رويش بذر است. كيفيت بــر مجموعهاى از ويزگگى هاى زنتيكـى، فيزيكـىى، فيزيولوزيكى و سلامت بذر است كه در شكل گَيرى گَياهان قوى نقـش دارد. بنابــه تعريـف انجمن بين المللى آزمــون بــنر (ISTA) ¢ُنـيــهٔ بذر عبارت است از: مجموع خصوصياتى ازبذر، كه سطح بالقوء́ فعاليت و كارايـى بــنريا تــودهُ بذرى رابه هنگام جوانهزنى و ظهــور گییاهچحـه تعيين مىنمايد (Powell, 2007).

اندازه بذر از مهمر ترين خصوصيات مرتبط با ظرفيت جوانهزنى و بنيه اوليه بذر محسوب

مى شود (Castro et al., 2007). فونتز و (Fontes \& Ohlrogge, 1972) الروگ گزارش كردند كه بذرهاى درشت سويا در

- Viability
${ }^{2}$ - Germinability
${ }^{3}$ - Seed vigor
${ }^{4}$ - Longevity
${ }^{5}$ - Seed health
${ }^{6}$ - International Seed Testing Association

مقلمه

چغندرقند (.Beta vulgaris L) گیياه زراعى و صنعتى است كه علاوه بر توليــد شـكر، مـواد خام با ارزشى نيز بــراى دامٌــرورى و صـنعت توليد مى كند. طبق آمار سـازمان خواروبـار و

كشاورزی ملل متحد (FAO)، در سـال r تعداد معــادل F/FFA ميليــون هكتــار بــه كشــت
 ميانگين عملكرد QS/Y كردند (FAO, 2014a). برطبـق آخـرين آمـار وزارت جهادكشــاورزی در ســال زراعــى 9r|rqr سطح كشت، ميـزان توليــد و عملكـرد ريشه در هكتار چغندرقند كشــور بــهترتيـب
 SAVYM
.(Ministry of Jihad-e-Agriculture, 2016) بذر مهمترين نهادهٔ توليدات زراعى است و بذر باكيفيـت، جــزء كليــدى بــراى اطمينــان از دستيابى به ظهور سريع و يكنواخت گیاهچــهـ George, (و تراكم بوته مطلوب درمزرعه است

يكنواخت گیياهچه آن است. بنــابراين يكــى از مهمهترين عوامل تأثير گذار در توليد محصـول مطلـوب چغنـدرقنــد اســتفاده از بــنرهايى بــا اندازههاى مطلوب است. توده بذر چغنـدرقنــد معمولاً تر كيبىى نامتتجـانس از ميـوهوهـايى بــا انــدازههاى متفـاوت، درجــههـاى مختلــف از رسيدگى، سرعت جوانهزنى، غلظت تر كيبـات بازدارنـــده جوانـــهزنـــى در پوســـته و ســــاير خصوصيات مربوط به بذر مىباشد كه موجب افــزايش تغـييــرات جـوانــهزنــى در تــوده بــنر مى گردد. بذرهاى درشت و سنگیين از پوسـته ضخيمى برخودار مىباشند و تفاوت وزنى بين بذرها بيشتر به وزن برونبر (پريکارپ) پوسته ميوه مربوط است (Snyder, 1963). Fatollah Taleghani et (bالقانى و همكاران (al., 2002 درصــد وزن طبــقه هــاى مخـتــلـف انـدازه و قوهناميه بـنـرهــاى يـــ تــوده رقــم تـجــارى
 قوهناميه را مربوط بــه بــذرهاى درجــبنــدى شده با غربال داراى سوراخهاى مستطيلى بــا قطر بزر گَتر از

مقايسه با بذرهاى ريز، ازلحاظ جوانهزنى، بنيه و عملكرد محصول در وضعيت بهتترى قرار دارند بهطور كلى، در شرايط مزرعهاى بذرهاى درشتتر گییاهچچهاى قوىترى را در مقايسه با بذرهاى ريز به وجود مى آورند.اندازه بزر گتر بذر همحِنين ممكن است در بضىى از گیاهان زراعى به افزايش محصول نهايیى منجر كردد (Lowe \& Rise, 1973). مكدونالد (McDonald, 1999) تعدادى از گونهها مانند گَندم، جو، پنبه، سويا و شبدر وزن بذر با بنئ آن همبستگى بالايى دارد. از ميان عوامل مؤثر بر كيفيت بذر چجندرقند نيز در وهله نخست اندازه بذر و توانيای خروج Longden, (جوانه اوليه از اهميت برخور دارند 1986). بذر حقيقى چچندرقند نسبتاً كوچکى بــوده و وزن آن شــامل يوسـته، جنــين و پريسيرم بالغ بره ميلى گرم مى، اششد. ازايـنرو جوانهزنى بذر و ظهور گیياهجئجوان و استقرار بوته در شرايط مزرعه يكى از مراحل بحرانى در توليد چغندرقند و كيفيت نامطلوب بــر يكى از مـهمترين دلايـل عـدم ظهور كـافى و

مشابهى مى گردد. مشـاهده شـده بـا سـايش مكانيكى و شستشوى برونبر ميوه چغندرقند مواد شيميايى بازدارنده جوانهزنى حذف شده و درنتيجـــه پتانســـيل آب افــزايش يافتـــه و جوانـــهزنــى و بنيــه بــذر افــزايش يافتنـــد (Orzeszko-Rywka \& Podlaski, 2003) مواد بازدارنده از نفوذ اكسيزن و آب به داخل جنين جلوگيرى مـىنماينـد (Junttila, 1976). براساس تحقيقات اسيندر و فيلبان (Snyder \& (Filban. 1970 كيفيت بذر همبســتگى وجـود دارد. اســكات همكاران (Scott et al., 1974) بين اندازه بـذر و جوانهزنى و بنيـهـ بـذر و گیياهچــه و عملكـرد ريشه چغندرقند همبستگگى مثبـت مشـاهده كردند. همچچنين گزارش كردند كه بين اندازه بذر تكـجوانهاى (مونـوزرم) و انـدازه جنـين، وزن + • • ابذر و وزن • • • ا بذر حقيقى (زرم) همبستگى مثبتى وجود داشته، بهطورى كـه با بزر گتر بودن اندازه بذر، اندازه جنين بزر گتر بوده كه اين موضـوع سـبب جوانــهزدن بهتـر مــى گَردد.براســـاس گـــزارش ميلوشــويیج و همكـاران (Milocevic et al., 1992) بــذرهاى

از

قطر بزر گتــر از
بيش از اثـر انــدازه بـذر، ســايش و پـوكىگيـرى بــنر چغندرقند تكجوانهاى رقـمم گــدوك توسـط Zhegini \& Etehad,) چگَينــى و اتحــاد 2010) نيز رابطه مثبت درصد جوانـهزنــى بـا وزن هزار دانه و افزايش وزن جنين با افزايش وزن هزار دانه را نشان داند. وجود نمـكـهـاى معـدنى آمونيـوم، سـديمم و پتاسيم و اسيدهاى آلى مانند اسيداگزاليک و مواد فنلــى، ســيس-Y - سـيكلوهگزن-Y، ديكربوكسيميدوُ اسيدآبسيزيك از مهــمتــرين مواد ممانعت كننده جوانهزنى بذر جــدا شـده از پـوسته ميوه چـغــندرقـنــد مـى.بـاشـــند (Lexander, 1980) فرآينـد سـايش پوسـته ميوه چغندرقند در طى فرآورى بـذر موجـب جداشــدن بخــش زيــادى از لايــه پارانشــيـم متخلخل پوسته و درنتيجه حـذف بخشـى از مواد شيميايى ممانعت كننده جوانهزنـى بــذر گرديده و شستشوى بذر نيز منجر به نتيجــه

[^0]كه معمولاً بايد توسط متخصصين انجام شود، نياز دارد و بذرهاى تكجوانهاى زنتيكى نيز براى دستيابى به بذرهاى داراى اندازه مناسب و حبكنواخت پوششداركردن با دستگاه صيقلدهنده٪ صيقل مىشوند تا بخشى از برونبر حاوى مواد ممانعتكننده جوانهزنى از آن جدا شود و سپس با دقت بيشترى درجهبندى اندازه و گرانشى مىشوند بهطورىكه ممكن است تاهV درصد توده بذر خام اوليه درخلال فرآورى بذر چچندرقند از آن جداشود (Desai, 2004). پيرى تسريع شده بهعنوان روشى كه در مدت كوتاهى اطلاعاتى در مورد بنئ بذر در اختيار قرار مىدهد به وفور مورد استفاده قرار مى گيرد. با اين روش، تغييرات سلولى كه در مدت نگَهدارى طولانى مدت در بذر اتفاق مىافتد از طريق قرار دادن كوتاه مدت بذر در معرض دماى بالا (FD-F • سانتى گراد) همراه با رطوبت زياد(رطوبت نسبى ••1 درصد) قابل شبيهسازى است (Delouche \& Baskin, 1983)
${ }^{2}$ - Pelleting
${ }^{3}$ - Coating
${ }^{4}$ - Polisher

ارقام مختلف چغندرقند هيبريد تكجوانـهاى مـورد بررسـى ازنظـر جــذب آب بـراى آغـاز جوانهزنى بايكديگَر تفاوت داشتند و بـذرهاى
 بيشـترى جــذب و ســريعتـر جوانــه بزنــــد. بذرهاى بزر گَتر يعنى بذرهاى بـا قطـر ميلىمتر و Y/ $ا$ ميلــمتـر ميـزان درصـد جــذب آب را داشــتند. همچنــين كلاهــک' بذرهاى بزرگ با قدرت بيشترى به پوسته بذر متصل بوده ولى كلاهك بذرهاى ريز، سريعتر و بيشـتر جــدا مـى شــود. بررسـى كــاتوز و همكاران (Catusse et al., 2011) نشاندادند كه ظرفيت توليد پـروتئين و اجـزاى مسـيرهاى علامــتدهــى اسيدآبســيزيك مهــمرتـــرين سازوكارهاى فيزيولوزيكـ مـؤثر بــر بنيـهـ بـــر چغندرقند هستند.

اندازه بذر چغندرقند تحت تأثير عواملى از قبيل زنتيك، شرايط محيطى در دوره تشكيل و رسيدگى بذر روى گياه مادرى قرار داشته و بهوسيله فرآورى قابل تغيير و تنظيم است. بذر چغندرقند به فرآورى بسيار دقيقى

[^1]درحال حاضر در كشور حدود هاتا•Y درصد
بذر منوزرم كه اندازه آن بين؟ تا M/T ميلىمتر مىباشد، درخلال عمليات فرآورى حذف مىشود كه شامل حدود Qاتا•r تن بذر مىباشد كه از ارزش اقتصاى قابل ملاحظهاى برخوردار است. باوجود اين كه به طور معمول بذرهاى فرآورى و بسته بندى شده چغندرقند بايد از اندازه پهناى يكنواختى برخوردار باشند، اما باتوجه به مشاهده تفاوت در اندازه پههناى بذرهاى بستهبندى شده وارداتى و توليد شده در كشور و لزوم برخوردارى اين بذرها از اندازه استاندارد براى گواهىشدن بهميزان حداقل؟ ميلىمتر و F/VD F/VA ميلىمتر براى بذرهاى ارقام تك جوانه ای چگندرقند، و مجاز به گواهىبودن درصد بذرهاى فاقد اندازه پیهناى استاندارد، حداكثر به ميزان؟ درصد نمونه، اين تحقيق بهمنظورارزيابى اثر اندازه بذر بر برخى خصوصيات مرتبط با جوانهزنى بذر و بنيةٔ گیاهچֶه \&رقم داخلى و خارجى تكجوانه|یِغندرقندكه از بيشترین ميزان مصرف و توليد در كشور برخوردار

تسريع شده، امروزه در گیياهان زراعى داراى بذر درشت محدود شده است در مورد بذر سبزيجات، گل ها و گياهان چمنى به علت جذب سريع رطوبت توسط آنها، كاربرد كمترى دارد (Bustamante et al., 1984). سيلوا و همكاران (Silva et al., 2006) با ارزيابى نتايج آزمونهاى جوانهزنى، پيرى تسريع شده (تحت دماى FY درجه سانتى Fراد به مدت VY YA MY، ساعت) و فرسودگى كنترل شده (با قراردادن بذرهاى

 درجه سانتى گراد) و ارزيابىى ظهور گیاهچچه در مزرعه توده بذرهاىه رقم پغندرقند، FY ساعت VY تر و و درجه سانتى گراد در آزمون پيرى تسريع شده
 بذرهاى داراى رطوبت YY درصد براى آزمون فرسودگى كنترل شده را براى ارزيابى ظرفيت بالقوه فيزيولوزيكى بنيه بذر برخوردار از حساسيت كافى دانستند.
(Rasta) و سه رقم داخلى كه بذر آنها تحت گواهى مؤسسه تحقيقات ثبت و گواهى بذر و نهال توسط مؤسسه تحقيقات چغندرقند توليد مىشوند، شامل (SBSI004)، چارس (SBSI005) و شريف بودند. رقم تو كان تک جوانهاى (SBSI006)

با منشاء كشور فرانسه و معرفى شده در سال | و و مقاوم به رايزومونيا و نماتد و متحمل به ساقهروى (بولتينگ) و ساز گار با كليه مناطق سرد و معتدل كشوراست. رقم دوروتى و رستا نيز از ارقام هيبريد با منشاء كشور سوئد بوده
 معرفى شدهاند. رقم دوروتى مقاوم به ريزومانيا و ريزوكتونيا با تيپ رشد بهاره و رقم رستا مقاوم به ريزومانيا و متحمل به ساقه روى و مناسب براى كشت بهاره و پاييزه هستند. رقم تربت (SBSI004) رقمى مقاوم به بيمارى رايزومونيا و عملكرد ريشه، عيار قند و عملكرد شكر سفيد زياد از تيپ كشت بهاره و قابل كشت در مناطق معتدل و نسبتاً خنک است. رقم پارس (SBSI005)

بودند، شامل ارقام خارجى تو كان (Toucan)، دوروتيا (Dorotea) و رستا (Rasta) و ارقام داخلى (SBSI004)، تربت (SBSI005) و شريف (SBSI006) با استفاده از آزمون پيرى تسريع شده، با هدف تعيين مناسبترين اندازه بذر به اجرا در آمد.

مواد و روشها

بهمنظور ارزيابى اثر اندازء بذر در ارقام مختلف چغندرقند بر برخى خصوصيات مرتبط با جوانه زنى و بنيهٔ گياهچه با استفاده از آزمون پيرى تسریع شده، پزوهشى در آزمايشگاه تجزيه كيفى بذر مؤسسه تحقيقات ثبت و گواهى بذر و نهال كرج در سال ه^ به اجرا درآمد. طرح آزمايشى مورداستفاده فاكتوريل دو عاملى F×9 (شش رقم و چههار اندازه چهناى بذر) با چهار تكرار در قالب طرح كاملاً تصادفى بود. ششرقم موردبررسى در اين تحقيق شامل سه رقم خارجى كه بيشترين ميزان واردات بذر را در سالهاى اخير بهخود اختصاص دادهاند، شامل ارقام تو كان (Toucan)، دوروتى (Dorotea) و رستا

تعداد . • ب بذر به صورت (■•ه بذر در هر تكرار) به صورت يك لايه روى سطح مشبك ظرف پيرى درونى قرار گرفت و• ظرف درونى ريخته شد. سپس ظرفهاى كشت شده به اين نحو به مدت VY ساعت در دماى YY درجهٔ سانتى گراد درون آون قرار گرفتند. سپس براى ارزيابى برخى خصوصيات جوانهزنى و بنيه بذر اندازه هاى مورد بررسى بذر، آزمون جوانهزنى استاندارد طبق روش استاندارد انجمن بين المللى آزمون بذر (ISTA) به شرح زير انجام شد. براى انجام آزمون جواننزنى استاندارد ابتدا از هــر نمونــه بــذرهاى هــر تيمــار بــهـــور تصادفى • • بذر (Y تكرار •ه تايى) انتخاب و درون دستگاه شستشوى بذر چغندرقند با آب روان در دماى • 「 درجئ سانتى گراد به مدت ساعت شستشـو شـدند. ســپس بــذرهاى هـر تيمار و تكرار درون كاغذ جوانهزنـى چــيندار داراى •ه خانه با ارتفاع خانههاى\1 ميلىمتر و طول 「 سانتىمتر كشت و بـا • م ميلـىليتـر
${ }^{1}$ - Pleated germination paper

رقمى مقاوم به رايزومونيا از تيپ كشت بهاره و قابل كشت در مناطق معتدل و سردسير بوده و رقم شريف (SBSI006) عملكرد ريشه زياد، عيار قند متوسط، عملكرد شكر سفيد متوسط و ناخالصىهاى سديم، پتاسیه و آلفا آمين و نيتروزن كم و خلوص متوسط و متحمل به ساقه روى با تيپ كشت پاييزه قابل كشت در مناطقى با شرايط اقليمى مشابه خوزستان مىباشد) Seed and Plant Certification and Registration Institute, 2012). باتوجه به تفاوت اندازه پهناى بذرهاى بستهبندى شده چغندرقند ارقام خارجى و داخلى و مبتنىبر استاندارد ملى اندازه بذر كشور، عامل اندازه پهناى بذر نيز در چهار سطحז، r، r/ ra و r/ براى اجراى آزمون پيرى تسريع شده به روش مندرج (2006) Silva et al ابتدا به روش استاندارد انجمن بين المللى آزمون بذر ميزان رطوبت بذرها تعيين گرديد. در اين روش با خشك كردن Y/T گرم از بذرهاى ارقام مورد بررسى در دماى
 ساعت، ميزان رطوبت تعيين شد. سیس

بذرهاى جوانهزده با استفاده از رابطه ا تعيين شد (Ranal \& De Santana,2006). FGP $=100 \times(\mathrm{Ni} / \mathrm{S}) \quad:(1$ (رابطه)

در اين رابطه FGP درصد جوانهزنىنهايى وNi تعداد بذرهاى جوانهزده در روزأام و S تعداد كل بذرهاى كشت شده مىباشند.

متوسط زمان جوانهزنى برحسب روز با استفاده از رابطه ז، محاسبه شد.

MGT $=\sum \mathrm{NiTi} / \sum \mathrm{Ni}$
(رابطه Y):

در اين رابطه MGT متوسط زمان جوانهزنى(برحسب روز)، Niتعداد بذرهاى جوانهزده در روز i ام و Ti روز بعد از كشت است (Ranal \& De Santana, 2006). سرعت جوانهزنى كه يكى از بارزترين شاخصههاى بنيه بذراست براساس رابطهr محاسبه شد. GR $=\sum \mathrm{Ni} / \mathrm{Ti} \quad$ (رابطهr)

در اين رابطه، GR = سرعت جوانــزنى(تعـداد بــذرهاى جوانـهزده در هــر روز)، و Ni تعـداد بذرهاى جوانهزده در روز اiم و Ti تعداد روز تا

Ranal \& De Santana,) شمارش iام اسـت
.(2006

آب خيس شـده و نمونـههـا در جعبـههــاى

قرار داده شـدند. ســس درون زرمينـاتور بـا
 قرار گرفتند.
(International Seed Testing Association, 2014)
گیاهچهههاى عادى براساس معيارهاى انجمـن بـين المللـى آزمـون بــنر (ISTA) ارزيـابى و International Seed Testing) تعيــين شـدند
.(Association, 2013
بهمنظور تعيين شاخصهاى مرتبط با قابليت جوانهزنى و بنيئ بذر، درصد جوانهزنى نهايى؛ متوسطزمان جوانهزنى؛ ضريب يكنواختىجوانهزنى (CUG)؛ درمدت دوره آزمون جوانهزنى استاندارد بهطور روزانه ظرفهاى كشتشده مورد بازديد قرارگرفت و تعداد بذرهاى جوانهزده شمارش شدند. درصد جوانهزنى در هر روز بذر با معيار خروج ريشهچه به اندازه ميلىمتر یا بيشتر از
${ }^{1}$ - Final germination percent
${ }^{2}$ - Mean germination time(MGT)
${ }^{3}$ - Germination rate(GR)
${ }^{4}$ - Coefficient of uniformity of germination(CUG)
 درجدسانتى گراد بهمدت Y اســـتفاده از تـــرازوى دقيــق بــــا دقـــت I•/••1 مشخص ترديدنـد. بــا اسـتفاده از دادههاى بدست آمده شـاخصهــاى طـولى و وزنى بنيه گیاهجֶه ازطريق رابطـههــاى لو Abdul- Baki \& (تعيــين ترديدنــــد .Anderson,1973 (رابطه V):
= شاخص طولى بنيه گَياهحه
درصد جوانهزنى نهايى × (ميانگیين طول گَياهجهه) (رابطه ^):
= شاخص وزنى بنيه گياهچه
درصد جوانه زنى نهايیى × وزن خشك گیاهحه
پس از بررسـى كشـيدگى، چــولگى و نرمـال بودنتوزيع دادهها و تبديل دادههـاى ضـريب يكنواختى جوانهزنى، تجزيه واريانس دادهها و مقايسه ميانگگينها با آزمـون حـداقل تفــاوت معنىدار (LSD) در سطح Q درصد با استفاده از نــرمافـزار آمـارىSAS نسـخـٔ ا/9 و رسـمم نمودار با نرمافزاراExcel انجام گرفت.

ضريب يكنواختى جوانهزنى كه تنوع بين بذرها ازلحاظ متوسط زمان جوانهزنى نمونه بذرها را اندازهگيرى مىكند، از رابطه محاسبه ترديد:

در اين رابطه nin تعداد بــذرهاى جوانـهزده در روزi ام و Di تعداد روزهاى شـمارش شـده از روز كاشـت بــذرها تـا روز ثبـت دادهi ام وD متوسط زمان جوانهزنى مىباشند، كه پـارامتر اخير از رابطهه محاسبه گرديده است. شـايان ذكر است،CRG ضـريب سـرعت جوانــزنـى

Kotowski’s coefficient of (كوتووسـكى (velocity است كه از رابطه $\&$ تعيين ترديـد :(Ranal \& De Santana,2006)
D=100/CRG : (رابطهQ)

$$
\operatorname{CRG}=\left(\sum_{\mathrm{i}=1 \mathrm{n}}^{\left.\mathrm{k}_{\mathrm{i}} / \sum_{\mathrm{i}=1=1 \mathrm{i}}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}}\right) 100 \quad: \quad \text { (رابطهو) }}\right.
$$

بهمنظور ارزيابى بنيه بذر و گیاهچچه تيمارهاى مورد نظـر پـس از پايـان آزمـون جوانــزنـى استاندارد تعـدادهץ گیاهجچـه عـادى بـهطـور تصادفى از هر تكرار انتخاب و پـس از انـدازه گیرى طول گییاهچه با از خط كش مـدرج بـر حسـب سـانتىمتـر و پـس از خشـککـردن

افزايش معنىدار داشت (Sadeghi et al., 2011).
Ellis \& (همچنــــين الـــيس و همكـــاران (Roberts, 1980 درصد جوانهزنى و طول عمـر بــذرها كــاهش مـىیيابـد. از نشــانههــاى فيزيولوزيــى پيـرى مىتوان به كاهش سرعت و درصد جوانهزنـى و كاهش مقاومت به شرايط نامساعد محيطى و رشد ضعيف گیاهچֶها اشاره كرد. سلطانى و همكاران (Soltani et al., 2006) دربررسى اثر فرسودگى بذر برتخليئ ذخاير بذر و رشـد هتروتروفيکى گیاهچچٔ گَندم بيان كردند رشـد هتروتروفيـــ براســاس دوجــزء ذخــاير بــنر انتقال يافته يا پويا شده و كارآيى ذخايرانتقال به بافت گیاهحֶه تقسییم مىشـود، كـه وجــود فرسودگى باعث كاهش اين ذخاير و تخريـب آنزيمههاى آلفـا و بتـا آمـيلاز و درنتيجـــهُ آن، كاهش روند جوانهزنى گییاه مى گردد، درخلال فرسودگى گلوكز افزايش يافته كه ايـن خـود باعــث افــزايش تــنفس و كـــاهش ســنتنتر پروتئينها در بذرها مـىشـود كــاهش سـنتز پروتئين باعث كاهش آنزيمههاى جوانـهزنـى و

نتايج و بحث

نتايج تجزيه واريانس نشان داد كه اثرمتقابل رقم × اندازء بذر بر درصد جوانهزنى نهايى، درصد گیاهچهٔ عادی، متوسط زمان جوانهزنى، سرعت جوانهزنى، يكنواختى جوانهزنى، وزن خشى گیاهچه، طول گیاهچֶ، شاخص طولى بنيه́ گیاهچه و شاخص وزنى بنيؤ گییاهچه با احتمال خطاى آمارى ا درصد معنىدار بود (جدول (). براساس نتايج مقايسـه ميـانگَين، بــا افـزايش اندازهُ بذر از 「 ميلىمتر تا Q/ 1 م ميلىمتر درصد جوانهزنى نهايى افزايش يافـت و بــذرهاى بـا انــدازه ه/ C ميلـىىتــر رقـم شـريف بـالاترين (9६/Q درصد) و بذرهاى اندازه كمترين (VV Rasta نهائى را داشـتند (شـكل (). درخصـوص اثـر انــدازههــاى مختلــف بــذر بــر خصوصــيات جوانهزنى و استقرار گَياهچچٔ، تحقيقى كـه بـر روى اندازه مختلف ريز، درشت و متوسط در Y رقم گلرنـگ اصـفهان، گلدشـت، پـديـده و سينا صورت گرفت مشخص كـرد بـا افـزايش اندازه بذر در ارقام مختلف درصد جوانــهزنـى
درنهايـت درصـد ظهـور گیياهحـهـ و عملكــرد

نهايى مى گردد．

$$
\begin{aligned}
& \text { جدول ا- تجزيه واريانس (مياگين مربعات) اثر اندازه بذر ارقام مختلف چغندرقند بر برخى خصوصيات جوانهزنى } \\
& \text { و بنيه گیاهجّه با آزمون پيرى تسريع شده }
\end{aligned}
$$

منابع تغييرات	درجه آزادی	ميانگين مربعات								
		درصد جوانهزنى نهايى	درصد كياهجدهاى عادى	متوسط زمان جوانهزنى	سرعت جوانهزنى	ضريب يكنواختى جوانهنى	وزن خشك كياهچهِ	طول كياهجٍه	شاخص وزنى بنيه كياهجه	شاخص طولى بنيه گياهجٍه
رقم	0	r9．．／4＊＊	r．qr／／F\％＊＊	9／1／＾＊＊	．／．rra＊＊＊＊	11ヶバヵの＊＊	－／．．．rırv＊＊	Hefl／／v＊＊	／（V．／19＊）＊＊	¢919．．．ve＊＊
اندازه بذر	－	｜ral／＊＊＊	$1199 / \cdot \wedge^{* *}$	－／イヘ9＊＊＊	$\cdot(\cdot) \cdot 91 * *$	r．MN．rr＊＊	＊．．．｜rry\％＊＊	F10／99＊＊	rnfrrit＊＊	yyffafr＊＊
رقم × اندازه بذر	10	D9／1／$T^{* *}$	DF9／¢・へ1＊＊	－／FFTY＊＊	－｜•｜VA）＊＊	AfNTD	－／．．．．．vvo＊＊	rri／vq＊＊	－rirrfa＊＊	「Ая9Yヶ1＊＊
خطا	vr	ra／A	rrirva	－／－\％¢	\ldots ．．．ria	ripresse	．／．．．．．t9\％	ra／ra	$\cdot 1 \cdot \Delta \cdot v \Delta 9$	frresvig
ضريب تغييرات （درصد）		GIV	9／r 9	$\Delta / r \Delta$	$9 / \mathrm{MN}$	$14 / 4$	9／as	$9 / 4$	$11 / \Delta \Delta$	1r／4\％

شكل ا－مقايسه ميانگَينهاى اثرمتقابل رقم × اندازهبذر بر درصد جوانهزنى نهايى

 افزايش يافت. بذرهاى با اندازه ه/ ها ميلىمتر شرايط مناسب جوانهزنى است

Copeland \& McDonald, 2001)

درصد جوانهزنى نهايى يک توده بذر و درصد
گیياهچֶهای، مىتوان تااندازه زيادى به پتانسيل جوانهزنى بذرها و ظهور و استقرار Fowel et al.,) گیاهچهها در مزرعه پیبرد .(1984

رقم شريف بالاترين درصد گیاهچههاى عادى را داشتند (و (و درصد) و كمترين درصدگیاهجههای عادى (YY درصد) در بذرهاى r ميلىمتر رقم Rasta مشاهده شد (شكل Y). مشابه نتايج بهدست آمده در اين پزوهش گروهى از محققين نيز تأثير اندازء بذر بر درصد و سرعت جوانهزنى را گزارش

نمودهاند (Moussavi Niket al., 2011).

شكل r- مقايسه ميانگَينهاى اثرمتقابل رقم× اندازهبذر بر درصد گییاهچچٔ عادى

نتايج مقايسه ميانگينها نشان داد بيشترين جوانه مىزنند و در مقايسه با بذرهاى سرعت جوانهزنى بذر به اندازء ه/ ه ميلىمترى رقم تربت اختصاص يافت و كمترين مقدار قوى چشت گذاشته و عملكرد بالاترى مربوط آن در اندازه بذرى r ميلىمتر رقم توليد مى كنند. با افزايش فرسودگى يك تودء بذر، مدت زمان جوانهزنى بذرها افزايش، ولى
 كه بذرهاى بزرگ سريعتر از بذرهاى كوچک

شكل r- مقايسه ميانگیينهاى اثرمتقابل رقم× اندازه بذر بر سرعت جوانهزنى

مقايسه ميانگين متوسط زمان جوانهزنى نشان متوسط زمان جوانهزنى شاخصى از سرعت و داد، بذرهاى رقم Rasta با اندازء بذر r ش ج ميلىمتر بيشترين و بذرهاى رقم تربت با يكنواختى جوانهزنى و وضعيت بنيءٔ گیاهچه اندازه́ بذر ه/ ميلىمتر، كمترين متوسط زمان است و هرحه ميزان آن كمتر باشد، بنيه بذر لازم براى جوانهزنى را داشتند (شكل Y).

جوانهزنى در تودههاى بذر با بنيئ پايين و بَ بذرهاى فرسوده سويا متوسط زمان جوانهزنى

شكل \&- مقايسه ميانگَينهاى اثرمتقابل رقم× اندازه بذر بر متوسط زمان جوانهزنى

براساس نتايج مقايسه ميانگیينها، بذرهاى r و r ميلىمتر رقم شريف، بالاترين يكنواختى است سرعت رشد گیاهچچه در چنين گیاهانى جوانهزنى را داشتند و كمترين مقدار مربوط كمتر از سرعت رشد گياهان حاصل از به اين صفت نيز در همين رقم و در اندازٔ بذر بذرهاى قوى باشد كه درنتيجه بر استقرار ه/a ميلىمتر مشاهده شد (شكل Q). بذرهاى گییاه و يكنواختى پوشش سبز مزرعه تأثير مى گذارد (Roberts \& Osei-Bonsu, 1988). با كيفيت پايين ممكن است به دو طريق بر عملكرد نهايى اثركذار باشند اول آن كه درصد

گياهچچهاى ظاهرشده در مزرعه مىتواند به

شكل ه- مقايسه ميانگَينهاى اثرمتقابل رقم× اندازه بذر بر ضريب يكنواختى جوانهزنى

صفت (مقدار عددى 1 | • • گرم) نيز در رقم

F
(شكل \&). اين نتايج مشابه نتايج برخى از محققين بود كه بيان كردند، افزايش وزن تر و وزن خشك گیياهچֶ میىتواند ناشى از مقدار ذخيرءٔغذايى بيشتر بذرهاى بزرگتر باشد

Sadeghi et al., ؛Ghorbani et al., 2008) 2011). كاهش وزن خشك گیاهچچه مىتواند به علت كاهش ميزان پويايى ذخاير بذر و يا كاهش كارآيى تبديل ذخاير پويا شده باشد (Soltani et al., 2006). ورما و همكاران (Vermaet al., 1999) با انجام آزمون پيرى تسريع شده روى بذرهاى شلغم و شلغم روغنى بيان داشتند زمانى كه سن بذر و

وزن خشك گییاهچه ازجمله معيارهاى ارزيابى بنئ بذر و گیاهچچه است (Hampton \& TeKrony, 1995). در اين پگوهش گزارش گرديد كه ارقام مورد بررسى چغندرقند در آزمون پيرى تسريع شده از نظر وزن خشى گیاهچه، تفاوت معنىدارى داشتند و با افزايش اندازء بذر در ارقام مختلف، وزن خشك گییاهچه نيز افزايش يافت. در تمام ارقام مورد مطالعه اندازء بذر با ه/ $ا$ ميلىمتر در مقايسه با ساير اندازههاى مورد بررسى از نظر وزن خشك گياهچه برترى نسبى داشتند. ارقام Rasta و Doreata با اندازٔ بذر ب/ $/$ ميلىمتر بالاترين وزن خشك گیاهچه

فرسودگى افزايش مى يابد، سرعت جوانهزنى، مى يابند.
وزن خشك گییاهچه، استقرار گییاهچه كاهش

شكل \&- مقايسه ميانگَينهاى اثرمتقابل رقم× اندازهبذر بر وزن خشك گیاهجֶه

برطبق نتايج مقايسهميانگینها مشخص شد چگونه بوده باشد داراى كيفيت و بنيه بذر كه بذرهاى رقم Rasta با اندازء 「/Q ميلىمتر متفاوتى مىباشند و اين شرايط مىتواند بهطور مستقيم روى طول گیاهچֶه موثر باشد و (Elias \& Copeland, 2001) همكاران (Vermaet al., 2003) در مطالعهاى به خود اختصاص دادند (شكل V). با افزايش دما و رطوبت، بذرها فرسوده شده و به تبع آن بر روى بذرهاى زوال يافته در كلزا گزارش طول گياهچֶه نيز كاهش پیدا كرد. طول كردند كه دراثر زوال بذر طول گیاهچچه
گیاهچֶه يكى از شاخصهاى تعيين بنيه و كاهش مىيابد.

كيفيت مطلوب بذر مىباشد كه تحت تأثير Verma et al (1999) كمچزنين زنوتيب و شرايطى محيط قرار مى گيرد. بذرها كردند با افزايش دما و رطوبت، سن بذر براساس اينكه نحوه توليد و نگَمدارى آنها افزايش يافته و به تبع آن سرعت جوانهزنى،

$$
\begin{aligned}
& \text { بنيه، طول گییاهچه شلغم } \\
& \text { كاهش مىییابد، همچچنين مجموع هيدارت- } \\
& \text { كربنهاى محلول با افزايش سن بذر افزايش }
\end{aligned}
$$

شكل V- مقايسه ميانگَينهاى اثرمتقابل رقم× اندازهبذر بر طول گیياهچه

در تحقيق حاضر شاخص وزنى بنيه گیاهچه و اندازه بذر م میلى متر مشاهده شد در ارقام چغندر قند و در اندازههاى مختلف (شكل ^). درهمين راستا آزمايشى كه روى و بذرى تفاوت معنىدارى داشتند كه بيانگر همكاران (Roy et al., 2008) با عنوان
 نتايج مقايسه ميانگينها مشخص ساخت كه جوانهزنى انجام دادند، مشاهده كردندكه بذرهايداراى اندازه ه/ میيلىمتر رقممهاى سرعت جوانهزنى و مقدار شاخص بنيه چارس، Rasta و Toucan بالاترين شاخص

وزنى بنيه گیياهچه را داشتند و كمترين

شاخص وزنى بنيه گياهچه نيز در رقم Rasta

شكل ^- مقايسه ميانگَينهاى اثرمتقابل رقم × اندازهبذر بر شاخص وزنى بنيه گیياهچٍه

$$
\begin{aligned}
& \text { نتايج مقايسه ميانگينها مشخص ساخت كه ريز برترى نشان دادند كه مشابه اين نتايج } \\
& \text { بيشترين شاخص طولى بنيه گیاهچه در است. } \\
& \text { اندازه ه/ } \\
& \text { 「/Q ميلىمتر رقم شريف مشاهده شد. } \\
& \text { همچچنين كمترين مقدار مربوط به شاخص } \\
& \text { طولى بنيه گیياهچه نيز دربذرهاى ميلىمتر } \\
& \text { رقم Rasta مشاهد گرديد (شكل 9). } \\
& \text { ديمرودى (Demir \& Day, 2008) در } \\
& \text { آزمايشهاى خود بر روى ارتباط بين اندازه } \\
& \text { بذر و بنيه بذر و جوانهزنى دو رقم آفتابگردان } \\
& \text { كزارش كردند كه در آزمون بنيه بذر با، روش } \\
& \text { پیيرى تسريع شده روى ارقام ماسون و سيرنا } \\
& \text { بذرهاى درشت هر دو رقم نسبت به بذرهاى }
\end{aligned}
$$

شكل 9- مقايسه ميانگَينهاى اثرمتقابل رقم × اندازهبذر بر شاخص طولى بنيه گَياهجه

نتايج بررسى ضرايب همبستگى ساده بين معنىدار داشت. بين درصد جوانهزنى بذر و صفات مورد بررسى نشان داد، طول گیاهجه با وزن خشك گياهچه، درصد جوانهزنى، يكنواختى جواننزنى نيز همبستگى معنىدار درصد گیاهچهِ عادى، سرعت جوانهزنى، وجود داشت. سرعت جوانهزنى بذر با متوسط متوسط زمان جوانهزنى، شاخص وزنى بنيه و \quad زمان جوانهزنى بذر همبستگى منفى و با شاخص طولى بنيه بذر همبستگى معنىدارى شاخص وزنى و شاخص طولى بنيه گیاهچه داشتند. بين وزن خشك گياهچه و سرعت همبستگى مثبت معنىدار داشت. همچچنين جوانهزنى و ضريب يكنواختى جوانهزنى متوسط زمان جوانهزنى و شاخص بنيه همبستگى منفى معنىدارى وجود داشت و وزنى و طولى گیاهچֶه همبستگى منفى همچֶنين وزن خشى گیاهچه با متوسط زمان معنىدارى وجود داشت. به طور كلى از بين جوانهزنى و شاخص وزنى بنيه بذر همبستگى صفات ارزيابى شده، سرعت جوانهزنى بذر با

متوسط زمان جوانهزنى بيشترين همبستگى را داشتو كمترين همبستگى نيز بين وزن خشك گیاهچه و متوسط زمان جوانهزنى مشاهده گرديد (جدول r). نتايج آزمون پیرى تسريع شده از قابليت پيشبينى ميزان ظهور Fياهچه درمزرعه برخوردار است (Harmam \& Mattick, 1999). همحنیين مشاهده شده نتايج آزمون پيرى تسريع شده رابطه قوى با استقرار بوته در مزرعه سويا دارد
(TeKronyet al., 1980). خان و همكاران گزارش نمودند بين (Khan et al., 2002) صفات مرتبط با بنيه بذر گَندم، تعيين شده در آزمون پيرى تسريع شده، از جمله درصد و سرعت جوانهزنى و شاخصهاى بنيه گییاهچه همبستگى معنىدارى وجود دارد.

بودند.
(AREEO), Seed and Plant Certification and Registration Institute (SPCRI).

International Seed Testing Association (ISTA). 2013. Handbook for seedling
evaluation ($3^{\text {rd }}$ ed). International Seed Testing Association (ISTA), Zurich, Switzerland.

Food and Agriculture Organization

 (FAO). 2014a. FAO statistical yearbook, world food and agriculture Food and Agriculture Organization of the United$$
\begin{aligned}
& \text { بيشترين طول گياهچه برخوردار بودند. } \\
& \text { بذرهاى اندازء ه/ ا ه ميلىمتر رقمهاى پارس، } \\
& \text { رستا و تو كانداراى بالاترين شاخص وزنى بنيه } \\
& \text { گیاهچه و بيشترین شاخص طولى بنيه } \\
& \text { گیاهچֶه در اندازه ف/ } \\
& \text { تربت و اندازه/ } \\
& \text { مشاهده شد. بهطور كلى بذرهاى رقم شريف و } \\
& \text { اندازه بذره/ م ميلى متر از قابليت جوانهزنى } \\
& \text { بذر بيشتر و بنيه گياهچه قوىترى برخوردار }
\end{aligned}
$$

نتيجه گيرى
نتايج اين تحقيق نشان داد، بذرهاى رقم

شريف با اندازء ه/

جوانهزنى نهائى و گیاهچههای عادی را
داشتند. بذرهاى رقم تربتبا اندازه ه/

متر نيز داراى بيشترين سرعت جوانهزنى و
كمترين متوسط زمان جوانهزنى بودند.
بذرهاى اندازههاى

بالاترين ضريب يكنواختى جوانهزنى وبذرهاى
ارقام رستا و دوروتيابا اندازه
متربالاترين وزن خشك گیاهچֶه را داشتند.
بذرهاى رقم رستا با اندازء

منابع

Anderson. .Abdul-Baki A.A. and J.D

1973. Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 1973.13: 227-232.

Seed and Plant Certification and

 Registration Institute (SPCRI). 2012. Iran plant varieties national list($1^{\text {st }}$. vol. Agricultural crops). Ministry of Jihad-eAgriculture, Agricultural Research Education and Extensions OrganizationWesthoff, A. Van Dorsselaer, and D. Job. 2011.Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics. 11: 1569-1580.

Chegini, M.A. and M. Etehad. 2010.The effects of seed grading, polishing and airseparation on some important seed characters of sugar beet seed. Iranian Journal of Seed Science and Technology, 2: 207-218.

Delouche J.C. and C.C. Baskin. 1983. Accelerated ageing techniques for predicting the storability of seed lots. Seed Science and Technology. 10: 427-452.

Demir, K.M. and S. Day. 2008. Relationship between seed size and NaCl on germination, seed vigor andearly seeding growth of sunflower. African Journal of Agricultural Research, 3: 787791.

Desai, B.B. 2004. Sugar and fibre crops. In: Seeds handbook biology, production, processing and storage. pp:399-426. Marcel Dekker, Inc.

Elias, S.G. and L.O. Copleland. 2001. Physiological and harvest maturity of canola in relation to seed quality. Agronomy Journal. 92: 1054-1058.

Ellis, R.H. and E.H. Roberts. 1980.
Towards a rational basis for testing seed quality. In: Hebblethwaite, P.D. (Ed.).

Nations. Rome, Italy.

International Seed Testing Association

 (ISTA). 2014b. International rules for seed testing. International seed testing association (ISTA), Zurich, Switzerland.Ministry of Jihad-e-Agriculture. 2016. Agriculture statistics, first volumehorticultural and field crops, 2013-14 crop year. Ministry of Jihad-e-Agricuture, Programming and economics deputy, Statistics and Information Technology Office.

Benati, R. and G. Pritoni. 1982. Effetti del calibeo del seme su geminabilitare primi staid di sviluppo in riferi mento alle carateristiche granulometriche del terreno. Sementi Elelte, 28(1): 47-55(In Italian, abstract in English).

Bustamante, L., M.G. Seddon, M. Don, and R.W.J. Renme. 1984. Pea seed quality and seedling emergence in the field. Seed Science and Technology. 12: 551-558.

Castro, J., J.A. Hodar, and J.M. Gomez. 2007. Seed size. In: Handbook of seed science and technology. Pp:397-428. By: Basra, A. S.(Ed.), Scientific Publishers, India.

Catusse, J., J. Meinhard, C. Job, J.M. Strub, U. Fischer, E. Pestsova, P.

Harmam, G. E. and L.R. Mattick. 1999.
Association of lipid oxidation with seed aging and death. Nature. 260: 323-324.

Hastrup Peadersen, L., Jorgensen, .P.E.

 and Poulsen, I. 1993. Effect of seed vigour and dormancy on field emergence, development and grain yield of winter wheat (Triticum aestivum L.). and winter barly (Hordeum vulgare L.). Seed Science and Technology. 21:159-178.Junttila O. 1976. Germination inhibitors in fruit extracts of red beet (Beta vulgaris cv. Rubra). Journal of Experimental Botany. 27: 827-846.

Khaje-Hosseini M, A.A. Powell I.J. Bingham. 2003. The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Science and Technology. 31:715-721.

Khan, M. Q., S. Anwar, and M.I. Khan. 2002. Genetic variability for seedling traits in wheat (Triticum aestivum L.) under moisture stress conditions. Asian Journal of Plant Science. 1: 588-590.

Lexender K. 1980. Seed composition in connection with germination and bolting of Beta vulgaris L.(Sugar beet). In: Seed production, by: Hebbelethwaite, P.D.,Buttherworths, London-Boston. 1980. pp: 271-291, Longden P.C. 1973. Washing

Seed production, Butter worths, London, pp. 605-635.

Ellis R.H. and C. Pieto Filho. 1992. The development of seed quality in spring and winter cultivars of barley and wheat. Seed Science Research. 2: 9-15.

Fatollah Taleghani, D., M. Dehghan Soar, V.A. Yusef Abadi, A. Ghasemi, M.A. Chegini, M. Mesbah, and F. Hamdi. 2002. Determination of optimum seed size and quantity of coating materials for monogerm sugar beet seed. Journal of Sugar Beet. 18: 95-108.

Fontes J.A.N and A.J. Ohlrogge. 1972. Influence of seed size and population on yield and other characteristics of soybeans (Glycine max L). Agronomy Journal. 64: 833-836.

George, R.A.T. 2011. Agricultural seed production. CAB Int.

Ghorbani, M.H., A. Soltani, and S. Amiri. 2008. The effect of salinity and seed size on response of wheat germination and seedling growth. Journal of Agricultural Sciences and Natural Resources. 14: 123-128.

Hampton, J.G. and D.M. TeKrony. 1995. Handbook of vigour testmethods (3rd.ed).International Seed Testing Association (ISTA), Zurich, Switzerland.
why to measure the germination process. Revista Brasil. Botanicue. 29(1):1-11.

Roy, S.K.S, A. Hamid, M.G. Miah and A. Hashem. 2008. Seed size variation and its effects on germination and seedling vigour in rice. Journal of Agriculture and Crop Science, 176: 79-82.

Sadeghi H., F. Khazaei, S. Sheidaei, and L. Yari. 2011. Effect of deed size on seed germination behavior of safflower (Carthamus tinctorius L.). ARPN Journal of Agricultural and Biological Science. 6(4): 5-8.

Scott, R.K., F. Harper, D.W. Wood, and K.W. Jaggard. 1974.Effects of seed size on growth, development and yield of monogerm sugar beet. Journal of Agricultural Science, Cambridge,82: 517530.

Soltani, A., M. Gholipour, and E. Zeinali. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany. 55: 195-200.

Silva, J.B., R.D. Vieira, and M. Panobianco. 2006. Accelerated ageing and controlled deterioration in beetrootSeeds. Seed Science and Technology. 34: 265-271.

Snyder F.W. 2003. Selection for speed of germination in sugar beet. Journal of
sugar-beet seed. Journal of Agricultural Science, Cambridge. 7:43-46.

Lowe L.B.1973. Rise SK. Endosperm protein of wheat seed as a determinant of seedling growth. Plant Physiology, 51:5760.

McDonald M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology. 27: 177-237.

Milocevic M., J. Rainpreht, and P. Dokic. 1992. Effect of different seed size fractions on germination in sugar beet(Beta vulgaris L.). Seed Science and Technology. 20: 703-710.

Moussavi Nik M., M. Babaeian, and A. Tavassoli. 2011. Effect of seed size and genotype on germinationcharacteristic and seed nutrient content of wheat. Scientific Research and Essays, 6: 2019-2025.

Orzeszko-Rywka A.and
PodlaskiS.2003.The effect of sugar beet seed treatments on their vigour. Plant and Soil Environment. 49(6): 249-254.

Powell A.A. 2007.Seed vigour and its assessment. In: Handbook of seed science and technology. pp: 603-648. By: Basra, A. S.(Ed.), Scientific Publishers, India.

Powel A., S. Mathews, and M. Oliviera. 1984.Seed quality in grain legumes. Applied Biology, 10: 217-285. (Ranal M.A.and De Santana D.G.2006.How and

American Society of Sugar Beet Technologists. 12:617-622.

Snyder, F.W, and C. Filban. 1970.Relation of sugar beet seedling emergence to fruit size. Journal of American Society of Sugar Beet Technologists. 15(8):703-708.

TeKrony, D.M., A.D. Phililps, and D.B. Egli. 1980. The effect of field weathering on soybean seed viability and vigor. Crop Science. 72:749-753.

Van Gastel A.J.C, D.M. Pagnotta, and

 E. Porceddu. 1996. Seed science and technology. ICARDA, ALEPPO, SYRIA.Verma, S. S., R.P.S. Tomer, and U. Verma. 1999. Studies on seed quality parameters in rapeseed (Brassica campestris) and mustard (Brassica juncea) stored under ambient conditions. Indian Journal of Agricultural Science. 69 (12): 840-842

Verma, S.S., U. Verma, and R.P.S. Tomer. 2003. Studies on seed quality parameters in deterioration seeds in Brassica (Brassica campestris) and mustard (Brassica juncea) stored under ambient conditions. Seed Science and Technology. 31, 389-396.

Evaluation of sugar beet various cultivars some seed germination and seedling vigor traits by accelerated ageing test

E. Azadi ${ }^{1}$, A. Hamidi ${ }^{2}$, Sh. Shoai ${ }^{3}$, F. Nazari ${ }^{3}$
1- Graduate Seed Science and Technology M.Sc. student of Ashtian Islamic Azad University branch,
2- Research Associate Professor of Agriculture Research, Education and Extension Organization(AREO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj. 3- Assistant Professor of Ashtian Islamic Azad University branch

Abstract

In order to evaluation of some related to seed germination and seedling vigor traits of six mono germ sugar beet cultivars by accelerated ageing test, a research was conducted as factorial 4×6 (6 cultivars and 4 seed size) by 4 replications based on completely randomized design in seed quality analysis laboratory of Seed and Plant Certification and Registration Institute (SPCRI) at Karaj during 2019. Experiment treatments were including, Toucan, Dorotea, Rasta, Sharif (006), Pars (005) and Torbat (004) cultivars and seed width sizes, including 2, 3, 3.25 and 3.5 mm . By standard germination test conducting, after seeds accelerated ageing, final germination and normal seedlings percent, germination rate, germination meantime, coefficient of germination uniformity, seedling dry weight and length and seedling weight and length vigour indices determined. Results revealed that cultivar \times seed size interaction effect was significant for all measured traits. The most final germination and normal seedlings percent and belonged to Sharifcultivar3.5 mm size seeds. AlsoTorbatcultivar 3.5 mm size seeds had the most germination rate and the lowest mean germination time. Sharif cultivar 2 and 3 mm size seeds had highest coefficient of germination uniformity. The highest seedling dry weight belonged to Rasta and Doreata cultivars 3.5 size seeds. Rasta cultivar 3.5 mm size also had the most seedling length. Pars, Rasta and Toucan cultivars 3.5 mm size seeds had the most seedling weight vigour index and the most seedling length vigour index investigated in 3.5 and 3.2 mm size seeds of Torbat cultivar 3.5 mm size seeds. Generally, Sharif cultivar and 3.5 mm size seeds had more germinability and strong vigour.

Keywords: Accelerated ageing, Germinability, Sugar beet, Monogerm cultivars, Seedling
vigour

[^2]
[^0]: ${ }^{1}$ - Cis-4cyclohexene-1.2-dicarboximid

[^1]: ${ }^{1}$ - Opercula

[^2]: * Corresponding author (a.hamidi@areeo.ac.ir)

