
International Journal of Information, Security and Systems Management, 2018,Vol.7,No.1, pp. 785-792 IJISSM

ABSTRACT—The pull of Software-Defined Network-
ing (SDN) is magnetic. There are few in the networking
community who have escaped its impact. As the benefits
of network visibility and network device programmability
are discussed, the question could be asked as to who ex-
actly will benefit? Will it be the network operator or will
it, in fact, be the network intruder? As SDN devices and
systems hit the market, security in SDN must be raised
on the agenda. This paper presents a comprehensive sur-
vey of the research relating to security in software-de-
fined networking that has been carried out to date. Both
the security enhancements to be derived from using the
SDN framework and the security challenges introduced
by the framework are discussed. By categorizing the ex-
isting work, a set of conclusions and proposals for future
research directions are presented.

I. INTRODUCTION
Software-defined networking (SDN) is rapidly moving
from vision to reality with a host of SDN-enabled devices
in development and production. The combination of sep-
arated control and data plane functionality and program-
mability in the network, which have long been discussed
in the research world, have found their com- mercial ap-
plication in cloud computing and virtualization technol-
ogies.
The advantages of SDN in various scenarios (e.g. the
enterprise, the datacenter etc.) and across various back-
bone networks have already been proven e.g. Google
B4 [1]. However, challenges exist for a full-scale carrier
network implementation of SDN. A number of these chal-
lenges have been presented in [2]. One key area, which is
only beginning to receive the attention it deserves, is that
of security in SDN.
The SDN architecture can be exploited to enhance net-
work security with the provision of a highly reactive secu-
rity monitoring, analysis and response system. The central
controller is key to this system. Traffic analysis or anom-
aly-detection methods deployed in the network generate
security-related data, which can be regularly transferred

to the central controller. Applications can be run at the
controller to analyze and correlate this feedback from the
complete network. Based on the analysis, new or updated
security policy can be prop- agated across the network in
the form of flow rules. This consolidated approach can
efficiently speed up the control and containment of net-
work security threats.
However, the same attributes of centralized control and
programmability associated with the SDN platform intro-
duce network security challenges. An increased potential
for Denial-of-Service (DoS) attacks due to the central-
ized controller and flow-table limitation in network de-
vices is a prime example. Another issue of concern based
on open programmability of the network is trust; both
between applications and controllers, and controllers and
network devices.
A number of solutions to these SDN security chal- lenges
have been proposed in the literature. These range from
controller replication schemes through policy con- flict
resolution to authentication mechanisms. Similarly, a
number of proposals have been made to exploit the SDN
framework for enhanced network security.
An analysis of the security challenges of SDN is present-
ed in this paper. The individual security issues are catego-
rized according to the SDN layer affected or targeted.
The proposed and emerging solutions to these challeng-
es are then discussed and categorized. The requirement
for further work to establish a secure and robust SDN is
clearly identified from the gap between the issues and the
existing research. Without a significant increase in focus
on security, it will not be possible for SDN to support the
evolving capability associated with, for example, Net-
work Functions Virtualization (NFV) [3].

II. SECURITY ANALYSES OF SDN
The basic properties of a secure communications network
are: confidentiality, integrity, availability of in- formation,
authentication and non-repudiation [4]. In order to pro-
vide a network protected from malicious attack or unin-
tentional damage, security professionals must secure the

AbdolReza Moayeri
std #940085271

Islamic Azad University
Electronic Cam-
pus(I.A.U.E.C)

Iman Hassani
std #940010084

Islamic Azad University
Electronic Cam-
pus(I.A.U.E.C)

SDN Security: A Survey

786

IJISSM, 2018,Volume7,Number1

methodology [8]. This paper focuses on the execution of
Information Disclosure and DoS attacks, which the au-
thor established were possible to successfully execute.
Although a number of mitigation techniques are pro-
posed, these techniques are not proven in the work.
The OpenFlow switch specification [9] describes the use
of transport layer security (TLS) with mutual au- thentica-
tion between the controllers and their switches. However,
the security feature is optional, and the stan- dard of TLS
is not specified. The lack of TLS adoption by major ven-
dors and the possibility of DoS attacks are the focus of
an OpenFlow vulnerability assessment [10]. The authors
found that the lack of TLS use could lead to fraudulent
rule insertion and rule modification.
In [11] Kreutz et al. present a high-level analysis of the
overall security of SDN. They conclude that due to the
nature of the centralized controller and the programmabil-
ity of the network, new threats are intro- duced requiring
new responses. They propose a number of techniques in
order to address the various threats, including replication,
diversity and secure components.
Finally, the research network and testbed, ProtoGENI,
has also been analyzed [12]. The authors discovered that
numerous attacks between users of the testbed along with
malicious propagation and flooding attacks to the wider in-
ternet were possible when using the ProtoGENI network.
The results of these analyses indicate the range of the
security issues associated with the SDN framework. In
Table I, a categorization of the SDN security issues is
presented. A connection is drawn between the type of
issue/attack (e.g. unauthorized access) and the SDN layer/
interface affected by the issue/attack.
The control and data layers are identified in Table I as
clear targets of attack. This reflects the main distinctions
between the traditional network and the SDN; that of the
centralized control element and the altered datapath ele-
ments to support programmability.
Although this analysis points towards security issues re-
lated to the control and data layers, there has been limit-
ed research in the field to tackle the challenges. In fact,
as detailed in the next section, greater attention has been
given to exploring the potential improvements in network
security to be derived from the SDN framework.

III. SECURITY ENHANCEMENT USING SDN
The architecture of a software-defined network in-

tro- duces potential for innovation in the use of the net-
work. The combination of the global or network-wide
view and the network programmability supports a pro-
cess of harvesting intelligence from existing Intrusion
Detection Systems (IDS) and Intrusion Prevention
Systems (IPS), for example, followed by analysis and
centralized re- programming of the network. This ap-
proach can render the SDN more robust to malicious
attack than traditional networks.

data, the network assets (e.g. devices) and the commu-
nication transactions across the network. The alterations
to the network architecture introduced by SDN must be
assessed to ensure that network security is sustained.
In an early iteration of what is known today as SDN, Casa-
do et al. [5] specifically considered the security aspects of
a separate control and forwarding framework. Their SANE
architecture, proposed in 2006, centred on a logically cen-
tralized controller responsible for authen- tication of hosts
and policy enforcement. At the time of its proposal, this
was considered to be an extreme approach that would require
a radical change to the networking infrastructure and end-
hosts, which could be too restrictive for some enterprises.
Ethane [6] extended the work of SANE but used an ap-
proach, which required less alteration to the original net-
work. It controlled the network through the use of two
components; a centralized controller responsible for en-
forcing global policy, and ethane switches, which simply
forwarded packets based on rules in a flow table. This
simplified network control allowed the data and control
plane to be separated to allow for more programmability.
Although the Ethane architecture gave us a closer look at
what SDN and OpenFlow would become, it suffered from
a number of drawbacks. One of these is the fact that ap-
plication traffic could compromise network policy. In to-
day’s SDN architecture, applications are used to provide
various services, as, for example, with Network Functions
Virtualization (NFV). The compromise of applications
could potentially breach the entire network. Considering
the specific issues with security in SDN from the per-
spective of the SDN framework (Fig. 1), we can identify
challenges associated with each layer of the framework:
application, control and data planes, and on
the interfaces between these layers.

Fig. 1. SDN Functional Architecture illustrating the data, control
and application layers and interfaces

A number of security analyses have recently been per-
formed, which have found that the altered elements or
relationship between elements in the SDN framework
introduce new vulnerabilities, which were not present be-
fore SDN. One such paper [7] completes an analysis of
the OpenFlow protocol using the STRIDE threat analysis

787

IJISSM, 2018,Volume7,Number1

which makes it suitable for legacy systems.
Based on these proposals, it would appear that a sim- ple
approach to network security provision would be to intro-
duce an appropriate middle-box and programme the net-
work to direct selected traffic through the middle-box. It is
not, however, quite as straightforward as that. The appro-
priate placement and integration of SDN middle- boxes
must be determined along with the performance penalty
that can be tolerated when traffic is diverted through an
additional link. Such questions have not yet been resolved.
However, as illustrated in Table I, the range of attacks that
pose threats to the network is well understood. As such,
beyond middle-boxes, a series of solutions have been pro-
posed, which specifically exploit the SDN framework to
provide network security solutions.

B. SDN= “Security Defined Networking”?
Attackers use various scanning techniques to discover
vulnerable targets in the network. One defense presented
to thwart these attacks is the use of random virtual Inter-
net Protocol (IP) addresses using SDN [16]. This tech-
nique uses the OpenFlow controller to manage a pool of
virtual IP addresses, which are assigned to hosts within
the network, hiding the real IP addresses from the outside
world. This presents moving target defense, which is a

A. The SDN Middle-box
Traditional networks use middle-boxes to provide net-
work security functions. Recently, there has been discus-
sion about the integration of security middle-boxes into
SDN exploiting the benefit of programmability to redirect
selected network traffic through the middle- box. For ex-
ample, the Slick architecture [13] proposes a centralized
controller, which is responsible for installing and migrat-
ing functions onto custom middle-boxes. Ap- plications
can then direct the Slick controller to install the necessary
functions for routing particular flows based on security
requirements.
The FlowTags architecture [14] proposes the use of mini-
mally modified middle-boxes, which interact with a SDN
controller through a FlowTags Application Pro- gram-
ming Interface (API). FlowTags, consisting of traf- fic
flow information, are embedded in packet headers to pro-
vide flow tracking and enable controlled routing of tagged
packets. A clear disadvantage of this architecture is the
fact that it works with only pre-defined policies and cur-
rently does not handle dynamic actions.
The SIMPLE policy enforcement layer [15] is an ap-
proach for using SDN to manage middlebox deploy-
ments. In contrast to [13], [14], it requires no modifi-
cations to SDN capabilities or middle-box functionality,

TABLE I
CATEGORIZATION OF THE SECURITY ISSUES ASSOCIATED WITH

THE SDN FRAMEWORK BY LAYER/INTERFACE AFFECTED

788

IJISSM, 2018,Volume7,Number1

environment, it is vital that network security policy is
enforced. Model-checking becomes an important step
in detecting inconsistencies in policies from multiple
applications or installed across multiple devices. Mod-
el checking combined with symbolic execution may be
used to test OpenFlow applications for correctness [25].
Binary Decision Diagrams can also be used to test
for intra-switch misconfigurations within a single flow
table [26]. FlowChecker exploits FlowVisor [27], which
enables isolation by partitioning the network resources
into slices. Son et al. propose Flover [28], which uses as-
sertion sets and modulo theories to verify flow policies,
while VeriFlow [29] studies the verification of invariants
in real-time. An additional layer, which sits between the
SDN controller and the network devices, intercepts flow
rules before they reach the network. Although VeriFlow
boasts low-latency of the checking process, it cannot han-
dle multiple controllers. In [30], the authors propose the
use of language-based security to enable flow-based pol-
icy enforcement along with network isolation. This solu-
tion is implemented as a NOX application and al- lows the
integration of external authentication sources to provide
access control. More recently, Splendid Isolation
[31] has been proposed as a means of verifying the isola-
tion of program traffic. This programming model supports
the idea of network slices to provide the funda- mental
security concepts of confidentiality and integrity. There
is a clear emphasis from the research community on this
issue of policy conflict resolution.
However, proposals to aid in the design of secure SDNs
are limited. Fresco [32] is one notable contri- bution;
which presents an OpenFlow Security Appli- cation De-
velopment Framework incorporating FortNox [33]; a
security enforcement kernel. The idea behind FRESCO
is to allow the rapid design and development of security
specific modules, which can be incorporated as an Open-
Flow application. Porras et al. provide a library of reus-
able modules which can be used for the detection and
mitigation of network threats. This system incorporates
the FortNox enforcement engine, which handles possible
conflicts with rule insertion. If a rule conflict arises as
a result of a new OpenFlow rule enabling or disabling
a prohibited/allowed existing rule, then the new rule is
accepted or rejected depending on the level of securi-
ty authorization of the author to the existing conflicting
rule provider. Although FortNox provides numerous com-
ponents, which are necessary for enforcing security, the
authors feel that much work is still needed to offer a com-
prehensive suite of applications.
Moving from the design space to implementation, one of
the key industry concerns with security in SDN is satis-
faction of the audit process. For network compliance and
operation, a controlled inventory of network devices is re-
quired. This involves knowledge of what devices

form of adaptive cybersecurity.
Monitoring Systems are essential in protecting the network
from attack. In [17], the authors present a Distributed DoS
(DDoS) detection method based on several traffic flow
features. This system monitors NOX (C++ based Open-
Flow Controller) switches at regular intervals and uses
Self Organizing Maps to identify abnormal flows. In an-
other approach, OpenSAFE [18] uses its ALARMS policy
language to manage the routing of traffic through network
monitoring devices. A similar idea focusing on SDN in the
cloud was presented by Shin and Gu in [19]. CloudWatch-
er controls network flows to guarantee that all necessary
network packets are inspected by some security devices.
This framework automatically detours network packets to
be inspected by pre-installed network security devices.
These solutions are based on a centralized network man-
agement scheme; however other work encourages the del-
egation of some control back to network devices and hosts.
Resonance, for example, [20], provides dy- namic access
control enforced by network devices them- selves based on
higher-level security policies. Naous et al. [21] put forward
the ident++ protocol to query end- hosts and users for addi-
tional information in order to make forwarding decisions;
their argument being that the central controller could be-
come a bottleneck. While retaining the programmability
characteristic of SDN, these methods propose to involve
the network devices in the control of the network, rather
than relying on a single, centralized controller.
One specific form of monitoring system, the IDS, has
been the focus of a number of SDN solutions. Skowyra
et al. [22] propose a learning IDS, which utilizes the SDN
architecture to both detect and respond to net- work at-
tacks in embedded mobile devices. A hardware- accelerat-
ed NIDS (Network IDS) or NIPS (Network IPS) scheme,
as described in [23], allows the network administrator to
configure string patterns for use by a deep packet inspec-
tion (DPI) module. Finally, the value of using SDN to
provide intrusion detection in a Home Office/Small Office
environment is proposed in [24].
The possibility for improving and simplifying network
security by means of the SDN architecture is evident
from this body of research. This potential has also been
recognised commercially with a range of SDN security
products at various stages of development.

IV. SECURITY CHALLENGES WITH SDN
While security as an advantage of the SDN framework
has been recognized, solutions to tackle the challenges of
securing the SDN network are fewer in number.
SDNs provide us with the ability to easily program the
network and to allow for the creation of dynamic flow
policies. It is, in fact, this advantage that may also lead
to security vulnerabilities. Within this dynamic

789

IJISSM, 2018,Volume7,Number1

V. DISCUSSION
Considering the categorization of research work in Ta-
ble II, it can be seen that there has been greater focus on
exploiting SDN for enhanced network security than on
generating solutions to the identifed security issues. The
enhancement work has centred on the use of middle-box-
es and monitoring systems for security service insertion
to dynamically detect and/or prevent suspicious traffic
during live network operation.
There is further potential in this area to exploit the dynam-
ic and adaptive capabilities of the SDN framework using
methods of moving target defense. The work pre- sented
in [16] is one such example where randomizing the virtu-
al IP addresses makes it more difficult for an attacker to
breach the network. Without a fixed system to observe and
prepare to attack, the strength of the attacker is reduced.
New methods and techniques must be explored to expand
on the programmability of the network enabling dynamic
adjustments in security monitoring, detection and preven-
tion capabilities.
A minor observation from the content of Table II is
that the majority of the work references or im- plements
OpenFlow for the control-data interface. Al- though any
alternative to OpenFlow would have sim- ilar attributes,
it is worth noting that OpenFlow may not be the only/
definitive control-data interface protocol in SDNs. For
example, several Internet Engineering Task Force (IETF)
groups have defined protocols re- garding separation of
forwarding and control planes, network configuration and

are running, how they are bound to the network etc. This
directly concerns the potential for virtualization of net-
work elements and functions as supported by the SDN
framework. Although there is an unresolved challenge re-
garding the feasibility of mapping network state across
mobile and virtual functions, some related work regard-
ing network verification is worth mentioning. In [34], the
authors consider the problem of scalability and security
of OpenFlow networks and their use in the cyber-phys-
ical space. Verificare allows for specifi- cation modeling
and verification of network correctness, convergence and
mobility-related properties. Hadigol et al. propose the use
of a prototype network debugger [35], which could be
used to allow SDN developers to reconstruct the chain
of events which lead to a bug and identify its root cause.
As identified in Section II, the SDN architecture can be
considered as a set of layers and interfaces. The layer/
interface affected by some of the SDN-specific security
issues was identified in Table I. In a similar manner, the
SDN security research work is classified in Table II
by the layer/interface, which the analysis, enhancement
or solution targets. The results of this categorization are
discussed in the next section. It can be noted that SANE
[5] is included in Table II for categorization with respect
to affected layers/interfaces. However, as a separate archi-
tecture, it is not identified as an SDN security enhance-
ment or solution.

TABLE II
CATEGORIZATION OF THE RESEARCH ON SECURITY IN SDN

790

IJISSM, 2018,Volume7,Number1

There are two schools of thought on security in soft-
ware-defined networking. The first is that signifi- cant im-
provements in network security can be achieved
by simultaneously exploiting the programmability and the
centralized network view introduced by SDN. The second
is that these same two SDN attributes expose the net-
work to a range of new attacks. In this article, we have
categorized the SDN security challenges and presented a
comprehensive review of the research work on security
in SDN to date. Our analysis identifies that regardless
of your school of thought, there is yet more to be done;
more untapped potential and more unresolved challenges.
A concerted effort in both directions could yield a truly
secure and reliable Software-Defined Net- work.

routing. These include IETF ForCES (Forwarding and
Control Element Separation), PCE (Path Computation
Element), Netconf (Network Configuration), LISP (Loca-
tor/ID Separation Protocol)
and I2RS (Interface to the Routing System). In addition,
proprietary protocols are being developed by individual
companies. The work to identify and correct security-
related limitations of the OpenFlow protocol should be
considered in the design and development of alternative
protocols. This could apply both to the control-data plane
interface and also to the higher-level abstractions at the
application-control interface, which may present similar
concerns.
The most significant element to highlight from the cate-
gorization of security-related SDN research is that there
is an identifiable disconnect between the security analyses
presented to date, which focus on the control- data plane
issues, and the solutions to security issues, the majority of
which focus on one application-control plane issue; that
of policy conflict resolution.
Considering the breadth of potential security issues out-
lined in Table I, it is clear that a significant increase in
effort is required to identify solutions to these challenges.
This requirement has been recognised in the past year in
some areas of the networking community. Since the be-
ginning of 2013, various working groups have been estab-
lished in both the standardization industry and industry
research groups. In the Open Network- ing Foundation
(ONF) and the European Telecommu- nications Standards
Institute (ETSI), groups focussed specifically on security
in SDN and NFV, respectively, have been launched. In the
Internet Research Task Force (IRTF) and the International
Telecommunication Union
- Telecommunication Standardization Sector (ITU-T),
general SDN study groups have been launched in which
security in SDN is an identified issue.
One of the recurring themes from these industry working
groups is the importance of designing security in from the
start. By this, it is meant that while SDN is in the ear-
ly stages of development, the associated security issues
should be identified and resolved. However, SDN- com-
pliant hardware, software and services are already in pro-
duction and in service. While some of these solutions are,
in fact, SDN security products, many others have been
developed with little or no consideration of the security
implications of a wide area network deployment. It is,
therefore, essential, that techniques, methods and policies
to overcome the SDN security challenges are explored
and defined to enable robust and reliable wide area SDN
deployments. An increased emphasis on this now could
avoid a reduction in the performance and capability of fu-
ture SDNs as a result of retrofit security
solutions.
VI. CONCLUSION

791

IJISSM, 2018,Volume7,Number1

[12] D. Li, X. Hong, and J. Bowman, “Evaluation
of Security Vul- nerabilities by Using ProtoGENI as a
Launchpad,” in Global Telecommunications Conference
(GLOBECOM 2011). IEEE, 2011, pp. 1–6.

[13] B. Anwer, T. Benson, N. Feamster, D. Levin, and
J. Rexford, “A Slick Control Plane for Network

Middleboxes,” Open Networking Summit, 2013.
[On- line]. Available: http://nextstep-esolutions.com/Cli-
ents/ONS2.0/ pdf/2013/research track/poster papers/final/
ons2013-final51.pdf

[14] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul,
“FlowTags: Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions,” in Proceed-
ings of the second workshop on Hot topics in software
defined networks. ACM, 2013.

[15] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu, “SIMPLE-fying Middlebox Policy Enforce-
ment Using SDN.” ACM SIGCOMM, August 2013.

REFERENCES
[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: Ex-

perience with a globally-deployed software defined wan,”
in Proceedings of the ACM SIGCOMM 2013 conference.
ACM, 2013, pp. 3–14.

[2] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser,
D. Lake,

J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are
we ready for SDN? Implementation challenges for soft-
ware-defined networks,” Communications Magazine,
IEEE, vol. 51, no. 7, 2013.

[3] “Network Functions Virtualization - Introductory
White Paper,” October, 2012. [Online]. Available: http://
portal.etsi.org/NFV/ NFV White Paper.pdf

[4] C. Douligeris and D. N. Serpanos, Network securi-
ty: current status and future directions. Wiley. com, 2007.

[5] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh,

N. McKeown, and S. Shenker, “Sane: A protection ar-
chitecture for enterprise networks,” in USENIX Security
Symposium, 2006.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N.
McKeown, and

S. Shenker, “Ethane: Taking control of the enterprise,”
in ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4. ACM, 2007, pp. 1–12.

[7] R. Kloeti, “OpenFlow: A Security Analysis,”
April 2013. [Online]. Available: ftp://yosemite.ee.ethz.ch/
pub/students/ 2012-HS/MA-2012-20 signed.pdf

[8] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack,
“Threat modeling-uncover security design flaws using
the stride ap- proach,” MSDN Magazine-Louisville, pp.
68–75, 2006.

[9] “OpenFlow Switch Specification Version 1.3.2,”
Open Networking Foundation. [Online]. Available:
https://www. opennetworking.org

[10] K. Benton, L. J. Camp, and C. Small, “OpenFlow
Vulnerability Assessment,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 2013, pp. 151–152.

[11] D. Kreutz, F. Ramos, and P. Verissimo, “Towards
secure and dependable software-defined networks,” in
Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM,
2013, pp. 55–60.

792

IJISSM, 2018,Volume7,Number1

E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration
anal- ysis and verification of federated OpenFlow infra-
structures,” in Proceedings of the 3rd ACM workshop on
Assurable and usable security configuration. ACM, 2010,
pp. 37–44.

[27] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Flowvisor: A network vir-
tu- alization layer,” OpenFlow Switch Consortium, Tech.Rep,
2009.
[28] S. Son, S. Shin, V. Yegneswaran, P. Porras, and
G. Gu, “Model Checking Invariant Security Properties
in OpenFlow.” [Online]. Available: http://faculty.cse.tamu.edu/
guofei/paper/Flover-ICC13.pdf

[29] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veri-
Flow: Verifying network-wide invariants in real time,”
ACM SIGCOMM Computer Communication Review, vol.
42, no. 4, pp. 467–472, 2012.
[30] T. Hinrichs, N. Gude, M. Casado, J. Mitchell,
and S. Shenker, “Expressing and enforcing flow-based
network security policies,” University of Chicago, Tech.
Rep, 2008.

[31] C. Schlesinger, A. Story, S. Gutz, N. Foster, and D.
Walker, “Splendid isolation: Language-based security for
software- defined networks,” in Proceedings of the first
workshop on Hot topics in software defined networks.
ACM, 2012, pp. 79–84.

[32] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G.
Gu, and
M. Tyson, “FRESCO: Modular composable security services
for software-defined networks,” in Proceedings of Network and
Distributed Security Symposium, 2013.

[33] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu, “A security enforcement kernel for OpenFlow net-
works,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 121–126.

[34] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury,
“Verifiably-safe software-defined networks for CPS,” in
Proceed- ings of the 2nd ACM international conference on
High confidence

networked systems. ACM, 2013, pp. 101–110.
[35] N. Handigol, B. Heller, V. Jeyakumar, D. Mazires, and N.

McKe- own, “Where is the debugger for my software-de-
fined network?” in Proceedings of the first workshop on
Hot topics in software defined networks. ACM, 2012, pp.
55–60.

[16] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow
random host mutation: transparent moving target defense
using software defined networking,” in Proceedings of the
first workshop on Hot topics in software defined networks.
ACM, 2012, pp. 127–132.
[17] R. Braga, E. Mota, and A. Passito, “Lightweight
DDoS flooding attack detection using NOX/OpenFlow,”
in IEEE 35th Confer- ence on Local Computer Networks
(LCN). IEEE, 2010, pp. 408–415.
[18] J. R. Ballard, I. Rae, and A. Akella, “Extensible
and scalable network monitoring using opensafe,” Proc.
INM/WREN, 2010.
[19] S. Shin and G. Gu, “CloudWatcher: Network
security monitoring using OpenFlow in dynamic cloud net-
works (or: How to provide security monitoring as a service
in clouds?),” in 20th IEEE International Conference on
Network Protocols (ICNP). IEEE, 2012, pp. 1–6.
[20] A. K. Nayak, A. Reimers, N. Feamster, and R.
Clark, “Res- onance: dynamic access control for enterprise
networks,” in Proceedings of the 1st ACM workshop on
Research on enterprise networking. ACM, 2009, pp. 11–18.

[21] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and
N. Zel- dovich, “Delegating network security with more
information,” in Proceedings of the 1st ACM workshop on
Research on enterprise networking. ACM, 2009, pp. 19–26.

[22] R. Skowyra, S. Bahargam, and A. Bestavros, “Software-
Defined IDS for Securing Embedded Mobile Devices,”
2013. [Online]. Available: http://www.cs.bu.edu/techre-
ports/pdf/ 2013-005-software-defined-ids.pdf

[23] A. Goodney, S. Narayan, V. Bhandwalkar, and Y. H. Cho,
“Pattern Based Packet Filtering using NetFPGA in DETER
Infrastructure.” [Online]. Available: http://fif.kr/AsiaNetFP-
GAws/ paper/2-2.pdf

[24] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traf-
fic anomaly detection using software defined networking,”
in Recent Advances in Intrusion Detection. Springer, 2011,
pp. 161–180.

[25] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J.
Rexford, “A NICE way to test OpenFlow applications,” in
Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, 2012.

[26]

