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Abstract 

The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon 

nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium 

under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An 

elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each 

other through the van der Waals (vdW) interlayer interaction. Moreover, a radius-dependent vdW 

interaction coefficient accounting for the contribution of the vdW interactions between adjacent and 

non-adjacent layers is considered. The Galerkin’s approximate method on the basis of trigonometric 

mode shape functions is used to reduce the coupled governing partial differential equations to a system 

of extended Mathieu-Hill equations. Applying Floquet–Lyapunov theory, the effects of elastic 

medium, length, number of layers and exciting frequencies on the instability conditions of CNTs are 

investigated. Results show that elastic medium, length of CNTs, number of layer and exciting 

frequency have significant effect on instability conditions of multi-walled CNTs. 

Keywords: Dynamic instability, multi-walled carbon nanotubes, Mathieu-Hill model, Floquet–

Lyapunov theory. 
 

1- Introduction 

The excellent physical (e.g. mechanical, 

thermal and electrical) and chemical 

properties, and the low density of carbon 

nanotubes (CNTs), make these novel 

nanostructured materials very promising 

for advanced applications. Theoretical 

methods for modeling of CNTs can be 

classified into atomistic approaches, 

including classical molecular dynamics, 

density functional theory and tight-binding 

molecular dynamics, as well as continuum 

mechanics approaches including beam 

models, shell models and space frame 

models. Vibration, bending, stress analysis, 

buckling and instability analysis of CNTs 

have been of interest to numerous 

researchers from different disciplines. 

Based on different theoretical modeling, 

the static and dynamic instability analysis 
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of CNTs have been investigated under 

bending, axial and torsional loading to 

predict the instability conditions. 

Considering the effects of surrounding 

elastic medium and van der Waals forces 

and based on the continuum modeling, 

bending instability and bifurcation 

conditions of an embedded double-walled 

carbon nanotube were investigated by Han 

et al. [1]. 

Yoon et al. [2] studied the influence of 

internal moving fluid on structural 

instability and free vibration of single-

walled carbon nanotubes conveying fluid 

by employing the classic Euler-beam 

model. They investigated the effect of 

internal moving fluid on flutter instability 

of cantilever carbon nanotubes as well as 

free vibration of cantilever single-walled 

carbon nanotubes [3]. They concluded that 

stiffness of elastic medium has a 

significant effect on elimination of flow-

induced flutter instability. Using of Raman 

spectroscopy and documented by TEM 

imaging, Hadjiev et al. [4] carried out 

analysis of  

buckling instabilities of octadecylamine 

functionalized single-walled carbon 

nanotubes embedded in epoxy. Based on 

continuum-atomistic (CA) approach, 

investigation of single-walled CNTs were 

examined out by Volokh and Ramesh [5] 

to analyze the tensile instability and 

bifurcation conditions. Tylikowski [6] 

studied the dynamic instability of CNTs 

using continuum mechanics along with an 

elastic layered shell model and considering 

thermal effects. Wang et al. [7] 

investigated the instability of single-walled 

zigzag and armchair carbon nanotubes by 

using of a hybrid continuum and molecular 

mechanics model. By means of continuum 

elastic-beam model and differential 

quadrature method, the instability 

conditions of single-walled CNTs were 

investigated by Wang and Ni [8]. Wang et 

al. [9] investigated the natural vibrations 

and buckling instability of double-wall 

carbon nanotubes (DWNTs) conveying 

fluid  using a multi-elastic beam model and 

considering intertube radial displacements 

along with their related internal degrees of 

freedom. By molecular dynamics 

approach, Wang [10] carried out the 

torsional instability analysis of a single-

walled carbon nanotube containing C60 

fullerenes.  

The nonlinear dynamic instability analysis 

of double-walled nanotubes was 

numerically investigated by Fu et al. [11] 

by employing the multiple-elastic beam 

model based on Euler-Bernoulli-beam 

theory. The vibration and instability 

analysis of single-walled CNTs conveying 

fluid embedded in a linear viscoelastic 

medium based on the classical Euler–

Bernoulli beam model were investigated 

by Ghavanloo et al. [12]. Ghavanloo and 

Fazelzadeh [13] investigated the Flow-

thermoelastic vibration and instability 

analysis of viscoelastic CNTs embedded 

viscos fluid by using of nonlocal 

Timoshenko beam model. In this 

investigation the effects of structural 

damping of the CNTs, internal moving 

fluid, external viscous fluid, temperature 

change and nonlocal parameter were 

considered to develop governing equations 

of CNTs. Natsuki et al. [14] investigated 

the torsional elastic instability analysis of 

double-walled CNTs embedded in an 

elastic medium by employing the 

continuum elastic shell model and Winkler 

spring model theoretically. Based on the 

modified couple stress theory and the 

Timoshenko beam theory, the vibration 

and instability of embedded double-walled 

CNTs conveying fluid were studied by Ke 
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and Wang [16]. Chang and Liu [17] carried 

out the instability and bifurcation 

conditions of double-walled CNTs 

conveying fluid based on nonlocal 

elasticity theory and using an elastic shell 

model based on Donnell’s shell theory. 

Using an elastic shell model based on 

Donnell’s shell theory and nonlocal 

elasticity theory, the instability of double-

walled CNTs conveying fluid were studied 

by Chang and Liu [18]. Using the thermal 

elasticity theory and the nonlocal Euler-

Bernoulli beam model, the thermal–

mechanical vibration and instability 

analysis of double-walled CNTs conveying 

fluid embedded in biological soft tissue as 

a kind of visco-elastic foundation were 

carried out by Zhen et al. [19]. Shi et al. 

[20] studied the buckling instability of 

CNTs based on the nonlocal Euler-

Bernoulli beam model and the Whitney–

Riley model. Kazemi-Lari et al [21] 

investigated the instability of cantilever 

CNTs embedded in a linear viscoelastic 

medium based on the nonlocal Euler–

Bernoulli theory. Static and dynamic 

instability of fluid-conveying CNTs based 

on thin-walled beams model was 

investigated by Choi et al. [22]. 

Ghorbanpour Arani et al. [23] investigated 

the vibration and instability of double-

walled CNTs conveying fluid embedded in 

viscoelastic medium based on Timoshenko 

beam theory. Fakhrabadi et al. [24] studied 

the instability of electrostatically actuated 

carbon nanotubes by considering the 

classical and nonlocal elasticity theory. 

Considering the nonlocal continuum 

theory, the dynamical parametric 

instability of CNTs subjected to axial 

harmonic excitation was investigated by 

Wang and Li [25] using Bolotin’s method. 

The dynamic stability analysis of multi-

walled CNTs based on effective model and 

Donnell-shell theory was analytically 

investigated by Wang et al. [26]. The 

modified couple stress theory, a material 

length scale parameter for beam model, the 

Von Kármán type geometric nonlinearity, 

the electromechanical coupling and charge 

equation were considered to derive the 

nonlinear governing equation. Agha-

Davoudi and Hashemian investigated the 

dynamic stability of SWCNT based on 

Strain gradient theory and nonlocal Euler-

Bernouli beam model [27]. Based on the 

nonlocal Timoshenko beam theory and 

considering the surface effect, dynamic 

stability analysis of functionally graded 

(FG) nanobeams subjected to axial load in 

thermal environment were investigated by 

Saffari and Hashemian [28]. 

Based on this literature review, the 

investigation of dynamic instability of 

CNTs has been limited to the instability 

analysis of single-walled and double-

walled CNTs in which the interaction 

between non-adjacent layers has not been 

investigated for DWCNT model. The 

present work is undertaken with an 

objective of investigating further the 

instability analysis of single-walled, 

double-walled and triple-walled CNTs 

embedded in an elastic medium under 

combined static and periodic axial loading 

by employing Floquet–Lyapunov theory. 

Moreover, a radius-dependent vdW 

interaction coefficient accounting for the 

contribution of the vdW interactions 

between adjacent and non-adjacent layers 

is considered. An elastic Bernoulli–Euler 

beam model, from the view point of 

continuum mechanics is developed to 

derive the coupled equations of motion. In 

order to solve the dynamic governing 

equations of CNTs, Galerkin’s 

approximate method together with 

http://jsme.iaukhsh.ac.ir/?_action=article&au=528499&_au=M.++Hashemian
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trigonometric mode shape functions are 

applied to reduce the coupled governing 

partial differential equations to a system of 

the extended Mathieu-Hill equations. The 

influences of elastic medium, length of 

CNTs, number of layer and exciting 

frequency are studied to analysis of 

stability states of multi-walled CNTs 

embedded in elastic medium. Results show 

that elastic medium, length of CNTs, 

number of layer and exciting frequency 

have significant effect on instability 

conditions of multi-walled CNTs.  

2- Governing equations 

Consider a multi-walled CNT of length l, 

Young’s modulus E, density  , cross-

sectional area  , and cross-sectional 

moment of inertia I, embedded in an elastic 

medium. The time-varying displacement 

components of the nanotube in the x, y and 

z directions, as indicated in Fig. 1, are 

assumed to be (   ),  (   ) and  (   ), 

respectively.  

According to the Bernoulli-Euler beam 

theory, the equation of motion of a CNT 

subjected to axial load is: 

  
   (   )

   
  ( )

   (   )

   

   
   (   )

   

  (   ) 

(1) 

where  (   ) can be the pressure exerted 

on the tube through the vdW interaction 

forces and/or the interaction between the 

tube and the surrounding elastic medium, 

described by the Winkler model and  ( ) 

is the axial load. To capture the effects of 

the interlayer vdW interactions of all layers 

in a MWCNTs and to bring the curvature 

dependence of the vdW interactions into 

focus, the He’s vdW model is employed. 

 
Fig 1. Schematic of a multiwalled CNT embedded in 

an elastic medium. 

 

 (   )  ∑   (     )

 

   

 (2) 

where 
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 ]    

(3) 

here     represents the vdW coefficients, 

         is the C-C bond length,    is 

the radius of jth layer and    
  with m as an 

integer denotes the elliptic integral defined 

as: 

   
  (     )

  
 

 ∫ [  
     

(     )
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(4) 

In (1), for the outermost layer which is in 

contact with the surrounding elastic 

medium  (   ) can be described as: 

 (   )      (5) 

and the axial force is considered to be of 

the following form 

 ( )             (6) 

Applying (1) to each of the nested tubes 

along with (2) through (5), the dynamic 

instability of a MWCNTs is governed by 

the following set of coupled equations 
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Given that for a CNT with simply 

supported boundary conditions at both 

ends, lateral displacement may be 

considered as  (   )   ( )    (
   

 
), 

the dynamic equations of a simply-

supported embedded MWCNTs with   

layers can be written in term of temporal 

functions   ( ), as 
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Now, consider the ith field equation of (8) 

as: 

    
   

 (
       
     

 
 

   
    ∑

   

   

 

       

   ( ) (
  

 
)
 

)  

 ∑
   

   

 

       

     

(9) 

It is useful to express (9) in a non-

dimensional form by making use of the 

following parameters: 
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Considering (6), one can write non-

dimensional form of (9) in terms of the 

extended Mathieu-Hill equation as: 
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3- Floquet-Lyapunov theory for stability 

analysis 

The Floquet-Lyapunov theory is a 

straightforward method to investigate the 

properties of solution, without giving a 

solution. Based upon Floquet-Lyapunov 

theorem, the instability of a periodic 

system can be identified by recognizing the 

state transition matrix over one period [29]. 

In consequence, characteristics of real 

parts of the transition matrix eigenvalues 

can be used as a stability criterion.  

Equation (10) may be transformed into a time-

variant state equation in form of: 

{ ̇}  { (   )}  [ ( )]{ } (15) 

in which { }  {             } is     

state vector, { (   )} is a vector function and 

[ ( )] is     transition matrix with period 

 , i.e.,  ( )   (   )  which is given by 

[ ( )]  [
  
   

] (16) 

where   is a unit matrix and   is a matrix 

whose elements are defined as  

    {
                      

                                   
 (17) 

In order to compute the transition matrix, 

[ ( )]  a numerical integration procedure 

can be applied to (15). Based on the fourth 

order Runge-Kutta numerical integration 

with Gill coefficients [27], the ith interval 

takes the form 

{    }  {  }    

                    
 

 
[{  }   (  

 

√ 
) {  }  

                               (  
 

√ 
) {  }  {  }]  

(18) 

where           is the step size and the 

vectors {  } through {  } are also defined 

as follows 
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The following expressions can be derived 

by combining of (15) and (19)-(22). 

{  }  [  (  )]{  } (23) 
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√ 
)  (  )) 

(30) 

Combining (18), (19)-(22) and (27)-(30) also 

gives  

{    }  [ (  )]{  } (31) 

where 

 (  )  [ ]  
 

 
[  (  )

  (  
 

√ 
)  (  )

  (  
 

√ 
)  (  )
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(32) 

Using (31) the following expression can be 

written out  

{ (  )}  [ (  )]{ (  )} 

{ (  )}  [ (  )]{ (  )} 
(33) 
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Classification for equilibrium position of 

the autonomous system can be considered 

as [14]: If both 1  and 2 (eigenvalue of 

transition matrix) are real and 

2121 ,0    , the equilibrium position 

is called a node. If both 1  and 2  are real 

and 021   , the equilibrium position is 

called a saddle point. If 1  and 2  are 

complex conjugate with nonzero real part 

the corresponding equilibrium position is 

called an unstable focus ]0)[Re( 1    or a 

stable focus ]0)[Re( 1  . An equilibrium 

position whose eigenvalues have zero real 

part is called a non-hyperbolic equilibrium 

position. The stability of a hyperbolic 

position cannot be determined from the 

eigenvalues alone 

 

5. Numerical Results and Discussion 

At first, the accuracy and validity of the 

stability analysis using Floquet-Lyapunov 

theory is compared with a Fourier stability 

analytic method for Mathieu Equation. The 

Mathieu Equation can be considered as; 

   ( )

   
 (      (  )) ( )    (34) 

The fundamental solution set in the form of 

Fourier series with cosine and sine terms 

having the period    can be constructed as: 
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Substituting the above series in the 

Mathieu Equation and equating the 

coefficients of       or      , the 
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Also, the fundamental solution set in the 

form of Fourier series with cosine and sine 

terms having the period   can be 

constructed as: 

 ( )     ∑        

  

       

         (40) 

Substituting the above series in the 

Mathieu Equation and equating the 

coefficients of       or      , the 

following sets of recursive relations for the 

   and   , which are 
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with        . Like before, the 

determinants of the coefficients must be 

vanished. 

|

|

|
 

 

 
  

    
 

 
 

 
 

 
     

  
 

 
 

   
   

 (43) 

   
   
 

 
   

    
 

 
  

 

 
     

 

 
 

 
 

 
     

|

|

|

   

|

|

|
   

 

 
  

 

 
     

 

 
 

 
 

 
     

  
 

 
 

   
   

 

   
   
 

 
   

    
 

 
  

 

 
      

 

 
 

 
 

 
     

|

|

|

   

(44) 

Applying the Fourier series method the 

approximated transition values of   and   

can be determined for stability regions. 

The stability regions predicted by Fourier 

series method are compared with 

corresponding results of the Floquet-

Lyapunov theory in the Figure 2. As 

depicted in this figure one can be observed 

a satisfactory accuracy between. 

The numerical results are analyzed in the 

following section to study of instability 

conditions of multi-walled CNTs based on 

Floquet-Lyapunov theory. The 

corresponding material and geometric 

parameters of the MWCNT are the outer 

radius          , the thickness   

       , the length        . Also, 

mass density of CNTs is 

          ⁄  with  Young’s modulus 

         . Figs. 3-5 depict the stability 

and instability regions of SWCNT, 
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DWCNT and TWCNT embedded in elastic 

medium respectively. In these figures the 

unshaded and shaded regions are 

corresponding to the stability and 

instability regions respectively. Based on 

the results in Figs. 3-5 one can conclude 

that increase of the number of layers will 

result in more stability in the CNTs. 

Accordingly, the shaded region 

corresponding to TWCNTs is shown to be 

greater than of DWCNTs and shaded 

region corresponding to DWCNTs is 

shown to be greater than of SWCNTs. 

 

 
Fig 2. Comparison of Fourier series method’s 

results and the Floquet-Lyapunov theory ones for 

stability regions of Mathieu Equation 

 
Fig 3. Dynamic instability region of a SWCNT 

 

 
Fig 4. Dynamic instability region of a DWCNT  

 

 
Fig 5. dynamic instability region of a TWCNT 

The effect of spring constant of elastic 

medium at            ⁄    

     ⁄            ⁄ ,  and 

         ⁄  on the stability and 

instability regions of triple-walled CNTs 

under combined static and harmonic axial 

loading are presented in Figs. 6-9 

respectively. As shown, for a specified 

static load the instability region extends by 

increasing the dynamic load. Moreover, it 

is seen that as either the spring constant of 

elastic medium increases, the stability 

region grows. In the other word, 

considering the direct dependence of 

natural frequency on the constant of elastic 

medium, one can conclude that the natural 

frequency has the positive sensitivity on 

stability conditions of CNTs.  
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Fig 6. Effect of spring constant on dynamic 

instability region of a TWCNT        ⁄   
 

 
Fig 7. Effect of spring constant on dynamic 

instability region of a TWCNT            ⁄  
 

 
Fig 8. Effect of spring constant on dynamic 

instability region of a TWCNT          ⁄  

 
Fig 9. Effect of spring constant on dynamic 

instability region of a TWCNT            ⁄  

 

The influence of length of triple-walled 

CNTs at        ,         and 

        on unstable region for  triple-

walled 

CNTs are demonstrated in Figs. 8-10 

respectively. Comparison between Fig. 4 

for         and Figs. 9-11 for   

     ,         and        , it can 

be found that the stability region grows by 

increasing the length of triple-walled 

CNTs. 

 
Fig 10. Effect of length on dynamic instability 

region of a TWCNT         
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Fig 11. Effect of length on dynamic instability 

region of a TWCNT         

 

The effect of exciting frequency at   and 

      ⁄  on instability of TWCNTs embedded 

in elastic medium are illustrated in Figs. 12-13, 

respectively. The elastic constant and length of 

CNT are considered as            ⁄  

and       . Comparison between Fig. 9 for 

       ⁄  and Figs. 11-12 for   

     ⁄  and        ⁄ , it can be found 

that by increasing the exciting frequency the 

unstable regions shift in static and dynamic 

load plane. 
 

6. Conclusion 

In this study, the dynamic instability of 

multi-walled carbon nanotubes embedded 

in elastic medium under combined static 

and harmonic axial loads using Floquet–

Lyapunov theory were investigated. Using 

the Galerkin’s method with trigonometric 

mode shape functions, reduced to the 

extended Mathieu-Hill equations.  

 
Fig 12. Effect of exciting frequency on dynamic 

instability region of a triple-walled CNT,   

     ⁄  

 

 
Fig 13. Effect of exciting frequency on dynamic 

instability region of a triple-walled CNT,   

     ⁄  

 

The effects of constant of elastic medium, 

length of multi-walled CNTs, number of 

layer and exciting frequency were studied 

on the instability conditions of SWCNTs, 

DWCNTs and TWCNTs. Remarkable 

conclusions can be expressed as follows: 

1- The Floquet–Lyapunov theory is an 

efficient numerical method to 

investigate the dynamic instability 

of multi-walled CNTs surrounding 

elastic medium under combined 

static and periodic loads. 

2- The dynamic stability of CNTs 

increase by increasing the number 

of layers. For this reason, the 

TWCNTs is more stable than of 

DWCNTs and SWCNTs. 

3- The dynamic stability response 

exhibits the positive surrounding 

elastic medium and length 

sensitivity of MWCNTs. 

4- The dynamic stability response 

exhibits the negative exciting 

frequency sensitivity of MWCNTs. 

5- By increasing the amplitude of 

dynamic load parameter the 
instability region extends for 
specified amplitude of static load 

parameter 
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