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Abstract 

In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound 

imaging technique is developed. This problem consists in computing the deformation of an elastic 

non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge 

their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are 

approximated by the Moving Least Square (MLS) method. The effect of Shape functions on the Mesh-

free results are analyzed and discussed with the several simulations in 2D domain. 

Keywords: Elastography, Mesh-free, Soft Tissue Phantom. 

1- Introduction 

Elastography is an imaging technique that 

presents insight into the mechanical 

properties of soft tissues by applying a 

mechanical stimulation and then imaging 

the resulting local displacements[1-5]. 

It is difficult to explain the correct 

mechanical behavior of biological tissue 

under loading exactly, and one can assume 

that accurate determinations of the 

mechanical characteristics of a tissue from 

its behavior under load through use of a 

mathematical model are actually difficult 

to attain and disposed to error. 

Elastography techniques make use of some 

types of models to generate and estimate of 

quantitative elasticity; hence, they all 

experience errors that arise from the 

inevitable shortcomings in their respective 

model descriptions. However, images 

taken in elastography modalities occur in 

different geometries, so making 

comparison difficult. In order to confirm 

significant correlation of imaging data, a 

mean of mapping or co-registering one 

image into another in a physically accurate 

method is needed [6]. 

Nowadays, computational biomechanics 

has appeared as a topic of considerable 

interest to the medical image analysis 

community. Some of the particular utilities 

are methods for modeling soft tissue 

deformation. The most physically 

consistent models are those based on 

equations of continuum mechanics, which 
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are generally solved using a numerical 

technique such as the finite element (FE) 

method[7]. 

The concept of the finite element method is 

to division of the tissue volume into the 

network of elements called mesh, to set up 

governing equations for each element, and 

then to assemble all element equilibrium 

equations into a system of equations. 

This method is recognized for the 

modeling of complex problems in 

biomechanics. It is a developed method, 

but it is not without shortcomings. The 

dependency of this technique on a mesh 

conducts to difficulties for several classes 

of problem. Significant loss in accuracy 

occurs in problems of crack propagation, 

large deformations, shell problems, phase 

transformation, movement of free surface 

and strain localization. The application of a 

mesh in modeling of these problems makes 

problems in the handling of discontinuities, 

which do not coincide to initial mesh lines. 

This is due to the basic properties of an 

element-based shape function. Also, in the 

finite element method, mesh generation is 

a far more time-consuming and costly task 

than the assembly and solution of the finite 

element equations. 

One of powerful numerical method is 

mesh-free method that does not need any 

element for shape function construction. 

Meshfree methods have performed as 

connectivity free between elements and 

nodes. 

Present research is studied the applicability 

of mesh-free method to predict soft tissue 

deformation was validated with ultrasound 

imaging of heterogeneous tissue 

mimicking phantom and FEM. 

The paper is organized as follows: Firstly, 

the materials and methods consist of theory 

of Meshfree method and the data 

acquisition of both experiment and 

numerical simulation are presented. 

Secondly, meshfree modeling of phantom 

is conducted and a comparison of the 

calculated motion and the measured 

motion is completed. Finally, using the 

mesh-free method in predicting of soft 

tissue deformation is validated and the 

conclusion is drawn. 

2- Materials and Methods 

2-1- Theory 

The most generally used estimation 

theories in mesh-free methods are the 

moving-least squares (MLS) 

approximation in the element-free Galerkin 

(EFG) method. The discretization of the 

governing equations by element-free 

Galerkin method needs moving least 

square interpolation functions which are 

constituted of three main part[8]:  

1) a weight function,  

2) a monomial basis function and  

3) a set of coefficients. 

If an unknown scalar function of a field 

variable u(x) is approximated by u
h
(x) over 

the two-dimensional domain Ω, The MLS 

approximation of u(x) is defined as: 

∑
1

ap
m

j

T

jj

h )()()()a(p)(u


 xxxxx  (1) 

Where )(a j x  is the non-constant 

coefficients, x
T
=[x,y] for two dimensional 

problem, and )(p j x is basis function often 

built using monomials from the Khayyam-

Pascal triangle to confirm minimum 

completeness as below: 
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Which m is the number of the basic 

functions. 

The coefficients )(a j x  are obtained by 

minimizing the quadratic functional J(x) as 

follow. 

2
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Where n is the number of nodes in the 

support domain of x, )( iw xx  is a weight 

function with domain of influence and ui is 

the nodal parameter of u at xi.  

To find the coefficients a(x), it should be 

calculated the minimum of J which leads 

to the following set of linear relations: 

s
1- (x)(x)=(x) UBAa  (4) 

Where A and B are defined by: 

pwpA (x)= T  (5) 

(x)= T
wpB  (6) 

Substituting the above equation back into 

MLS approximation of u(x) (Eq. 1), it 

obtains: 

∑
1

n

i

s

T

ii

h (x)(x)u)(u


 UΦx  (7) 

Where the vector of MLS shape functions 

corresponding n nodes in the support 

domain of the point x, )x(Φ , is defined by: 

∑ ∑∑
n

1=i

n

1=i

m

0=j
ji

1
ji

T (x)(x)(x)p=Φ=)( )B(AxΦ  (8) 

Figure 1 is illustrated the MLS shape 

functions created using 25 nodes with 

regular dispersion in the support domain 

and different type of basis function (m=3 

and m=6). 

The weight function is non-zero at the 

small region of around the node, called 

support domain of the node. The cubic 

spline function used in this study has two 

order of continuity and can be written as a 

function of normalized radius r  as below: 

1>r0

1≤r≤50r
3

4
-r4+r4-

3

4

50≤rr4+r4
3

2

=(x)w
32

32

i .
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 (9) 

Where  

s

i

i
d

-
=r

xx
 (10) 

in which i- xx  is the distance from node xi 

to the sampling point x, and css dα=d .  is 

the size of the support domain for the 

weight function that is computed by 

multiplying the scaling parameter , sα ,into 

nodal spacing, cd . 

 
(a) linear basis function (m=3) 

 
(b) Quadratic basis function (m=6) 

Fig. 1- MLS shape function for center node 
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3- Numerical Simulation 

FE simulation is performed using the 

ABAQUS 6.6.1 to investigate the 

performance of mesh-free method in 

simulation of heterogeneous media. A 

rectangular 100mm × 100mm phantom 

containing one circular hard inclusion with 

10mm of radius is simulated under the 

plane-strain state with respect to 

experiment (Fig. 2). The Poisson’s ratio of 

the inclusion and the surrounding media is 

set to be 0.495(near incompressible).  

In order to reconstruct the elastic modulus, 

the boundary data related to experiment is 

applied to the model as follows: on the top 

of boundary three amount linear distributed 

loads are applied. All nodes on the bottom 

and left and right sides boundary are fixed. 

The phantom is 2-D and is made up of 

2400 4-noded plane strain elements. 

The ideal displacement field can be 

obtained by solving this problem. By 

comparing the calculated displacement in 

one direction with measured displacement 

in the experiment at the same direction, 

and converging the numerical result to the 

experiment, the elastic modulus of 

phantom can be estimated[9]. 

 

Fig. 2- Schematic of Problem 

4- Validation 

To determine the reliability of experiment 

and to validate the numerical results, the 

uniaxial compression test is applied on 

four cylindrical samples of each part of 

phantom (soft background and hard 

inclusion) using Zwick 1446 mechanical 

testing system. Fig. 3 shows the setup of 

uniaxial compression test[10]. 

 

Fig. 3- Uniaxial compression test to determine the 

elastic modulus of each part of phantom. 

5- Results 

The displacement distribution obtained by 

FEM and Meshfree method are displayed 

in Fig. 4, including the displacement field, 

uy in third loading. The elasticity of the 

above models are obtained after 

convergency of numerical modeling results 

and experiment results. The elasticity of 

the surrounding phantom material and 

embedded inclusion are 500kPa and 

800kPa, respectively. The vertical 

displacement along dotted line in Fig. 4 is 

plotted in Fig. 5. 

 

(a) 
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(b) 

Fig. 4- 2D vertical displacement field obtained by 

a)Meshfree; b)FE 

Young’s modulus of two parts of the 

phantom materials measured by uniaxial 

compression test is shown in table 1. 

 

Fig. 5- Vertical displacement from top to end of the 

phantom along dotted line in Fig. 4. The fracture at 

the point A shows the location of harder inclusion. 

 

Table 1- Young’s modulus of the phantom materials 

calculated by uniaxial compression test 

 

6- Discussion and Conclusion 

The fracture at the point A shows the 

location of harder inclusion. Three amount 

of loading are performed on the 

heterogeneous tissue mimicking phantom 

and related displacement field of the 

phantom is calculated using 2 types of 

numerical method, Finite Element and 

Meshfree method. The real displacement 

of the phantom is measured by speckle 

tracking of ultrasound images pixel named 

optical flow. By changing the elastic 

modulus of two types of phantom material 

and converging the numerical 

displacement results to the real 

displacement measured by optical flow 

technique, the elastic modulus can be 

estimated as 800kPa and 500kPa, 

respectively for hard inclusion and soft 

background. These amounts of elastic 

modulus are in good agreement with 

uniaxial compression test results which are 

performed on related types of phantom 

material and mentioned in table 1. 

 

a- 
1=αs ; 3 nodes in the support domain 

 

b- 
2=αs ; 13 nodes in the support domain 
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c- 
3=αs ; 27 nodes in the support domain 

 

d- 
4=αs ; 52 nodes in the support domain 

Fig. 6- Effect of  support domain size on the shape 

function of node A which specified in Fig. 5 

The MLS shape functions, Phi, for the 

central node (x=0, y=0) using different 

type of basis function are plotted in Fig. 1. 

One can see, when the order of basis 

function, m, becomes larger, the shape 

function, phi, increases and the 

performance of the MLS approximation 

will be improved because of possessing the 

Kronecker delta condition. But, if the 

number node in support domain is smaller 

than the number of basis function, the 

moment matrix A in equation (4), isn't 

invertible. 

In Fig. 6, the effect of support domain size 

on the shape function is shown. One can 

see when the size of support domain 

increase, the shape function is further to 

Kronecker delta property. In the other 

hand, when the size of support domain is 

too small, the shape function is not smooth 

and regular distributed. 

In conclusion, the results establish that 

Meshfree can accurately predict 

displacement, thus it is valuable to further 

research, the use of Meshfree method in 

data synthesis, soft tissue simulation and 

elasticity reconstruction.  

While mesh production in complex 

problems can be a time-consuming and 

costly effort than the discrete arrangement 

of equations solution, the Meshfree method 

presents an attractive substitute to the FE 

method for solving every type of problems. 

Meshfree method also appears to carry out 

the large deformations more naturally as 

the warp of the cloud of points performs to 

have a reduced effect on accuracy than in 

FE. In spite of these advantages, Meshfree 

methods are more unwieldy to execute and 

computationally expensive. 
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