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Abstract 

This work was intended as an attempt to motivate readers for a comparison study of constructions of 

Legendre multiwavelet and Chebyshev multiwavelet. It is also shown how to use them in Petrov-

Galerkin approach for solving Fredholm integro-differential equation of high orders of the second kind. 

In fact, a numerical technique for the discretization method of Fredholm integro-differential equations 

is presented that yields linear system. The important point to note here is the convergence of presented 

methods. For the first time, two conditions are proved for convergence of Legendre and Chebyshev 

multiwavelets in Petrov-Galerkin method. The proof of these conditions with using linear algebra and 

matrix theory ensures that Petrov-Galerkin methods has a unique approximation. Finally, some relevent 

numerical examples, for which the exact solution is known, will indicate accuracy and applicability of 

the proposed method. 

Keywords: Fredholm integro-differential equations; Petrov-Galerkin method; Legendre multiwavelet; 

Chebyshev multiwavelet. 

1- Introduction and preliminaries 

In a variety of scientific applications such as the 

theory of signal processing and neural networks 

arise an integro-differantial equation that is an 

equation involving one or more unknown 

functions, together both differential and 

integral operations [1,2,3]. The linear 𝑚 th 

order ordinary Fredholm integro-differential 

equation of the second kind has the following 

general form 

∑ 

𝑚

𝑖=0

𝑎𝑖(𝑡)𝑥
(𝑖)(𝑡) − ∫  

𝑏

𝑎

𝑘(𝑠, 𝑡)𝑥(𝑠)𝑑𝑠

= 𝑓(𝑡) ,  𝑎 ≤ 𝑡 ≤ 𝑏          (1.1)  

where the function 𝑓(𝑡), the kernel 𝑘(𝑠, 𝑡) and 

𝑎𝑖(𝑡) for each 𝑖 = 0,1,… ,𝑚 are known and 

𝑥(𝑡) the exact solution is unknown. It is 

necessary to define initial conditions 

𝑥(0), 𝑥′(0), … , 𝑥(𝑚−1)(0) for the 

determination of the particular solution 𝑥(𝑡) of 

eq.(1.1). The direct computation method and the 

Taylor series method are used for eq.(1.1) in [3] 

and numerical methods including quadrature, 

collocation and Galerkin methods for eq.(1.1) 

are used and their analysis may be found in 

[4,5]. 

Many approaches for the numerical solutions of 

these kinds of equations can be found in other 

literature. For example, spline collocation [22], 
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analytical Lie group approach [21], fractional 

differential transform [25], least-squares [17], 

rationalized Haar function [20], exp-function 

method [16], and many others. In [23], a novel 

Legendre wavelet Petrov–Galerkin method was 

presented for fractional Volterra integro-

differential equations. The Chebyshev wavelet 

method [18] has been used to nonlinear 

fractional Volterra-Fredholm integro-

differential equations (FVFIDEs) with mixed 

boundary conditions. In [23], a novel Legendre 

wavelet Petrov–Galerkin method was presented 

for fractional Volterra integro-differential 

equations. The Chebyshev wavelet method [18] 

has been used to nonlinear fractional Volterra-

Fredholm integro-differential equations 

(FVFIDEs) with mixed boundary conditions. 

In this work, we restrict our attention to the 

following linear second order Fredholm 

integro-differential equation of the second kind 

with two boundary conditions 

∑ 

𝑚

𝑖=0

𝑎𝑖(𝑡)𝑥
(𝑖)(𝑡) − ∫  

𝑏

𝑎

𝑘(𝑠, 𝑡)𝑥(𝑠)𝑑𝑠 

= 𝑓(𝑡),  𝑥(𝑎) = 𝛼 ,  𝑥(𝑏) = 𝛽           (1.2)  

Wavelets basis are already applied in order to 

solve various kinds of integral equation. In [12] 

Maleknejad and Sohrabi used Legendre 

wavelets, Shang and Han in [13] applied the 

Legendre multiwavelets. In [14] and [15] Lepik, 

Gu and Jiang proposed non-uniform Haar 

wavelets and Trigonometric Hermit wavelets 

too. 

A class of like-wavelet basis for 𝐿2[0,1] are 

constructed and applied for approximating the 

solution of The Fredholm integral equation of 

the second kind [1]. Alpert, in [6] has employed 

Galerkin numerical method. In [7,8], the 

wavelet Petrov-Galerkin schemes based on 

discontinuous orthogonal multiwavelets were 

described. In this paper, we use Alperts 

multiwavelets based on Legendre polynomials 

and Chebyshev polynomials by using Petrov-

Galerkin approach for solving eq.(1.2) 

The Petrov-Galerkin method for Fredholm 

integral equations has been studied in [7]. By 

[2] we realize that in this method, we can choose 

two different spaces for the trial space and the 

test space unlike Galerkin method. This is an 

advantage because its order of convergence is 

similar to the Galerkin method without lacking 

computational cost. A various paper for 

applications of this method are published [8 −

10]. 

An important point in this paper is convergence 

of presented methods which are based on 

properties of operational matrices [11]. 

This paper is organized as follows: Section 2 

describe constructions of Legendre 

multiwavelet and Chebyshev multiwavelet. In 

third section, a brief review of the Petrov-

Galerkin method and its convergence are given 

and convergence of this method with two 

different bases are proved. Section 4 exhibits a 

numerical method for transferring an integro-

differential equation to a linear system by 

Petrov-Galerkin method. Section 5 illustrates 

some numerical examples to show the accuracy 

and applicably of Legendre and Chebyshev 

multiwavelets. Finally, section 6 concludes the 

paper. 

2- Legendre and Chebyshev multiwavelets 

In recent years, the various basic functions have 

been used to estimate the solution of integral 

equations. In this work, we review construction 

of two bases for 𝐿2[0,1] that each basis is 

comprised of dilates and translates of a finite set 

of functions ℎ1, ℎ2, … , ℎ𝑘. In particular, these 

bases consist of orthonormal systems 

ℎ𝑗.𝑚
𝑛 (𝑥) = 2𝑚/2ℎ𝑗(2

𝑚𝑥 − 𝑛) ,  𝑗

= 1,… , 𝑘;𝑚, 𝑛 ∈ 𝑍 

where the functions ℎ𝑗,𝑚
𝑛 (𝑥) are dilates and 

translates of the functions ℎ1, ℎ2, … , ℎ𝑘 that are 

piecewise polynomials. Two properties of them 

are vanishing outside the interval [0,1], and 

being orthogonal to low-order polynomials 

(have vanishing moments) 
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∫  
1

0

ℎ𝑗(𝑥)𝑥
𝑖𝑑𝑥 = 0 ,  𝑗 = 1,2, … , 𝑘 ,  𝑖

= 0,1, … , 𝑘 − 1 

Suppose that 𝑘 ∈ 𝑁 and 𝑚 = 0,1,2,…, we can 

define a space 𝑆𝑚
𝑘  of piecewise polynomial 

functions, 

𝑆𝑚
𝑘

= {𝑓: 𝑓(𝑥)

= { a polynomial of degree ≤ k ;  
𝑛

2𝑚
≤ 𝑥 ≤

𝑛 + 1

2𝑚

0 ;   otherwise 

} 

where 𝑛 = 0,1, … , 2𝑚 − 1. We can see 

dim 𝑆𝑚
𝑘 = 2𝑚𝑘 and 

𝑆0
𝑘 ⊂ 𝑆1

𝑘 ⊂ ⋯ ⊂ 𝑆𝑚
𝑘 ⊂ ⋯ 

If the multi-resolution analysis is implied, the 

2𝑚𝑘 dimensional space 𝑅𝑚
𝑘  can be defined such 

that being the orthogonal complement of 𝑆𝑚
𝑘  in 

𝑆𝑚+1
𝑘 , 

𝑆𝑚
𝑘 ⊕𝑅𝑚

𝑘 = 𝑆𝑚+1
𝑘  ,  𝑅𝑚

𝑘 ⊥ 𝑆𝑚
𝑘  

We can now composite 𝑆𝑚
𝑘  like follow: 

𝑆𝑚
𝑘 = 𝑆0

𝑘⊕𝑅0
𝑘⊕𝑅1

𝑘⊕⋯⊕𝑅𝑚−1
𝑘  

If we suppose functions ℎ1, ℎ2, … , ℎ𝑘: 𝑅 → 𝑅 

form an orthogonal basis for 𝑅0
𝑘, we could 

define the 𝑘 functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑅 → 𝑅, 

supported on [−1,1], with the following form 

that help us for defining the functions ℎ𝑖 : 

𝑓𝑖(𝑥)

= {
𝑝𝑘−1(𝑥) 0 ≤ 𝑥 ≤ 1

(−1)𝑖+𝑘−1𝑝𝑘−1(−𝑥) −1 ≤ 𝑥 ≤ 0
 ,  𝑖

= 1,2,… , 𝑘 

where 𝑝𝑘−1(𝑥) is a polynomial of degree 𝑘 − 1 

with indeterminate coefficients. These 

functions have the following properties: 

1 The functions 𝑓1, 𝑓2, … , 𝑓𝑘 have the 

following orthogonality and normality 

conditions (orthonormality): 

∫  
1

−1

𝑤(𝑥)𝑓𝑖(𝑥)𝑓𝑗(𝑥)𝑑𝑥 ≡ ⟨𝑓𝑖, 𝑓𝑗⟩ = 𝛿𝑖𝑗  ,  𝑖, 𝑗

= 1,… , 𝑘 

2 Moments of function 𝑓𝑗 vanish 

∫  
1

−1

𝑤(𝑥)𝑓𝑗(𝑥)𝑥
𝑖𝑑𝑥 = 0 ,  𝑖

= 0,1, … , 𝑗 + 𝑘 − 2 

We can now define ℎ1, ℎ2, … , ℎ𝑘 by 

ℎ𝑖(𝑥) = √2𝑓𝑖(2𝑥 − 1) ,  𝑖 = 1,… , 𝑘 

and obtain the equality 

𝑅0
𝑘 =  Linear span {ℎ𝑖(𝑥): 𝑖 = 1,… , 𝑘} 

and, more generally 

𝑅𝑚
𝑘 =  Linear span {ℎ𝑗,𝑚

𝑛 (𝑥), 𝑗 = 1,… , 𝑘; 𝑛

= 0,… , 2𝑚 − 1} 

we will perform continue of this process in two 

different next subsections. 

2-1- Construction of Legendre multiwavelet 

In this subsection, we study construction of 

Legendre multiwavelet. We let 𝑆0
𝑘 the trial 

space be the space of polynomials of degree less 

than 𝑘 on [0,1] for each 𝑘 ∈ 𝑁 and them vanish 

elsewhere. In this case, we suppose 

𝑆0
𝑘 =  Linearspan {𝐿0(𝑥), 𝐿1(𝑥), … , 𝐿𝑘−1(𝑥)} 

where 𝐿𝑖(𝑥) are the orthonormal Legendre 

polynomials and implemented in Mathematica 

as 𝑙𝑖[𝑡] = LegendreP [𝑖, 𝑡]; 𝐿𝑖+1[𝑡] = √2𝑖 + 1 

Expand [𝑙𝑖[2𝑡 − 1]]. For making 𝑅0
𝑘 the test 

space, we have to derive all 𝑓𝑖(𝑥) for each 𝑘. 

For example, suppose 𝑘 = 3 then 
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𝑓1(𝑥) = {
𝑎𝑥2 + 𝑏𝑥 + 𝑐 0 ≤ 𝑥 ≤ 1
−𝑎𝑥2 + 𝑏𝑥 − 𝑐 −1 ≤ 𝑥 ≤ 0

0  otherwise 

𝑓2(𝑥) = {
𝑑𝑥2 + 𝑒𝑥 + 𝑓 0 ≤ 𝑥 ≤ 1

𝑑𝑥2 − 𝑒𝑥 + 𝑓 −1 ≤ 𝑥 ≤ 0
0  otherwise 

𝑓3(𝑥) = {
𝑔𝑥2 + ℎ𝑥 + 𝑖 0 ≤ 𝑥 ≤ 1

−𝑔𝑥2 + ℎ𝑥 − 𝑖 −1 ≤ 𝑥 ≤ 0
0  otherwise 

 

Properties 1 and 2 in section 2 yield a nonlinear 

system which its solutions are all unknown 

coefficients. Although this system do not have 

unique solution, you can uniquely see all 𝑓𝑖(𝑥) 

for each 𝑘 in [6]. After that, ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥) 

can be derived from them and a basis can be 

formed for 𝑅𝑚
𝑘  for each 𝑚, 𝑘. 

3- Construction of Chebyshev multiwavelet 

This construction is similar to previous 

construction but it have two differencese in 

respect to previous. 

1 𝑉𝑚
𝑘 the trial space consist of Chebyshev 

polynomials that implemented in 

Mathematica as 

𝑇0[𝑡] = √1/𝜋,𝑤𝑖[𝑡]

=  Chebyshev 𝑇[𝑖, 𝑡]; 𝑇𝑖[𝑡]

= √2/𝜋Expand [𝑤𝑖[2𝑡 − 1]]𝑖

= 1,… , 𝑘 

therefore 

𝑉0
𝑘 =  Linearspan {𝑇0(𝑥), 𝑇1(𝑥), … , 𝑇𝑘−1(𝑥)} 

2 In this case, inner product define as 

follow 

⟨𝑓𝑖, 𝑓𝑗⟩ = ∫  
1

−1

𝑓𝑖(𝑥)𝑓𝑗(𝑥)

√1 − 𝑥2
𝑑𝑥 = 𝛿𝑖𝑗 

where the weight function for interval [0,1] is 

1

√𝑥−𝑥2
. 

4- The Petrov-Galerkin method and its 

convergence 

In this section, we present a brief review of the 

Petrov-Galerkin method and conditions of its 

convergence. We follow the notations of [1]. If 

𝑋 is a Banach space with the norm ∥. ∥ and 𝑋∗ 

is its dual space, two different sequences of 

finite dimensional subspaces 𝑋𝑛 ⊆ 𝐗 and 𝑌𝑛 ⊆

𝑋∗ can be chosen such that satisfying the 

condition (𝐻) : 

(H): For each 𝑥 ∈ 𝐗 and 𝑦 ∈ 𝑋∗, there exist 

𝑥𝑛 ∈ 𝑋𝑛 and 𝑦𝑛 ∈ 𝑌𝑛 such that 

 ∥∥𝑥𝑛 − 𝑥∥∥ → 0 and ∥∥𝑦𝑛 − 𝑦∥∥ → 0 as 

𝑛 → ∞ 

 dim 𝑋𝑛 = dim 𝑌𝑛 𝑛 = 1,2,… 

In Petrov-Galerkin method that is a numerical 

method, we seek 𝑥𝑛 ∈ 𝑋𝑛 such that each 𝑦𝑛 ∈

𝑌𝑛 be orthogonal on both side of eq.(1.1). 

⟨(∑  

𝑚

𝑖=0

 𝑎𝑖(𝑡)𝐷
(𝑖) − 𝐾)𝑥𝑛, 𝑦𝑛⟩

= ⟨𝑓, 𝑦𝑛⟩  for all  yn ∈ Yn 

On the other hand, for 𝑥 ∈ 𝑋, an element 𝑝𝑛𝑥 ∈

𝑋 is called a generalized best approximation 

from 𝑋𝑛 to 𝑥 with respect to 𝑌𝑛 if it satisfies the 

equation 

⟨𝑥 − 𝑝𝑛𝑥, 𝑦𝑛⟩ = 0  for all  𝑦𝑛 ∈ 𝑌𝑛 

Thereupon, the Petrov-Galerkin method is a 

projection method with a generalized best 

approximation projection. For existence and 

uniqueness of the generalized best 

approximation, the following proposition 

exists: 

Proposition 3.1. For each 𝑥 ∈ 𝑋, the generalized 

best approximation from 𝑋𝑛 to 𝑥 with respect to 

𝑌𝑛 exists uniquely if and only if 

𝑌𝑛 ∩ 𝑋𝑛
⊥ = {0} 

where 𝑋𝑛
⊥ denotes the annihilator of 𝑋𝑛 in 𝑋∗ 

that is the set of all functions satisfying a given 

set of conditions which is zero on every member 

of a given set and say that 𝑋𝑛 ⊥ 𝑌𝑛 if 𝑌𝑛 ∩ 𝑋𝑛
⊥ ≠

{0}. By this condition 𝑝𝑛 is a projection. 

For the proof we refer the reader to [1]. 
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But this condition is not sufficient for insurance 

every 𝑥 ∈ 𝑋 has a unique Petrov-Galerkin 

approximation. Therefore, the new concept of 

the regular pair should introduce right here. 

Definition 3.2. If there exists a linear operator 

Π𝑛: 𝑋𝑛 → 𝑌𝑛 with Π𝑛𝑋𝑛 = 𝑌𝑛 such that 

satisfying the condition 

∥∥𝑥𝑛∥∥ ≤ 𝑐1⟨𝑥𝑛, Π𝑛𝑥𝑛⟩
1/2  for all  𝑥𝑛 ∈ 𝑋𝑛 

∥∥Π𝑛𝑥𝑛∥∥ ≤ 𝑐2∥∥𝑥𝑛∥∥  for all  𝑥𝑛 ∈ 𝑋𝑛 

where 𝑐1 and 𝑐2 are positive constants 

independent of 𝑛. The {𝑋𝑛, 𝑌𝑛} is called a 

regular pair. 

On the other hand, if 𝑋𝑛 and 𝑌𝑛 satisfy the 

condition (𝐻) and {𝑋𝑛, 𝑌𝑛} be a regular pair, the 

following statements drive: 

1 ∥∥𝑃𝑛𝑥 − 𝑥∥∥ → 0  as 𝑛 → ∞, for all 𝑥 ∈
𝑋. 

2 ∥∥𝑃𝑛𝑥 − 𝑥∥∥ ≤ 𝐶∥∥𝑄𝑛𝑥 − 𝑥∥∥ for some 

constant 𝐶 > 0 independent of 𝑛. 

It means, for ensuring existence and uniqueness 

of approximation solution for every 𝑥 ∈ 𝑋, we 

have to consider the condition (𝐻), and the 

conditions (𝐻 − 1) ,(𝐻 − 2) for each 

construction separately. If  𝑆𝑚
𝑘  and 𝑆𝑚′

𝑘′  are 

chosen such that dim 𝑆𝑚
𝑘 = dim 𝑆𝑚′

𝑘′  and 𝑉𝑚
𝑘 and 

𝑉𝑚′
𝑘′  such that dim 𝑉𝑚

𝑘 = dim 𝑉𝑚′
𝑘′ , the condition 

(𝐻) will satisfy and by assumption linear 

operation Π𝑛: 𝑆𝑚
𝑘 → 𝑆𝑚′

𝑘′  as follow: 

Π𝑛(𝑥𝑛(𝑡)) = Π𝑛 (∑  

2𝑚𝑘

𝑗=1

  𝑐𝑗𝑏𝑗(𝑡))

= ∑  

2𝑚
′
𝑘′

𝑗=1

(𝑐𝑗𝑑𝑗(𝑡))       (4.1)    

the conditions (𝐻 − 1), (𝐻 − 2) can be proved 

in two subsections. 

4-1- Convergence of Legendre multiwavelet 

and Chebyshev multiwavelet 

(𝐻 − 1): By definition Π𝑛𝑋𝑛 = 𝑌𝑛 and the 

norm ∥. ∥, the following relation conclude that 

⟨𝑥𝑛, Π𝑛𝑥𝑛⟩ = ∫  
1

0
𝑥𝑛(𝑡)Π𝑛(𝑥𝑛(𝑡))𝑑𝑡       (4.2)  

Now, 𝑥𝑛(𝑡) and Π𝑛(𝑥𝑛(𝑡)) are approximated in 

𝑆𝑚
𝑘  and 𝑆𝑚′

𝑘′  

= ∫  
1

0

(∑  

2𝑚𝑘

𝑗=1

 𝑐𝑗𝑏𝑗(𝑡))

(

 ∑  

2𝑚
′𝑘′

𝑗=1

  (𝑐𝑗𝑑𝑗(𝑡))

)

 𝑑𝑡 

By assumption dim 𝑆𝑚
𝑘 = dim 𝑆𝑚′

𝑘′ , we can 

write 

 = ∫  
1

0

 (∑  

2𝑚𝑘

𝑗=1

 𝑐𝑗𝑏𝑗(𝑡))(∑  

2𝑚𝑘

𝑗=1

  (𝑐𝑗𝑑𝑗(𝑡)))𝑑𝑡

 = ∫  
1

0

 𝐶𝑇Φ(𝑡)Ψ𝑇(𝑡)𝐶𝑑𝑡 = 𝐶𝑇𝐵𝐶      (4.3) 

 = 𝑐1
2𝑏11 + 𝑐2

2𝑏22 +⋯+ 𝑐𝑁
2𝑏𝑁𝑁          (4.4)     

 

where [𝐵]𝑖,𝑗 = ∫0
1
 𝑏𝑖(𝑡)𝑑𝑗(𝑡)𝑑𝑡. Matrices 𝐵 are 

diagonal with 𝑁 positive integer as its diagonal 

entries that they are eigenvalues of 𝐵. Therefore 

≥ 𝜆(m  𝐵)(𝑐1
2 + 𝑐2

2 +⋯+ 𝑐𝑁
2) = 𝜆(m  𝐵)∥∥𝑥𝑛∥∥ 

With choosing 𝑐1 =
1

√𝜆(min𝐵)

, this relation can 

be rewrite as follow 

∥∥𝑥𝑛∥∥ ≤
1

√𝜆(m  𝐵)
⟨𝑥𝑛, Π𝑛𝑥𝑛⟩

1/2 

(𝐻 − 2) : Clearly, we have 

∥∥Π𝑛𝑥𝑛∥∥2
2 = ∫  

1

0

 

(

 ∑  

2𝑚
′
𝑘′

𝑗=1

  (𝑐𝑗𝑑𝑗(𝑡))

)

 

2

𝑑𝑡

 = ∫  
1

0

 (∑  

2𝑚𝑘

𝑗=1

  (𝑐𝑗𝑑𝑗(𝑡)))

2

𝑑𝑡

 = ∫  
1

0

  (𝐶𝑇Ψ(𝑡))
2
dt              (4.5)
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= ∫  
1

0

  (𝐶𝑇Ψ(𝑡)Ψ𝑇(𝑡)𝐶)𝑑𝑡 

= 𝐶𝑇 {∫  
1

0

  (Ψ(𝑡)Ψ𝑇(𝑡))𝑑𝑡} 

= 𝐶𝑇𝐼𝐶 = ∥∥𝑥𝑛∥∥2
2
            (4.6)  

This relation shows that the choice of an integer 

for 𝑐2 ≥ 1 yields (𝐻 − 2) condition. 

Convergence of Chebyshev multiwavelet have 

similar characteristics with ago discussion. 

5- Numerical method 

This section concerns the discretization method 

of Fredholm integro-differential equation. 

Operational matrices are used for transferring 

an integro-differential equation to a linear 

system by Petrov-Galerkin approach. At first, 

we know 𝑥𝑛 ∈ 𝑋𝑛 and 𝑆𝑚
𝑘  forms a basis for the 

trial space 𝑋𝑛. Further, let 𝑥𝑛(𝑡) be an 

approximation of exact solution 𝑥(𝑡). We can 

write 

𝑥𝑛(𝑡) =∑  

𝑁

𝑖=1

𝑐𝑖𝑏𝑖(𝑡) = 𝐶
𝑇Φ(𝑡)           (5.1)   

where vectors C = (c1, c2, … , c𝑁)
𝑇 and Φ(𝑡) =

(𝑏1(𝑡), 𝑏2(𝑡), … , 𝑏𝑁(𝑡))
𝑇. If we substitute 

𝑥𝑛(𝑡) instead of 𝑥(𝑡) in eq. (1.1), we derive 

∑ 

𝑚

𝑗=0

𝑎𝑗(𝑡)∑  

𝑁

𝑞=1

𝑐𝑞𝑏𝑞 
(𝑗)(𝑡)

− ∫  
1

0

𝑘(𝑠, 𝑡) [∑  

𝑁

𝑞=1

  𝑐𝑞𝑏𝑞(𝑠)] 𝑑𝑠

= 𝑓(𝑡) ,  0 ≤ 𝑡 ≤ 1      (5.2)    

Or 

∑ 

𝑚

𝑗=0

𝑎𝑗(𝑡)𝐶
𝑇Φ(𝑗)(𝑡) − ∫  

1

0

𝑘(𝑠, 𝑡)𝐶𝑇Φ(𝑠)𝑑𝑠

= 𝑓(𝑡)             (5.3)      

This relation can be simplified as follow: 

𝐶𝑇𝑊𝐺 − 𝐶𝑇𝐾 = 𝑓(𝑡)               (5.4)   

where 

𝐾 =

[
 
 
 
 
 
 
 ∫  

1

0

 𝑘(𝑠, 𝑡)𝑏1(𝑠)𝑑𝑠

∫  
1

0

 𝑘(𝑠, 𝑡)𝑏2(𝑠)𝑑𝑠

⋮

∫  
1

0

 𝑘(𝑠, 𝑡)𝑏𝑁(𝑠)𝑑𝑠
]
 
 
 
 
 
 
 

 

𝑊 =

[
 
 
 
 𝑏1(𝑡) 𝑏1

(1)(𝑡) ⋯ 𝑏1
(𝑚)(𝑡)

𝑏2(𝑡) 𝑏2
(1)(𝑡) ⋯ 𝑏2

(𝑚)(𝑡)

⋮ ⋮ ⋮ ⋮

𝑏𝑁(𝑡) 𝑏𝑁
(1)(𝑡) ⋯ 𝑏𝑁

(𝑚)(𝑡)]
 
 
 
 

 

 ,  𝐺 = [

𝑎0(𝑡)
𝑎1(𝑡)
⋮

𝑎𝑚(𝑡)

] 

We now inner multiply both side in each 

element of 𝑌𝑛 basis, where 𝑆𝑚′
𝑘′  forms a basis for 

𝑌𝑛 (where 2𝑚𝑘 = dim 𝑆𝑚
𝑘 = dim 𝑆𝑚′

𝑘′ = 2𝑚
′
𝑘′ 

and 𝑘 ≥ {
𝑚 + 1 𝑚 = 2𝑘1 − 1
𝑚 + 2 𝑚 = 2𝑘1

). 

𝐶𝑇∫  
1

0

𝑊𝐺Ψ𝑇(𝑡)𝑑𝑡 − 𝐶𝑇∫  
1

0

𝐾Ψ𝑇(𝑡)𝑑𝑡

= ∫  
1

0

𝑓(𝑡)Ψ(𝑡)𝑑𝑡            (5.5)    

where Ψ(𝑡) = (𝑑1(𝑡), 𝑑2(𝑡), … , 𝑑𝑁(𝑡))
𝑇. The 

above system have the following matrix form 

𝐶𝑇[𝑅 −𝑀] = 𝐹                  (5.6) 

or 

[𝑅 −𝑀]𝑇𝐶 = 𝐹 

where 
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[𝑅]𝑖,𝑗 = ∫  
1

0

  [𝑊𝐺]𝑖𝑑𝑗(𝑡)𝑑𝑡,

[𝑀]𝑖,𝑗 = ∫  
1

0

  [𝐾]𝑖𝑑𝑗(𝑡)𝑑𝑡

 

= ∫  
1

0

 ∫  
1

0

 𝑘(𝑠, 𝑡)𝑏𝑖(𝑠)𝑑𝑗(𝑡)𝑑𝑠𝑑𝑡 

In the  (5.6)  system, we could use two exact 

equations instead of some two row of 

approximation equations. These two additional 

equations derive from boundary conditions. 

{
 
 

 
 ∑  

𝑁

𝑖=1

 𝑏𝑖(0) = 𝛼

∑  

𝑁

𝑖=1

 𝑏𝑖(1) = 𝛽

 

Solution of new system will derive the 

approximation solution. 

But for Chebyshev multiwavelet, with 

substituting 𝑥𝑛(𝑡) = ∑𝑖=1
𝑁  𝑐𝑖𝑏𝑖(𝑡) instead of 

𝑥(𝑡) in (1.2), the equation (5.2) is yielded. 

We have to inner multiply both side of (5.2) in 

each element of 𝑌𝑛 basis that the weight 

function of them is 𝑤(𝑡) =
1

√𝑡2−𝑡
. On the other 

hand 𝑉𝑚′
𝑘′  forms a basis for 𝑌𝑛, where 2𝑚𝑘 =

dim 𝑉𝑚
𝑘 = dim 𝑉𝑚′

𝑘′ = 2𝑚
′
𝑘′ and  

𝑘 ≥ {
𝑚 + 1 𝑚 = 2𝑘1 − 1
𝑚 + 2 𝑚 = 2𝑘1

) 

therefore 

𝐶𝑇 [∫  
1

0

 
𝑊𝐺Ψ𝑇(𝑡)

√𝑡2 − 𝑡
𝑑𝑡 − 𝐶𝑇∫  

1

0

 
𝐾Ψ𝑇(𝑡)

√𝑡2 − 𝑡
𝑑𝑡]

= ∫  
1

0

𝑓(𝑡)Ψ(𝑡)

√𝑡2 − 𝑡
𝑑𝑡       (5.7)    

The system (5.7) have the following matrix 

form 

[𝑅 −𝑀]𝑇𝐶 = 𝐹                (5.8) 

where 

[𝑅]𝑖,𝑗 = ∫  
1

0

[𝑊𝐺]𝑖𝑑𝑗(𝑡)

√𝑡2 − 𝑡
𝑑𝑡 ,  [𝑀]𝑖,𝑗

= ∫  
1

0

∫  
1

0

𝑘(𝑠, 𝑡)𝑏𝑖(𝑠)𝑑𝑗(𝑡)

√𝑡2 − 𝑡
𝑑𝑠𝑑𝑡 

In the (5.8) system, we can use some two exact 

equations instead of two approximation 

equations. Two additional equations will derive 

from boundary conditions. 

{
 
 

 
 ∑  

𝑁

𝑖=1

 𝑏𝑖(0) = 𝛼

∑  

𝑁

𝑖=1

 𝑏𝑖(1) = 𝛽

 

Solution of (5.8) system derive the 

approximation solution. 

6-  Numerical results 

In the follow examples, we use both Legendre 

multiwavelet and Chebyshev multiwavelet 

bases for Petrov-Galerkin method with different 

value of 𝑘, 𝑛. The computations associated with 

the examples were performed using 

Mathematica 8 software on a personal 

computer. 

 Example 6.1 

𝑡2𝑥′′(𝑡) − 𝑡𝑥′(𝑡) − 3𝑥(𝑡)

− ∫  
1

0

 
𝑒𝑡sin 𝑡

1 + 𝑠2
𝑥(𝑠)d𝑠 = 

 
1

2
𝑒𝑡(−1 + ln 2)sin 𝑡, 0 ≤ 𝑡 ≤ 1

𝑥(0)  = 0
𝑥(1)  = 1

 

with exact solution 𝑥(𝑡) = 𝑡3. In Tables 

1,2 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 are computed 

respectively with Legendre multiwavelet and 

Chebyshev multiwavelet. 
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Table 1: Legendre multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑆0
4, 𝑆1

2 4.82916 ∗ 10−11 

𝑆0
6, 𝑆1

3 5.23078 ∗ 10−11 

𝑆0
8, 𝑆1

4 4.86447 ∗ 10−11 

𝑆1
4, 𝑆2

2 1.406651 ∗ 10−10 

 

Table 2: Chebyshev multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑉0
4, 𝑉1

2 7.75844 ∗ 10−10 

𝑉0
6, 𝑉1

3 7.36472 ∗ 10−10 

𝑉0
8, 𝑉1

4 1.1147 ∗ 10−8 

Example 6.2 

1

2
𝑒
1
3𝑥′(𝑡) + 𝑥(𝑡) − ∫  

1

0

  (−
1

3
𝑒2𝑡−

5
3
𝑠) 𝑥(𝑠)d𝑠 

= 2𝑒2𝑡+
1
3 ,  0 ≤ 𝑡 ≤ 1 

𝑥(0) = 1 

𝑥(1) = 𝑒2 

with exact solution 𝑥(𝑡) = 𝑒2𝑡. In Tables 3,4 

∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 are computed 

respectively with Legendre multiwavelet and 

Chebyshev multiwavelet 

Table 3: Legendre multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑆0
4, 𝑆1

2 2.48764 ∗ 10−2 

𝑆0
6, 𝑆1

3 6.27907 ∗ 10−4 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑆0
8, 𝑆1

4 1.99096 ∗ 10−6 

𝑆1
4, 𝑆2

2 2.62349 ∗ 10−1 

 

Table 4: Chebyshev multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑉0
2, 𝑉1

1 1.51332 

𝑉0
4, 𝑉1

2 7.31826 ∗ 10−2 

𝑉0
6, 𝑉1

3 5.21438 ∗ 10−4 

𝑉0
8, 𝑉1

4 2.81471 ∗ 10−6 

Example 6.3 

 −𝑡(𝑡 + 1)2𝑥′′(𝑡) −
23

18
𝑡(𝑡 + 1)𝑥′(𝑡) + 𝑥(𝑡)

−∫  
1

0

  (𝑠2𝑡 −
3

2
𝑠𝑡2) 𝑥(𝑠)𝑑𝑠 =  ≤ 1

3

4
𝑡2 −

4

3
Ln (2)𝑡 + 2Ln (𝑡 + 1) ,  0 ≤ 𝑡 ≤ 1

 

𝑥(0) = 0 

𝑥(1) = 2Ln (2) 

with exact solution 𝑥(𝑡) = 2Ln (𝑡 + 1). In 

Tables 5,6 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 are 

computed respectively with Leqendre 

multiwavelet and Chebyshev multiwavelet. 

Table 5: Legendre multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑆0
4, 𝑆1

2 3.80754 ∗ 10−3 

𝑆0
6, 𝑆1

3 4.54463 ∗ 10−5 

𝑆0
8, 𝑆1

4 7.21549 ∗ 10−7 

𝑆1
4, 𝑆2

2 3.35981 ∗ 10−2 
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Table 6: Chebyshev multiwavelet 

𝑋𝑛, 𝑌𝑛 ∥
∥𝑥𝑛 (𝑡𝑗

(𝑖)
) − 𝑥 (𝑡𝑗

(𝑖)
)∥
∥
∞

 

𝑉0
4, 𝑉1

2 3.48248 ∗ 10−3 

𝑉0
6, 𝑉1

3 9.17848 ∗ 10−5 

𝑉0
8, 𝑉1

4 1.79712 ∗ 10−6 

7- Conclusion 

In this work, convergence of Petrov-Galerkin 

method with Legendre and Chebyshev 

multiwavelets bases are investigated. For the 

first time, conditions of them are proved with 

using linear algebra and matrix theory. After 

that, Fredholm integro-differential equations of 

the second kind are solved by using Legendre 

and Chebyshev multiwavelets via Petrov-

Galerkin approach. The discretization method 

of Fredholm integro-differential equations is 

performed with using operational matrices that 

yields linear system. Under numerical results, 

this matter is realized that Legendre and 

Chebyshev multiwavelets in solving the 

Fredholm integro-differential equations of the 

second kind have approximately the same 

accurate. 

In the end, this method can be easily extended 

and applied to multi-dimensional integral 

equations or systems of FVFIDEs easily with 

some modifications. We also believe that it shall 

not be difficult to extend this approach to 

nonlinear equations of general form, which will 

be the subject of future researches. 
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