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Abstract 

This paper deals with the problem of the instability regions of a free-free uniform Bernoulli beam 

consisting of two concentrated masses at the two free ends under the follower and transversal forces as 

a model for a space structure. The follower force is the model for the propulsion force and the 

transversal force is the controller force. The main aim of this study is to analyze the effects of the 

concentrated masses on the beam instability. It is determined that the transverse and rotary inertia of 

the concentrated masses cause a change in the critical follower force. This paper also offers an 

approximation method as a design tool to find the optimal masses at the two tips using an artificial 

neural network (ANN) and genetic algorithm (GA). The results show that an increase in the follower 

and transversal forces leads to an increase of the vibrational motion of the beam which is not desirable 

for any control system and hence it must be removed by proper approaches. 

Keywords: Beam Instability, Non-conservative Force, Follower Force, Vibration Analysis, Artificial 

Neural Network (ANN), Genetic Algorithm (GA). 

1- Introduction 

This template, modified in MS Word 2007 

The stability of a beam under the follower 

force is of vital importance and is in the 

interests of many researchers. It is a 

suitable model for the aerospace structure. 

The direction of the follower force is 

always perpendicular to the cross surface 

of the beam and changes with the beam 

deflections. Follower force has a 

significant influence on the structural 

natural frequencies. The critical follower 

force may cause static instability 

(divergence) or dynamic instability 

(flutter). Divergence occurs when the 

vibration frequency of the system becomes 

zero and flutter happens when two natural 

frequencies of the systems converge 

together. 

In this paper, the instability of an 

aerospace structure is analyzed. In fact, the 

structure is modeled by a free-free uniform 

Bernoulli beam with two tip masses under 

the follower and transversal forces. This is 

considered as an acceptable model for such 

structures with the propulsion and 

controller forces. The latter is the force for 

the actuators to control and guide the 
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flying vehicle. The first concentrated mass 

represents the payload, while the second 

one stands for the vehicle engine. The 

main objective pursued in the paper is to 

determine the maximum follower force 

structurally bearable in such a way as to 

prevent instability of the structure. It will 

be shown that both the transverse and 

rotary inertia have significant effects on 

this maximum follower force. This study 

also presents an approximation method as 

a design tool to find the optimal masses at 

the two tips by the use of ANN and GA. It 

will also be shown that increasing the 

follower or transversal forces results in an 

increase in the vibrational movement of the 

inertial measuring units (IMU). This in 

turn causes an inaccuracy in the guidance 

system and performance degradation in the 

actuators. The Ritz method is used in the 

calculations of the system frequencies and 

the Newmark method is employed for the 

study of the vibrational properties of the 

model. 

Several researchers have published their 

work on cantilever beam under a follower 

force with damping (Ryu and Sugiyama 

[1], Detinko [2], Di Egidio et al. [3], and 

Lee et al. [4]). Sugiyama and Langthjem 

[5] studied cantilever beam under a 

follower force with proportional damping. 

Both internal (material) and external 

(viscous fluid) damping were considered. 

Tomski et al. [6] presented the results of 

theoretical and numerical studies on the 

slender, geometrically nonlinear system 

supported at the loaded end by a spring of 

a linear characteristic and subjected to non-

conservative (generalized Beck’s) loading. 

The large-deflection problem of a non-

uniform spring-hinged cantilever beam 

under a tip-concentrated follower force 

was considered by Shvartsman [7]. Shape 

optimization was used to optimize the 

critical load of an Euler-Bernoulli 

cantilever beam with constant volume 

subjected to a tangential compressive tip 

load and/or a tangential compressive load 

arbitrarily distributed along the beam by 

Katsikadelis and Tsiatas [8]. De Rosa et al. 

[9] dealt with the dynamic behavior of a 

clamped beam subjected to a sub-

tangential follower force at the free end. 

Djondjorov and Vassilev [10] have studied 

the dynamic stability of a cantilevered 

Timoshenko beam lying on an elastic 

foundation of Winkler type and subjected 

to a tangential follower force. Attard et al. 

[11] have investigated the dynamic 

stability behaviors of damped Beck’s 

columns subjected to sub-tangential 

follower forces using fifth-order Hermitian 

beam elements. Marzani et al. [12] have 

applied the generalized differential 

quadrature (GDQ) method to solve 

classical and non-classical non-

conservative stability problems. The 

governing differential equation for a non-

uniform column subjected to an arbitrary 

distribution of compressive sub-tangential 

follower forces has been obtained. 

Pirmoradian [13] examined the dynamic 

stability of a beam under the action of a 

moving mass load. 

Beal [14] investigated a uniform free-free 

beam under an end follower force. He 

introduced a direction control mechanism 

for the follower force to eliminate the 

tumbling instability of a free-free beam 

under a follower force. He also showed 

that, in the absence of a control system, the 

magnitude of the critical follower force is 

associated with coalescence of the two 

lowest bending frequencies. When the 

control system was included, it was found 

that the magnitude of the critical follower 

force only corresponded to a reduction of 

the lowest frequency of zero. Wu [15] 
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studied the stability of a free-free beam 

under a controlled follower force by using 

finite element discretization with an adjoint 

formulation. Park and Mote [16] studied 

the maximum controlled follower force on 

a free-free beam carrying a concentrated 

mass. They predicted the location and the 

magnitude of the additional concentrated 

mass and the location and the gain of the 

follower force direction control sensor that 

permit the follower force to be maximized 

for stable transverse motion of the beam. 

Park [17] investigated a uniform free-free 

Timoshenko beam under an end follower 

force with controlled direction. A finite 

element model of the beam transverse 

motion in the plane was formulated. The 

analysis showed that the effects of the 

rotary inertia and shear deformation 

parameters on the stable transverse motion 

of the beam are significant in certain 

ranges. Sato [18] developed the governing 

equation of motion of a Timoshenko beam 

under a follower force. Mladenov and 

Sugiyama [19] dealt with the stability of a 

flexible space structure subjected to an end 

follower force. The model consisted of two 

viscoelastic beams interconnected by two 

kinds of joints. One of the joints was 

composed of a rotational viscoelastic 

spring while another one was a shear 

viscoelastic spring.  Bending flutter or 

post-flutter divergence showed to occur 

depending on the joint rigidity and internal 

damping. Kim and Choo [20] analyzed the 

dynamic stability of a free-free 

Timoshenko beam with a concentrated 

mass subjected to a pulsating follower 

force. The effects of axial location and 

translation inertia of the concentrated mass 

were studied. They also examined the 

change of combination resonance types, 

the relationship between critical forces and 

widths of instability regions, and the effect 

of shear deformation. Kim and Kim [21] 

studied the effect of crack on the dynamic 

stability of an F-F beam subjected to a 

follower force.  Wang [22] investigated the 

effect location and intensity of the crack on 

the flutter compressive load of a beam with 

a single crack. Caddemi et al. [23] studied 

the stability of multi-cracked cantilever 

Euler beam-column subjected to 

conservative or non-conservative axial 

loads. Sohrabian et al. [24] studied flutter 

instability of Timoshenko cantilever beam 

carrying concentrated mass on various 

locations. The obtained results show that 

the effect of shear deformation in the 

critical follower force cannot be ignored 

specially in the case of stubby beam. Irani 

and Kavianipour [25] perused the effects 

of a flexible joint on instability of a free-

free jointed bipartite beam under the 

follower force. Also, Kavianipour and 

Sadati [26] revealed the effects of damping 

on the linear stability of a free-free beam 

subjected to follower force. 

 

2- Mathematical Modeling 

Fig. 1 shows the assumed model for an 

aerospace structure. The propulsion force 

is modeled by a follower force and the 

transversal force represents the controller 

force, as shown. In this figure, 
sx  and 

0Fx  

indicate the points on the beam for the 

locations of the sensors, corresponding to 

the locations of the IMU and the 

transversal force in the aerospace structure, 

respectively. The beam is assumed to be 

axially rigid and is a uniform Bernoulli 

beam. The gravity force is also ignored 

[27].  

One of the most effective methods to 

derive the governing equations is the 

energy method. In fact, by considering all 

the energies in the system and applying the 
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Hamilton’s Principle, the governing 

equations could be derived (Meirovitch 

[28]).  

  

 

Fig.1 The flying vehicle subjected to follower and 

transversal forces 

 

The general form of the Hamilton’s 

Principle appears as 
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where δ  is the variation operator, t is the 

time, T is the kinetic energy, V is the 

potential energy, Wc is the work done by 

conservative forces, and Wnc is the work 

done by non-conservative forces. For the 

model presented in Fig.1, Eq. (1) may be 

presented as 
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In Eq. (2), L is the beam length, m is the 

beam mass per length, M1 and M2 are the 

first and second concentrated masses, J1 

and J2 are the rotary inertia of the first and 

second concentrated masses, EI is the 

buckling stiffness, P is the axial force 

distribution, P0 is the follower force,  tF0
 

is the transversal force. The rotary inertia 

of the beam itself is ignored. To calculate 

the axial force along the beam, the 

dynamics equilibrium can be used 
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To simplify the equations, non-

dimensional parameters are introduced as 

the following 
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Using relations (3) and (4) in Eq. (2), we 

will have 
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The notation  1H x in the above equation 

denotes the Heaviside step function at 

1x . 

Considering the fact that the axial force 

distribution on the beam is not constant, 

the governing differential equation cannot 

be solved analytically and an 

approximation method must be used. Ritz 

method is the one that has been employed 

in this study using Hamilton’s principle 

(Hodges and Pierce [29]). In this method 

the response is approximated with a series 

as the following 
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 xi  is admissible function and  tqi
  is a 

generalized coordinate. 

Substitution of Eq. (7) in Eq. (5), and then 

by writing the equation in matrix form, Eq. 

(8) will result as 
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matrix,  ijK  is the stiffness matrix, and 

 jQ  is the generalized force vector which 

can be described as 
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where 22 dd x  and xdd  . 

It is noted that the value of P is taken from 

Eq. (6). As a common rule, in the 

approximate solution methods, a partial 

differential equation may be put into a 

number of ordinary differential equations. 

 

3- Admissible Functions 

In general the admissible functions should 

satisfy four conditions (Hodges and Pierce 

[29]): 

1) At least must satisfy all geometric 

boundary conditions. 

2) Must be continuous and differentiable to 

highest spatial derivative. 

3) Should belong to a complete set. 

4) Must be linearly independent. 

The mode shapes of a free-free uniform 

Bernoulli beam with two masses at the 

ends satisfy the above conditions and have 

been used in this study. As the first two 

rigid body modes are not involved in the 

instability (since the rigid body frequencies 

are zero and do not change), they are not 

considered as the admissible functions 

(Beal [14]). 

It is to be noted that the rigid body modes 

are controlled by the force in the transverse 

direction. 
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and the 
i is the natural frequency of the 

model. The 
iiii AAAA 4321 ,,, coefficients are 

related to the mode shapes and are 

calculated based on the boundary 

conditions. The boundary conditions are 

stated as 
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(12) 

Fig. 2 depicts the first four mode shapes 

for the free-free uniform Bernoulli beam 

consisting of two concentrated masses at 

the two free ends for a particular case. 

 

 
Fig. 2 The first four mode shapes for the free-free 

uniform Bernoulli beam consisting of two 

concentrated masses at the two free ends for the 

case of 002.0,5.0,001.0,25.0 2211  JMJM  

 

The most important objective of the 

present study is to determine the 

magnitude and type of the least follower 

force (the divergence or flutter) leading to 

instability
crP0

. As seen in Eq. (9), the 

follower force affects the system stiffness 

matrix and changes the system frequencies. 

Therefore, to pursue the stated goal, one 

must first determine the system 

frequencies. To obtain the changes in the 

system frequencies in terms of the follower 

force, set the right hand side of Eq. (9) to 

zero ( 00 F ) and assume the homogeneous 

response as follows. 

    1
i ,e   t

jj qq
  (13) 

where  jq
  is a vector with constant 

elements and 
1M  is the first non-

dimensional system frequency for the case 

of 
1M . Therefore,

2J indicates the new non-

dimensional system frequency as a result 

of a change in 
2J . 

 

4- Results and Discussion 

An observation of the two relations (6) and 

(9) reveals that the concentrated masses 

have an effect on the system mass matrix 

and on the system stiffness matrix, and 

cause a change in the system frequencies. 

It will be demonstrated in the figures that 

these changes are not predictable. Hence, 

the effect of these parameters is studied for 

the following several cases including the  

1) Effect of the 
1M alone, 

2) Effect of the 
2M  alone, 

3) Effect of 
1M and 

2M together, 

4) Effect of 
1M and 

1J  together, 

5) Effect of 
2M and 

2J  together, 

6) Effect of 
1M ،

1J ،
2M and

2J  altogether. 

In each of the above cases, we are pursuing 

for the upper and lower limiting values of 

the critical follower force. In all but the last 

case above, one can obtain such values by 

drawing the curves of the variations of the 

critical follower force versus the related 

parameters. In the last case where the 

effects of all the parameters are considered, 

one needs to draw and consider a five-

dimensional drawing which is of course 

impossible. This justifies the use of the 

combination of an ANN and GA to obtain 

the extremum values of the critical 

follower force. To do this, a table of 

variations of the critical follower force 
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versus the related parameters was made up 

first. This table was then taught to an ANN 

in order to essentially obtain an inherent 

functional relationship represented here 

by  22110 ,,,f JMJMP cr  . It is to be 

emphasized that this function will be only 

implicitly known to the ANN once its 

training is completed, and that the function 

is not, nor is it needed to be determined 

explicitly. In the end, using the GA, the 

maximum and minimum values of this 

function was determined. Fig. 3 shows the 

manner in which the combination of the 

artificial neural network/genetic algorithm 

(ANN/GA) methods was used in this 

study. Although the last case above is the 

one for which the proposed ANN/GA 

method suits the best for the complexity of 

that case, the proposed method was also 

applied for all the cases above in order to 

show the feasibility and validity of the 

proposed method. In fact, the results 

obtained with the proposed method were 

compared with the true values in order to 

validate the performance of the proposed 

ANN/GA method.  

 

 
Fig. 3 The schematic diagram of using an artificial 

neural network and genetic algorithm for the 

extremum determination of a set of data 

 

To assure the validity of the computer code 

first, the values of the 
2211 ,,, JMJM  

parameters were set to zero for which case 

it was observed that the resulting 

instability was of the flutter type, as indeed 

found by Beal [14]. Moreover, the 

magnitude of the critical follower force 

obtained as 8.1090 crP  was in fact 

comparable with 9.1090 crP  obtained by 

Beal [14]. Also for 10001 M , 1001 J  

and 0, 22 JM (an instance of a cantilever 

beam), the critical follower force was 

obtained as 1.200 crP which is comparable 

with 05.200 crP  obtained by Ryu and 

Sugiyama [1]. It is to be noted that to solve 

Eq. (8) here in the present work, the first 

eight mode shapes of the model (N = 8) are 

considered. Fig. 4 depicts the changes in 

the non-dimensional system frequency 

versus the non-dimensional follower force 

for the two specific cases of the parameter 

values considered. It can be observed that 

with changes in the system parameters, 

flutter or divergence occurs and the critical 

follower force changes as well.  

 

 
Fig. 4 The non-dimensional system frequency 

changes versus the non-dimensional follower force 

variations for the two cases of 

0,1.0,0,1.0 2211  JMJM and  

0,25.0,0,25.0 2211  JMJM  

 

The next few figures show the changes in 

the critical follower force. In each of these 

figures, the magnitude of the least critical 

force and its type are both indicated. The 

kink that exists on the curves is due to the 

transition from flutter to divergence (As 

mentioned earlier, the concentrated masses 

have an effect on the system mass matrix 

and on the system stiffness matrix, causing 
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a change in the system frequencies and as 

the result, a change in the type of the 

critical follower force). 

 

4-1- Effect of 
1M alone 

It can be seen in Fig. 5 that flutter occurs 

for smaller values of 
1M  while divergence 

occurs for larger values. For the case when 

flutter occurs, the critical follower force 

decreases with the increase in 
1M . Also, 

when divergence occurs too, again the 

critical follower force decreases with the 

increase in 
1M .  

 

4-2- Effect of 
2M alone 

Fig. 6 indicates that flutter occurs for 

smaller values of 
2M  while divergence 

occurs for larger values. For the case when 

flutter occurs, the critical follower force 

decreases in the beginning and then starts 

to increases with the increase in 
2M . Also, 

when divergence occurs too, again the 

critical follower force decreases first and 

then starts to increase as 
2M  increases. 

 

4-3- Effect of 
1M and 

2M together 

It is observed from Fig. 7 that flutter 

occurs for smaller values of 
1M  and 

2M  

while divergence occurs for larger values. 

It can be generally inferred in this case that 

when 
1M  gets larger than a certain value, 

the critical follower force will decrease 

with an increase in 
1M  and 

2M . 

 

4-4- Effect of 
1M  and 

1J together 

The change in the critical follower forces 

versus 
1M and

1J is shown in Fig. 8. It is 

quite clear from this figure that when 
1M is 

large and 
1J  is small, divergence occurs. 

For the case when flutter occurs and for a 

given
1M , the critical follower force will 

decrease with the increase in 
1J . 

 

4-5- Effect of 
2M  and 

2J together 

The change in the critical follower forces 

versus
2M and

2J is shown in Fig. 9. It is 

observed that when 
2M is large, and also 

for small values of 
2M and large values 

of
2J , divergence occurs. For the case when 

divergence occurs and for a given
2M , the 

critical follower force will decrease with 

the increase in 
2J .  

 

 
Fig. 5 The critical follower force variations for the 

case of 
1M alone 

 

 
Fig. 6 The critical follower force variations for the 

case of 
2M alone 
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Fig. 7 The critical follower force variations for the 

case of 
1M and 

2M together 

 

 
Fig. 8 The critical follower force variations for the 

case of 
1M and 

1J together 

 

 
Fig. 9 The critical follower force variations for the 

case of 
2M and 

2J together 

 

5- Artificial Neural Network Architecture 

As discussed in section 4, the purpose in 

using the ANN approach here is to teach it 

to provide us with an inherent functional 

relationship among the critical follower 

force 
crP0

and the related parameters 
1M , 

1J , 
2M , 

2J represented here symbolically 

as   22110 ,,,f JMJMP cr  . As seen in Fig. 

10, the ANN is designed to be a multilayer 

perceptron with one hidden layer. A 

Hyperbolic Tangent Sigmoid transfer 

function was used for the neurons in the 

hidden layer and the Log Sigmoid transfer 

function was used for the neurons in the 

output layer. In order to increase the speed 

and accuracy in the training process, the 

number of neurons in the hidden layer was 

taken differently for each case considered. 

The Levenberg-Marquardt back 

propagation of error was used to train the 

ANN. 

 

 
Fig. 10 Artificial neural network architecture used 

in the present study 

 

5-1- The case of 
1M alone 

For this case, 
1M  was the input and 

crP0
 

was the output for the ANN used, and six 

neurons were included in the hidden layer. 

Fig. 11 shows the ANN response for this 

case. The values of the critical follower 

force obtained before and those from the 

ANN response are both included in this 

figure.  

 

5-2- The case of 
2M alone 

For this case, 
2M was the input and 

crP0
was 

the output for the ANN used, and six 

neurons were included in the hidden layer. 

Fig. 12 shows the ANN response for this 

case. The values of the critical follower 
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force obtained before and those from the 

ANN response are both included in this 

figure. 

 

5-3- The case of 
1M and 

2M together 

For this case, 
1M and 

2M were the input 

and 
crP0

was the output for the ANN used, 

and twenty six neurons were included in 

the hidden layer. The three dimensional 

surface of Fig. 13 is the ANN response for 

this case. 

 

5-4- The case of 
1M and 

1J together 

For this case, 
1M and 

1J were the input and 

crP0
was the output for the ANN used, and 

as many as twenty six neurons were used 

in the hidden layer. The three dimensional 

surface of Fig. 14 is the ANN response for 

this case. 

 

5-5- The case of 
2M and 

2J together 

For this case, 
2M and 

2J were the input and 

crP0
was the output for the ANN used, and 

as many as fifteen neurons were used in 

the hidden layer. The three dimensional 

surface of Fig. 15 is the ANN response for 

this case. 

 

5-6- The case of 
1M , 

1J , 
2M and 

2J altogether 

For this case, 
1M , 

1J , 
2M  and 

2J  were the 

input and 
crP0

 was the output for the ANN 

used, and as many as twenty neurons were 

used in the hidden layer. Fig. 16 shows the 

process of the ANN error reduction as its 

learning proceeded.  

 

 
Fig. 11 The main critical follower forces and the 

ANN response for the case of 
1M alone 

 

 
Fig. 12 The main critical follower forces and the 

ANN response for the case of 
2M alone 

 

 
Fig. 13 Surface representation of the critical 

follower force from the ANN response for the case 

of 
1M  and 

2M together 
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Fig. 14 Surface representation of the critical 

follower force from the ANN response for the case 

of 
1M and 

1J together 

 

 
Fig. 15 Surface representation of the critical 

follower force from the ANN response for the case 

of 
2M and 

2J together 

 

 
Fig. 16 Artificial neural network error reduction 

throughout its learning process 

 

6- Genetic Algorithm 

In this section, the extremum values of the 

functions used in the previous section 

obtained with the ANN method is 

calculated using the GA. The values of the 

parameters used in the GA are given in 

Table 1. The calculations are initially done 

for the cases of two- and three-dimensional 

functions, followed by a comparison of 

their corresponding main values. The 

results are presented in Tables 2 through 6. 

Upon ensuring the validity of the results 

obtained, the extremum of the 

 2211 ,,,f JMJM  function as calculated by 

the GA method is given in Table 7.  

 

Table 1 Parameters used in the genetic algorithm 

Parameter value Parameter 

40 Population size 

0.8 Crossover fraction 

Scale: 1 

Shrink: 1 
Mutation function: Gaussian 

 

Table 2 Extremum values obtained for the
1M alone 

Values from the 

computer code 

Values from ANN and 

GA 

crP0  1M
 crP0  1M

 

45.5   

(Minimum) 
0.5 

45.6  

(Minimum) 
0.5 

109.8 

(Maximum) 
0 

109.7 

(Maximum) 
0 

 

Table 3 Extremum values obtained for the
2M alone 

Values from the 

computer code 

Values from ANN and 

GA 

crP0  2M
 crP0  2M

 

67.1  

(Minimum) 
0.41 

67.2 

(Minimum) 
0.41 

109.8 

(Maximum) 
0 

109.7 

(Maximum) 
0 
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Table 4 Extremum values obtained for the
1M  and 

2M together 

Values from the 

computer code 

Values from ANN and 

GA 

crP0  
2M

 
1M

 
crP0  

2M
 

1M
 

33.6 

(Minimum) 
0.42 0.5 

33.5 

(Minimum) 
0.4 0.5 

109.8 

(Maximum) 
0 0 

109.4 

(Maximum) 
0 0 

 

Table 5 Extremum values obtained for the
1M  and 

1J together 

Values from the 

computer code 

Values from ANN and 

GA 

crP0  1J
 1M

 crP0  1J
 1M

 

35.7 

(Minimum) 
0.1 0.5001 

35.76 

(Minimum) 
0.1 0.5001 

109.1 

(Maximum) 
0.0001 0.0001 

108.1 

(Maximum) 
0.0001 0.0001 

 

Table 6 Extremum values obtained for the
2M  and 

2J together 

Values from the 

computer code 

Values from ANN and 

GA 

crP0  2J
 2M

 crP0  2J
 2M

 

15.2 

(Minimum) 
0.1 0.0001 

15.8 

(Minimum) 
0.098 0.0001 

109 

(Maximum) 
0.0001 0.0001 

107.8 

(Maximum) 
0.0001 0.0001 

 

Table 7 Extremum values obtained for the
1M , 

1J ,
2M  and 

2J altogether 

Values from ANN and GA 

crP0  2J
 2M

 1J
 1M

 

39.6 (Minimum) 0.0009 0.35 0.0003 0.35 

83.6 (Maximum) 0.0006 0.15 0.001 0.15 

 

7- Displacement Analysis 

Another important objective pursued here 

is to obtain the vibrational properties of a 

certain point of the structure 
sx  due to the 

follower and transversal forces. To 

determine the vibrational motion  txy s , , 

Eq. (7) shows that the value of  tqi
 is 

required, which is in turn calculated from 

Eq. (8). The Newmark method is used to 

solve this equation (Craig and Kurdila 

[30]). The assumptions are that 00 F , 

15.01 M , 001.01 J , 15.02 M and  

0006.02 J .  It is to be noted that for 

these parameter values, the critical 

follower force is 6.830 crP . Fig. 17 shows 

the vibrational properties with the 1.0sx  

as a function of time for a given initial 

condition. This is the case 

whereby 500 P . As shown in Fig. 17, the 

vibrational amplitude remains constant 

with time. Fig. 17.d) depicts the trajectory 

for the 
sx  from which one can demonstrate 

stability of the system for this follower 

force using the Lyapunov's methods. 

Similar results were also obtained for the 

case of 900 P  presented in Fig. 18, 

which shows instability of the system.   

Fig. 19 shows the effect of the magnitude 

of the follower and transversal force on the 

motion of the point 1.0sx  assuming 

1
0
Fx ,  tF 2sin01.00   and 

 tF 2sin02.00   for the two different 

values of 400 P and 800 P (In this case, 

zero initial conditions are considered and 

15.01 M , 001.02 J , 15.02 M  and 

0006.02 J ). It is observed that increase in 

the follower and transversal force results in 

an increase in the motion of the 
sx . The 

sx  

can be considered to be the location of the 

IMU on the aerospace structure. This 

increase in vibrational motion is a 

destructive phenomenon for the control 

system of the aerospace structure and 

hence it must be removed by proper 

approaches. 
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Fig. 17 Vibrational properties for the case of 

1.0sx , 00 F , 500 P , 15.01 M , 

001.01 J , 15.02 M  and 0006.02 J  

 

 
Fig. 18 Vibrational properties for the case of 

1.0sx , 00 F , 900 P , 15.01 M , 

001.01 J , 15.02 M  and 0006.02 J  

 

 
Fig. 19 Increase of vibrational motion of point 

1.0sx  due to an increase in the follower and 

transversal forces 

 

8- Conclusions 

In this paper the instability and vibrations 

of a free-free uniform Bernoulli beam with 

two tip masses at the ends under the 

follower and transversal forces has been 

analyzed. The follower force is the model 

for the propulsion force and the transversal 

force is the controller force. The latter is 

the force for the actuators to control and 

guide the aerospace structure to sustain a 

desired behavior. The first concentrated 

mass represents the payload, while the 

second one stands for the vehicle engine. 

Both the transverse and rotary inertia of the 

concentrated masses have notable effects 

on the stability of the beam, causing a 

change in the magnitude of the critical 

follower force 
crP0

 and the type of the 

ensuing instability. In this work, the effect 

of these parameters has been studied for 

the following six cases including the  

1) Effect of the 
1M alone, 

2) Effect of the 
2M  alone, 

3) Effect of 
1M and 

2M together, 

4) Effect of 
1M and 

1J  together, 

5) Effect of 
2M and 

2J  together, 

6) Effect of 
1M ،

1J ،
2M and

2J  altogether. 

To design, 
1M , 

1J , 
2M and 

2J must be 

determined with attention to Eq. (5) while 

crP0
becomes maximum. To do this, after 

solving the governing equation, a table of 

variations of the critical follower force 

versus the related parameters was made up. 

This table was then taught to an ANN in 

order to essentially obtain an inherent 

functional relationship represented by 

 22110 ,,,f JMJMP cr  . After that, using 

the GA, the maximum values of this 

function was determined. The results of 
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this paper offer an approximation method 

to design the two concentrated masses at 

the ends of a beam under the follower 

force.   

Thereafter, the vibrational properties of a 

certain point of the structure 
sx have been 

obtained due to the follower and 

transversal forces. By increasing the 

follower or the transversal force, the 

vibrational amplitude of the IMU location 

is also increased which is not desirable for 

any control system and hence it must be 

removed by proper approaches.  
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