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Abstract 

The static analysis of guyed towers is very complex because of high degree of non-linearity they exhibit 

due to their slender and flexibility. In the static analysis of cable systems, due to the effects of 

nonlinearity of loading and large functions, the interference of loads and displacement have no much 

value. Because of having no analytical solution for these systems, numerical methods have been applied. 

Finite difference method (FDM) is one of the known methods which are directly related to nonlinear 

relative equations and, the cable system is defined using calculating of them and deformation equations 

. In this research, the non-linear analysis of cables under three dimension static loads is analyses using 

FDM. This model can be analyzed three dimension response of cable using sequential method. In this 

model, long and inclined pre-tensioned cables have been studied in which only axial stiffness of cable 

is considered while bending and torsion stiffness are assumed to be negligible. 

Keywords: Static analysis, Guyed cable, Cable sagging, Finite difference method.

1- Introduction 

A cable structure is defined as a structure in 

which a cable or a cable system is used as 

an element to withstand the initial load. 

They are simple in assembling, light in 

weight and safe in maintenance. In these 

structures, pre-tensioned cables are used to 

provide stability of system. Most of these 

cables are under combination of three 

dimension forces due to their supporting 

action [1].Structure cables are important in 

the modern structural engineering which 

increase tower stability and support the 

flexible rods at the top of the mast that are 

supposed to wind forces. It is necessary for 

a structure engineer to know how to deal 

with these forces. Many existing structures 

are vulnerable to loads therefore their 

resistance to these loads should be increased 

[2]. Regarding growing importance of 

cables structures application, understanding 

their properties are very important, so there 

is a need for more information on cable 

behavior [3]. Recently, cable three 

dimensional structures have been designed 

with high tension stress tolerance. 
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Sometimes the cables are under different 

loadings. In the cable supported structures, 

wind aerodynamic forces [4] are important. 

In the most of cable structures, cable 

hardness is low compared to other structure 

components. Since the frequency is 

proportional to the square of stiffness to 

mass ratio, natural frequencies of cable 

structure are less than other structures 

therefore the system dynamic response is 

determined if the natural frequencies are 

approximately three fold of force 

frequency, In the normal state, the cable 

structures have lower frequency (less than 4 

Hez) while guyed structures have high 

natural frequency. Dynamic responses of 

cable structures provided based on created 

loads in different times and dynamic 

tensions applied on statistic pretensions 

lead to problems in the structural members 

which lead to high pressure or fatigue. 

When the power frequency is closed to 

natural frequency, the dynamic stresses 

close to resonance conditions are very high 

[5]. An efficient way to solve nonlinear 

equations is to use a finite difference 

method for static analysis. 

2- Static equilibrium equations 

Today, modeling is very important step for 

cognition and analysis of designers to meet 

their needs and design based on facilities to 

accelerate production [6].Consider a flat sa, 

single span and inclined under influence of 

a three dimensional static load applied to its 

self-weight deflected shape. Fig. 1 shows a 

cable static model. As shown in this figure, 

the left of cable (O) is considered as origin 

of coordinate system and the cable is 

initially placed in the z-x plane [7]. 

 
Fig. 1  the model of 3D cable for static analysis 

 

In each chord length unit, the weigh   ,dq T  

elastic modulus (E), the same cross-section 

(A), chord length (Lq), inclination angle (θ) 

due to X axis are considered. At any point 
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of cable, deformed geometrical shape is 

presented by Cartesian coordinate space 

vector  x, y,z or  1, 2 3x x ,x using index 

markings.3-D uniform loading and 

concentrated loading vectors 

  q = q , q , qx y z and  P = P P Px y z , 

respectively) are applied to self- weight 

deformed cable in a varying chord length. 

Due to 3-D loading, the internal cable 

tension  x y zT = T T T in any point  x, y,z of 

cable is different from one point to another 

along the cable. 

2-1- The main hypotheses 

To simplify the derivation of cable 

equilibrium equation, the followings points 

are assumed: 

(1) elastic cable materials with finite 

strain (Lagrangian non-linear strain) 

(2) long and pre tensioned cables with 

common axial stiffness (negligible 

torsional and bending stiffness) 

(3) Along the x axis, cable tension 

varies (x is considered as an 

independent variable). 

 

2-2- static equilibrium equations 

Static analysis is very important to design of 

a structure and using a static analysis, it can 

be sure about resistance of the structure [7]. 

Consider the equilibrium conditions for 

infinite element of length  sd  of self- 

weight deformed cable, in the (x-y) plane. 

Its force equilibrium in x vector is [8]:  

T T
x xdx +(q )dx = 0 i.e = -q

x xx x

 
  

  

 
  
 

∂ ∂

∂ ∂
  (1)                                                             

By defining the , ,x y z  directions as 1, 2 

and 3 index notation, equation 1 generalizes 

for 3-D local directions: 

 
Ti = -q

ix





∂

∂
                                                   (2) 

Using vector algebra expressions, the 

following equation is obtained for 3-D cable 

tension component:  

xiT = n T = .T i = 1,2,3i i
s


 

∂

∂
                          (3)   

Using convention of equation 3, we can 

reduce the number of unknown tension 

component as follow:  

y
T = T .
2 1 x


 



∂

∂
                                           (4-1) 

y
T = T .
2 1 x


 



∂

∂
                                              (4-2) 

Using equations 4, the force equilibrium in    

is as follow: 

y'
T . = -q
1 2x x

2 Ty' y'1T . + . = -q
1 22 x xx

 
 


 

 

 
 
 

∂ ∂

∂ ∂

∂∂ ∂

∂ ∂∂

)5(                           

Similarly, the force equilibrium in 

z  is as follow 

z
T . = -q
1 3x x

2 Tz z1T . + . = -q
1 32 x xx


 

 

 
 

 

 
 
 

∂ ∂

∂ ∂

∂∂ ∂

∂ ∂∂

                                (6) 

 

Finally, after rearranging, three differential 

equations for the cable equilibrium are 

provided as: 

T
1 = -q

1x






∂

∂
                                                  (7-1)  
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2
y y

T = q . - q
1 1 22 xx

 
  



   
       

∂ ∂

∂∂
                             (7-2) 

2
z z

T = q . - q
1 1 32 xx

 
  



   
       

∂ ∂

∂∂
                             (7-3) 

where, 1 2 3, ,T T T   are strain components in the 

, ,x y z    directions.  

T = +T .Cos(θ) -T .Sin(θ)
1 1 3

                       (8-1) 

T = +T
2 2

                                                  (8-2) 

T = +T .Sin(θ)+T .Cos(θ)
3 1 3

                        (8-3) 

xq , q , qy z are applied equivalent static force 

per unit chord length in , ,x y z                  

direction. 

PP 31q = + q + .cos(θ)+ q +q + .Sin(
1 1 3dh h

θ)
  
  

   
      (9-1) 

P
2q = + q +

2 2 h


 
 
 

                                       (9-2)  

PP 31q = - q + .Sin(θ)+ q +q + .Cos(θ)
3 1 3dh h


  
  

   

  (9-3) 

 

xp , p , py z are point loads in x, y,z 

directions which are active in special points 

and h is cable segment lenth: 

CHL
h =

n -1

 
 
 

                                           (9-4)   

in which, (n-1) is number of cable divisions. 

Thus the nonlinear static analysis of cable 

reduces the problem of finding the unknown 

values of the tension components ( 1T  ) and 

( ,y z  ) coordinates in a point using given 

vector ( x ) and for a certain loading vector

xq , q , qy z .This is achieved by using S0 as 

the only cable invariant to perform  the 

required iterations to find correct tension of 

cable at the next loading. Then the 

calculation of other unknowns can be made 

based on these determined values. 

2-3- Partial non-linear differential equations 

of equilibrium using finite difference method 

An effective method to solve different 

nonlinear partial equilibrium equations is to 

use the finite difference model for the 

spatial discretization of the system 

equations. Using this method, and consider 

equations (7) and after rearrenging, we have 

[9]: 

2 q qy y1 2= . -
2 T x Tx 1 1

 

  

   
       

∂ ∂

∂∂
                                 (10) 

Using finite difference first and second 

order approximations for the spatial 

derivatives, it is possible to write equation 

10 in the well-known matrix to solve the n-

dimension simulated for all internal nodes 

as follows:  

ˆˆ
ˆˆ

ˆ

q h1
[A] + .[B] ×{u} = {f}

2T1

   
  
   

                (11)  

in which 

+1

-1 +2 -1

[A] =

-1 +2 -1

+1

 
 
 
 
 
 
 
  

                 (12-1)  

 

0

-1 0 +1

[B] =

-1 0 +1

0

 
 
 
 
 
 
 
  

                  (12-2)  



59 

K. Kumarci,& A. Baharizadeh / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 14 (2022) 0055~0062 

 

y
1

y
2

forY - direction {u } =

y
n-1

yn

z
1

z
2

for Z - direction {u } =

z
n-1

zn





 









 





 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                   (12-3)  

 

y
1

2
q h

2

T
1 2forY - direction {f } =

2
q h

2

T
1 n-1

yn

z
1

2
q h
3

T
1 2for Z - direction {f } =

2
q h
3

T
1 n-1

zn







 













 







 
 
  
   
  
 
  
 
  
  
  

 
 
  
   
  
 
  
   
  
 
 

                 (12-4) 

2-4- Calculation method for solving 

equilibrium equation 

 2.4.1- Initial cable self-weight profile 

 The first step in complete nonlinear 

analysis is to determine the initial shape of 

the cable considering its self- weigh only, to 

initial cable profile approximated as its 

chord. This can be accomplished using the 

same method used in the following steps or 

the finite difference model combined with 

the sequential design. We have obtained 

 x, y,z along with its fixed length. The 

fixed length of the cable, S0, is considered 

as a mandatory parameter in cable analysis, 

so that only the fixed cable is used to 

determine the correct equilibrium state of 

the cable under load. 

2-4-2- Cable response due to total static loading 

In order to determine the response of the 

cable (for example, cable deformation 

function and the internal forces in terms of 

tensile components) due to 3-D loading, we 

completed the numerical solution of the 

nonlinear equilibrium differential equations 

using iteration schemes. The required 

computational method can be accomplished 

using the following steps: [10]  

Step 1 

Based on equation (7-1) in discrete form, 

for    it can be solved as follows: 

F = F - q × Δx |ii,i+1 1,i 1,i
                           (13)  

where, F + F
1,i 1,i+1
   are nodal forces in        

direction of x for i th cable element.. At 

first, we assume that the F1,ivalue at one 

cable end is equal to previous value and 

from then we continue calculation process 

until we reach to other end of the cable. The 

average amount of nodal forces for each 

element is taken to represent the discrete 

cable tension for that element, for example: 

1
1

T = (F + F ) i = 1,2,...,n -
1,i 1,i 1,i+12
           (14)  

Step 2-1 

Using finite difference method that is given 

in equations 11 and 13-2 and employing 

determined tension components, 
iT ,1
   

determined previously for n-1 and 

i=1,2,…so componentization in (7-2) 

indicates the static balance of cable in 

unknown functions. 
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Step 2-2 

Repeat the previous sub-step to solve 

discreet form of equation (3-7) which 

indicates the static balance of the cable 

along z and is used for the unknown z      

coordinate of cable. 

Step 3 

Calculate strain components in ,y z  axis 

using (4-1) and (4-2) for ith element, and 

define 




 
 
 

y

x
, 





 
 
 

z

x
  as follow [11]: 

y - y y - y(Δy )y i+1 i+1i i i= = =
x (Δx ) x - x hi i ii+1

   

   

 
 
 

∂

∂
     (15-1) 

z - z z - z(Δz )z i+1 i+1i i i= = =
x (Δx ) x - x hi i ii+1

   

   

 
 
 

∂

∂
   (15-2) 

Then calculate total amount of iT  as: 

2 2 2
T = T +T +Ti 1 2 3ii i
                                 (16) 

Step 4-1 

Compute the length of the deformed cable 

(S) using deformed geometrical shape of 

cable mentioned earlier, from the following 

equation: 

n=1
S = (ΔS) i = 1,...,n - 1i

i=1
                  (17)  

in which 

2 2 2
ΔS = (Δx ) +(Δy ) +(Δz )i i i i

          (18-1) 

i

(Δx ) = x - x = h ,(Δy ) =i i ii+1

              y - y ,(Δz ) = z - zi ii+1 i+1

   

    
(18-2) 

Step 4-2 

Using the elastic modulus elasticity of the 

material of cable (E), and the cross-

sectional area (A), along with the deformed 

length of the element (Δs), and the total 

tension (Ti), we can calculate the new fixed 

length from the following equation [12]: 

n-1
* *

a 0 i

i=1

S = (ΔS ) i=1,....,n -1            (19) 

In which: 

*

0

i

(ΔS)iΔS =
T

1+2( )
EA

                                 (20) 

Step 5 

Find the exact value of the tension at the end 

of the cable, F'1,1, that keeps the cable in the 

cable in equilibrium  under the existing 

loads, while maintaining a constant cable 

length a, which represents the net weight 0s

. This can be accomplished using iterative 

scheme that require defining the upper and 

lower bounds on H'. Above mention 

calculation method leads to providing 

accurate solutions to solve the problem of a 

single cable under a three-dimensional 

static load. This can be accomplished by 

ensuring the balance of the forces and the 

adaptation of the deformation which is 

described by the differential equations in 

the cable system. 

5-1- Pre-determined displacements applied 

in the end of cable 

Displacement continuity at the lower and 

upper end of cable 1( , , )u v w  is calculated 

using ( , , )nu v w at the lower and upper part 

of cable.it has effect on strain changes of 

cable (H). However, the only fixed 

parameter of the cable the fixed length (S0), 

will be remain. This method has an 

important application for checking the non-

linear interaction between cable and structure 

(for example, in guyed masts). In these masts, 

the movement at the end of the cable is related 

to the interaction between the cable and the 
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supported structure. The interaction has a great 

effect on the internal forces of the supporting 

cables and the supported structure. 

3- Conclusion  

This research includes a new non-

dimensional finite difference formulation 

that takes into account all the important 

parameters affecting the swing 

characteristics of restraining cables. The 

last hypotheses have been used to access the 

partial nonlinear differential equations for 

spatial displacement. Also, a normalized 

method has been used to provide the non-

dimensional form of equations in an 

appropriate parametric research. Finally, 

parametric research has been done to 

investigate the effect of loading and cable 

parameters on cable response. According to 

the analysis, it has been concluded:  

1- Cables with high initial tension (low 

bending ratio) show stiffness 

behavior in the displacements of 

lower parts (strain) and hence show 

low dynamic tension.  

2-  Due to the relatively light weight of 

the structure, the fluctuation and 

change of the mass of the cable does 

not have much effect on the 

displacement or tensile response of 

the cables. 

3- Higher levels of in-plane loading, 

perpendicular to the cable chord and 

out-of-plane loading can 

significantly increase the response 

of the cable, while in-plane loading 

along the cable chord has much less 

effect. 
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