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Abstract 
 

A series of 42 Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-cyclin-dependent kinase 
inhibitors regarded as promising antitumor agents to complement the existing therapies, was 
subjected to a three-dimensional quantitative activity relationship (3D QSAR). Different QSAR 
methods, comparative molecular field analysis (CoMFA), CoMFA region focusing, and 
comparative molecular similarity indices analysis (CoMSIA), were compared. All these QSAR-
based models had good statistical parameters and yielded q2 values of 0.717, 0.806, and 0.557, 
respectively. The CoMFA region focusing model provided the highest q2 and r2 values, which 
implied the significance of correlation of steric and electrostatic fields with biological activities. 
The quality of CoMSIA was slightly lower than that of CoMFA region focusing in terms of q2 
and r2 values. The results of 3D contour maps can be useful for the future development of CDKs 
inhibitors. The results of 3D QSAR models are in agreement with docking results, and the 
statistical parameters of the models explain that the data are well fitted and have high predictive 
ability. 

 
Keywords: CoMFA; CoMFA region focusing; CoMSIA; CDOCKER; multi-cyclin-dependent 
kinase Inhibitors. 
 
 
1. Introduction 
 

Cancer is the leading cause of death around the world. WHO (World Health Organization) 
estimates that 84 million people will die of cancer from 2005 to 2015 without intervention [1]. 
Uncontrolled cell proliferation is the symptom of cancer, and tumor cells have typically acquired 
damage to genes that directly regulate their cell cycles. The cyclin-dependent kinases (CDKs) 
are the machines that run the cell cycle program [2-9]. The cyclin-dependent kinases such as 
CDK1, CDK2, CDK4, and CDK6 belong to a group of protein kinases [10]; have an important 
role in cell cycle regulation. Small molecules which specifically inhibit CDKs by interaction 
with the ATP [11] binding site are potentially valuable biochemical tools in such studies and 
may also have major applications as pharmaceutical agents. CDKs are also involved in the 
regulation of transcription and mRNA processing. A cyclin-dependent kinase is activated by 
association with a cyclin (Cy), while is forming a cyclin-dependent kinase complex. The 
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development of agents which are able to modulate CDKs activity may have a strong effect on the 
prevention and therapy of cancer. G. Traquandi and co.workers recently reported a series of 
pyrazolo[4, 3-h]quinazoline- 3-carboxamides as CDK inhibitors. Compounds targeting 
complexes between cyclin-dependent kinases (CDKs) and cyclins and inhibiting their activity, 
are regarded as promising antitumor agents to complement the existing therapies [12].  

Traditional QSAR models are insufficient to explain complex structure-activity data, since 
the extreme specificity of biological activity is described by three dimensional (3D) 
intramolecular forces and predicted on 3D molecular structures [13]. Comparative molecular 
field analysis (CoMFA) [14] is a powerful tool in rational drug design and related applications. 
CoMFA computes the steric and electrostatic fields surrounding a set of compounds and 
constructs a 3D QSAR model by correlating these 3D steric and electrostatic fields with the 
corresponding observed activities. A similar approach to the computation of molecular potential 
fields has been described as the comparative molecular similarity indices analysis (CoMSIA) 
[15], in which a probe atom is used to calculate similarity indices, at regularly spaced grid points, 
for the pre-aligned molecules. CoMSIA differs from CoMFA primarily in the way that the 
molecular fields are calculated. CoMSIA uses Gaussian-based similarity functions for molecular 
field calculations, while force field like potentials (e.g., Lennard-Jones and Coulomb) is 
predominantly used in CoMFA [14, 15]. Both 3D QSAR methods give contour maps as output 
that can be used to get some general insights in to the topological features of the binary sites. In 
computational drug design, docking tools apply to gain key structural features of binding of an 
inhibitor into the receptor and predicting bioactive conformers.  

In the present study, the 3D QSAR studies of 42 CDKs inhibitors by CoMFA and CoMSIA 
have been performed, and the results of 3D contour maps can be useful for the future 
development of CDKs inhibitors.  

 
2. Experimental 

 
2.1. Materials and methods 

 
2.1.1. Database and Computer modeling 

 
All used compounds were reported recently by G. Traquandi and co-workers [12] as multi-

cyclin-dependent kinase inhibitors. The IC50 (µM) values were taken in molar range and 
converted to pIC50. The selection of suitable training set is critical for the quality of 3D QSAR 
models. To ensure the statistic relevance of the calculated model, the training set should contain 
a set of diverse compounds and their activities. So for dividing dataset to training and test sets, 
we have sorted the compounds according to increasing order of their biological activities. The 
compounds of training and test sets were selected by considering the fact that test set compounds 
represent a range of biological activities and chemical classes similar to training set compounds. 
By considering of these points, the 35 compounds were selected as training and the 7 rest 
compounds left out for the test set. Five compounds detected as outliers and do not consider in 
the model building. The structures of both the training and test set molecules are shown in Table 
1. This data set used to construct 3D QSAR (CoMFA and CoMSIA) models to analysis their 
physico-chemical properties. Three-dimensional structures building and all pre-modeling and 
modeling procedures were performed by using the SYBYL 7.3 (Tripos, Inc., St. Louis, MO) 
running on a Red Hat Linux workstation 4.7. Gasteiger-Hückel partial atomic charges [16] and 
Powell’s conjugate gradient method were used for minimization of all molecules with 0.01 
kcal/mol Å energy gradient convergence criterion. The rest of the molecules were built by 
changing required substitutions on the best docked conformation of compound 12 and were 
energy minimized with the stated previous parameters. These molecules were then used to 
construct 3D QSAR (CoMFA and CoMSIA) models. 
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Table 1  
Structures of training and test set compounds. 
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Continue Table 1 
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Continue Table 1 
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2.1.2. Alignment rule 
 

Structural alignment is one of the most sensitive parameters in 3D QSAR analyses. The 
accuracy of the prediction of CoMFA and CoMSIA models and the reliability of the contour 
maps depend strongly on the structural alignment of the molecules. Best docked conformation of 
molecule 12 was used as the template for alignment of all the molecules in the series, assuming 
that its conformation represents the bioactive conformation at receptor active site level and rest 
of the molecules were aligned on it. The common fragment produced by Distill in SYBYL 7.3 
was shown in Fig. 1 was selected for rigid automatic alignment. Aligned compounds of training 
set are displayed in Fig. 2. 
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Fig. 1. Compound 12, common substructure is bolder. 

 
 

 
Fig. 2. Aligned training set compounds based on compound 12. 

 
 

2.1.3. CoMFA and CoMSIA analysis 
 

Following alignment, the molecules are placed one by one into a cubic lattice with various 
grid spacing. The steric (vdW interaction) and electrostatic (Coulombic values with a 1/r 
distance-dependent dielectric function) fields are calculated at each grid point using a sp3 
hybridized carbon probe with a +1.0 charge. The computed field energies were truncated to 30 
kcal/ mol for both steric and electrostatic fields.  In order to reduce noise and improve efficiency, 
effect of different column filtering values on the CoMFA, was checked. CoMFA standard 
scaling, applies the equal weight to data from each lattice point in any given field. Region 
focusing is an iterative procedure which refines a model by improving the weight for those 
lattice points which are most related to the model. This enhances the resolution and predictive 
capability (q2; cross validated r2) of a followed PLS analysis. Technically, this corresponds to 
rotate the model components during a high-order space. CoMSIA is a technique in which 
similarity indices are calculated at different points on a regularly spaced grid for pre-aligned 
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molecules using a C+1 probe atom with a radius of 1.0 Å. In this approach, five different 
similarity fields are calculated: steric, electrostatic, hydrophobic, hydrogen bond donor and 
hydrogen bond acceptor. CoMSIA similarity indices Aq

F,k(j) for a molecule j with atoms i at grid 
point q are calculated by Eq.1. 

 

                                                                                             (1)
         

In Eq.1 A is the similarity index at grid point q, summed over all atoms i of the molecule j; 
Wprobe,k is the probe atom with radius 1.0 Å, charge +1, hydrophobicity +1, hydrogen bond 
donating +1, hydrogen bond accepting +1; Wik is the actual value of the physicochemical 
property k of atom i; riq is the mutual distance between the probe atom at grid point q and atom i 
of the test molecule. Alfa (α) is the attenuation factor, with a default value of 0.3, and an optimal 
value normally ranging from 0.2 to 0.4 [17-20]. A Gaussian type distance dependence function 
was used between the grid point q and each atom i of the molecule. 
 
2.1.4. Docking Analysis 
 

The crystal structure of 2WXV/CYCLIN-A2 in complex with compound 12 was taken from 
RCSB protein databank (http://www.pdb.org). Then structures of other compounds were 
constructed via modifying the extracted compound 12 from the receptor, in SYBYL 7.3. For 
docking analysis, compound 9 fed to Discovery Studio 2.5 (Accelrys Inc, San Diego, CA, USA), 
and was typed with CHARMm force field, and Momany-Rone partial charges were calculated 
[21]. The resulting structure was minimized with Smart Minimizer, performs 1000 steps of 
steepest descent with a RMS gradient tolerance of 3, followed by Conjugate Gradient 
minimization [22]. For preparation step of enzyme, the complex typed with CHARMm force 
field, hydrogen atoms were added, all water molecules removed, and pH of protein adjusted to 
almost neutral, 7.4, using protein preparation protocol. The inhibitor was again minimized in-situ 
with Smart Minimizer option that is custom for in-situ ligand minimization and consists of some 
pre-defined minimization steps that have been pre-determined to work well for receptor ligand 
data [22]. An 8.8 Å radius sphere defined around the bounded ligand (compound 12) to confirm 
some residues are free to move. Then bounded inhibitor removed from the binding site. Other 
parameters were established by default protocol settings. CDOCKER, (CHRMm-based 
DOCKER) and a molecular dynamics (MD) simulated-annealing based algorithm, used to dock 
inhibitor 9 into the receptor. CDOCKER is an implementation of a CHARMm based docking 
tool using a rigid receptor that generates several prime random ligand orientations within the 
receptor active site followed by MD-based simulated annealing, and final refinement by 
minimization. During the docking, van der Waals (vdW) and electrostatics (non-bonded 
interactions) are softened at different levels, but this softening is deleted for the ultimate 
minimization [23]. For each final conformation, the CDOCKER score accounted as the negative 
value (interaction energy plus ligand strain) and employed to rank the poses of every input ligand 
[23]. 

 
2.1.5. Regression analysis 
 

To drive 3D QSAR models, the CoMFA and CoMSIA descriptors were used as independent 
variables and the pIC50 values as dependent variables. A partial least-squares (PLS) methodology 
[24, 25], which is an extension of multiple regression analysis, was conducted with the standard 
implementation in the SYBYL 7.3 package. The predicted values of the models were first 
evaluated by Leave-One-Out cross validation and the cross validated coefficient (q2) was 
calculated using Eq.2. 
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                                    (2) 
 
Where yi is the activity for training set compounds, ym is the mean observed value corresponding 
to the mean of the values for each cross validation group, and yPred,i is the predicted activity for 
yi. To validate the derived CoMFA and CoMSIA models, biological activity of an external test 
set of seven compounds were predicted using models derived from the training set. The 
predictive r2 (r2

pred) value was calculated using Eq. 3 
 

                            (3) 
   
where SD is the sum of squared deviations between the biological activity of the test set and the 
mean activity of training set molecules, and PRESS is the sum of squared deviation between the 
actual and the predicted activities of the test set. 
 
3.  Result and Discussion 
 

The idea underlying the CoMFA methodology is that differences in biological activity are 
often related to difference the magnitudes of molecular fields surrounding the receptor ligand 
investigated. The high value of LOO q2 appears to be the necessary but not the sufficient 
condition for the model to have a high predictive power; this is the general property of QSAR 
models developed using LOO cross-validation, really the external validation is the only way to 
establish a reliable QSAR model [26]. To investigate the robustness and predictive ability of 3D 
QSAR models, cutoff, grid spacing, and column filtering values were changed to reach the best 
models. 

 
3.1. CoMFA and CoMFA region focusing 
 

The best results were obtained at a column filtering of 2 kcal/mol, grid spacing 1 Å, and 
cutoff value of 20 kcal mol-1 for both steric and electrostatic fields. The results of CoMFA 
studies based on changing cutoff values are summarized in Table 2. The optimal number of 
components was determined by selecting highest q2 value, which corresponds to lowest Spress 
value. PLS analysis showed a high q2 value of 0.717 with six components for CoMFA. The non 
cross-validated PLS analysis results in a conventional r2 of 0.965, F = 129.857, and a standard 
error of estimation (SEE) of 0.188. To assess the statistical confidence limits of the derived 
models, bootstrapping analysis was carried out with 100 runs. Bootstrapping involves the 
generation of many new datasets from the original datasets after randomly choosing samples 
from the original dataset that r2

bs was obtained 0.981. The test set was used to further verify the 
constructed model that r2

pred was obtained 0.767. After focusing these fields, the q2 improved and 
produced highest q2 of 0.806 at column filtering 3 kcal/mol with six components, F = 101.001, 
r2

ncv= 0.956, a standard error of estimation of 0.205, r2
bs= 0.970, and r2

pred for test set = 0.813. 
Steric field descriptors explain 0.916 of the variance, while the electrostatic descriptors explain 
0.084. This shows important effect of steric fields in biological activity. Results for CoMFA 
region focusing are shown in Table 3, and the correlation between the predicted activities and the 
experimental activities are depicted in Fig. 3. The CoMFA steric and electrostatic fields from the 
final best non-cross-validated analysis were plotted as 3D colored contour maps. The field 
energies at each lattice point were calculated as the scalar results of the coefficient and the 
standard deviation associated with a particular column of the data table (SD*coeff), as always 
plotted as the percentages of the contribution of CoMFA equation. These maps show regions 
where differences intermolecular fields are associated with differences in biological activity in 
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terms of steric (80% green, 20% yellow) and electrostatic (80% blue and 20% red). Greater 
values of bio-activity are correlated with more bulk near green, less bulk near yellow, more 
positive charge near blue and more negative charge near red. The contours for CoMFA steric and 
electrostatic fields are displayed in Fig. 4a and b respectively. CoMFA contour maps show green 
in R3, suggest that a more sterically bulky is favorable and increase the activity, which may 
explain why compounds 4-9, and 11-14 are more potent than compound 1 and compound 3. Also 
presence of green regions near phenyl substituents in R3 (in compounds 34 and 30) indicate that 
why activity of compound 34 is higher than compound 30. The yellow regions near R1 position 
explain less bulky groups would increase the activity. It can explain the fact that the activity of 
compounds 20, and 20-29 is more than compounds 16-19. In addition the activity of compounds 
having amino group in R1 position is higher than that of the corresponding compounds having 
aminomethyl at that position: 2 > 3, 4 > 5, 6 > 7, 9 > 10, 11 > 12, 13 > 14. The presence of the 
blue region besides R2 position indicate more positive groups increase the activity, and explain 
why activity of compound 27 with a more electropositive substituent at that position is higher 
than compound 29. The presence of a red contour near the carbonyl group of compounds 5-8 
indicates that increase in electronegtivity nature at this position can be useful for the activity. 
 
Table 2 
Statistical parameters of CoMFA with grid spacing of 1 and columnfiltering of 2, in different 
cutoff values. 

 
Cutoff value (kcal/mol) 

Statistical parameters * 10 20 30 40 50 60 
q2 0.679 0.717 0.639 0.575 0.577 0.598 

r2
ncv 0.951 0.965 0.963 0.960 0.964 0.966 

r2
bs 0.965 0.981 0.974 0.983 0.978 0.979 

F 90.060 129.857 22.459 111.422 124.944 131.314 
SEE 0.216 0.188 0.187 0.195 0.185 0.180 

S 0.77 0.775 0.780 0.762 0.740 0.734 
E 0.229 0.225 0.220 0.238 0.260 0.266 

 
Table 3  
Statistical parameters of CoMFA region focusing model with grid spacing of 1 and cutoff value 
of 20. 
 

Column filtering statistical parameters *
0.5 1 1.5 2 2.5 3 

q2 0.728 0.728 0.729 0.728 0.742 0.806 
r2

ncv 0.963 0.963 0.962 0.955 0.953 0.956 
r2

bs 0.979 0.979 0.979 0.977 0.974 0.970 
F 122.28 122.128 119.308 99.197 94.096 101.001 

SEE 0.187 0.187 0.189 0.207 0.212 0.205 
S 0.770 0.77 0.772 0.778 0.832 0.916 
E 0.230 0.233 0.228 0.222 0.168 0.084 
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Fig. 3. Plot of experimental against predicted activities for the training and test set compounds 
based on the best CoMFA region focusing model. 

 
 

 
 
Fig. 4. Contour maps of CoMFA based on compound 9: steric (a), and electrostatic (b). 

 
3.2. CoMSIA study 
 

The CoMSIA analysis was done at a grid spacing of 1 Å, and the effect of column filtering 
was tested with the combination of five fields. The CoMSIA method defines explicit 
hydrophobic (H), hydrogen bond donor (D), and hydrogen bond acceptor (A) descriptors in 
addition to the steric (S) and electrostatic (E) fields in CoMFA. To select the optimal result, we 
systematically changed the combination of fields. Fig. 5 shows the distribution of q2 that resulted 
from the different field combinations. The highest q2 of 0.557 was obtained with six components 
at a column filtering of 2 kcal/mol, grid spacing of 1 Å, F = 159.879, non-cross-validated r2 of 
0.972, SEE = 0.164, and r2

bs =0.986 for the steric, electrostatic, and hydrogen bond donor fields. 
The corresponding field contributions of steric, electrostatic, and hydrogen bond donor are 
0.304, 0.326, and 0.370 respectively. The correlation between the predicted activities and the 
experimental activities are depicted in Fig. 6. Figs. 7a, b and c are corresponding to the best 
model (steric, electrostatic, and hydrogen bond donor) of CoMSIA. The steric and electrostatic 
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contour maps are nearly similar to that of CoMFA. In steric contour maps, greater values of 
bioactivity are correlated with more bulk near green and less bulk near yellow, in electrostatic 
contour maps more positive charge near blue and more negative charge near red increase the 
activity. In hydrogen bond donating contour maps, cyan contours indicate regions where 
hydrogen bond donor groups increase activity; purple contours represent regions where hydrogen 
bond donor groups decrease activity. There is a cyan region near R1 indicate the activity of 
compounds having amino group at R1 position is higher than that of the corresponding 
compounds having aminomethyl at that position: 2 > 3, 4 > 5, 6 > 7, 9 > 10, 11 > 12, 13 >14. 
There are two big purple contour maps in the Fig. 7c, surrounding the R3 position on the 
heterocyclic ring, indicate that any hydrogen bond acceptor groups are not favored in these areas. 
R3 region is important due to the presence of red and purple (in CoMSIA contour maps), and 
green polyhydra in both of CoMSIA and CoMFA contour plots. It can be stated that the most 
predominate interactions between ligand and receptor binding sites (aminoacid residues), 
according to docked conformer of molecule 9 and the results of the CoMFA and CoMSIA 
modeling, are hydrogen bonding, ionic interaction or salt bridge, electrostatic and hydrophobic 
interaction. 

 
Fig. 5. Cross-validated r2 (q2) for different field combinations. 
 

 
Fig. 6. Plot of experimental against predicted activities for the training and test set compounds 
based on the best CoMSIA model. 
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Fig. 7. CoMSIA contour maps based on compound 9: steric (a), electrostatic (b), and hydrogen 
bond donor fields (c). 

 
3.3. Docking interpretation 
 

In our docking studies, it was observed that these compounds interact with the CDK2/Cyclin-
A2 active site through an extensive hydrogen bond network, including mainly the following 
residues: Leu83, Lys32, Asp86 and Tyr15 (Fig. 8). Therefore, in order to understand the 
importance of such interactions in the series of pyrazolo[4,3-h]quinazoline-3-carboxamide as 
CDK2 inhibitors, it was performed a correlation between the compounds (substituents) hydrogen 
bond donor ability and the compound potency. The contour plot of the cyan polyhedrons 
(contribution level of 80%) close to NH2 of carboxamide group and –NH connected to 
dihydroquinazoline group in compound 9 (Figure 7c) indicates active site favorable regions in 
order to group interact with hydrogen bond donor ability group, since substituents such as –OH 
and –NH groups in these position increase the inhibitory potency. Also presence of electrostatic 
blue contour near the NH2 of carboxamide group confirm the cyan contour, because H atom of 
the NH at this position has the positive charge because of its hydrogen bonding nature. 
Complementary of this cyan contour in the receptor, are hydrogen bond acceptor residues Leu83 
and Tyr15 in CDK2 active site. Carbonyl group and O in carboxylic group in compound 9 form 
hydrogen bonds with Lys89 and Asp86, respectively, and carbonyl in carboxamide group and N 
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in dihydroquinozoline acted as a hydrogen bond acceptor by binding to the NH2 and NH groups 
in Lys33 and Leu83, respectively. 

A yellow contour is around NH2 of carboxamide group, indicates that a less bulky group 
would be favorable:  more bulky groups such as NHMe because of probable steric clashes with 
Tyr15, Val18, Lys33, and Asp145 would decrease the activity, and a green contour near R3 
explains a more bulky group increase activity, because these substitutions optimally fill the 
hydrophobic part of binding site. 

The MOLCAD molecular surface of the ATP-binding site were developed and then 
displayed with hydrogen bonding, lipophilic and electrostatic potential to examine the 
hydrophobic, hydrogen bond contour maps and the electrostatic contour maps. In Fig. 9a, the red 
color shows the electron-withdrawing zone and purple color shows electron donating zone .The 
R1

 position of compound 9 was found in the red area. Compound 9 is into an electropositive blue 
area that confirm electrostatic contour map in Fig.7b. In Fig.9b, The brown color represents 
highest lipophilic area of the molecule while blue indicates hydrophilic region, the R2 position of 
compound 9 was found in the hydrophobic blue area. In Fig.9c, the red represent highest 
hydrogen bond donating and blue color displays highest hydrogen acceptor area. According to 
this figure, hydrogen bond donor groups (such as NH and NH2) are in corresponding to blue 
regions, and hydrogen bond acceptor (O and N) with red regions. 

In this study, the bioactive conformation of molecule 12 was used as template for alignment, 
and then the QSAR methods CoMFA, and CoMSIA, were used to investigate the relationship 
between the structures of 35 cyclin-dependent kinases inhibitors and their activities, by using the 
Distill alignment routine in SYBYL 7.3. The high q2 and r2

pred values obtained from these 
different QSAR methods suggest that we successfully acquired QSAR models. The effects of the 
steric, electrostatic, and hydrogen bond donor fields around the aligned molecules on their 
activities were clarified by analyzing the CoMFA and CoMSIA contour maps. The information 
from this study suggests that incorporating steric bulk, higher degree of electronegativity on R3 
substitution might be favorable for better Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-
cyclin-dependent kinase Inhibitors, but presence of hydrogen bond donor groups in this position 
is not favored. The CoMFA region focusing model provided the most significant correlation of 
steric and electrostatic fields with the biological activities. It was superior over the CoMFA 
standard model. The q2 values obtained from CoMSIA were slightly lower than CoMFA but 
CoMSIA is very fast in data processing. From these analyses, it is possible to predict the ligand 
activities of newly designed cyclin-dependent kinases inhibitors, and design better anti cancer 
inhibitors. 
    

 
Fig. 8. A stereo view of the active site of ATP-binding site of  CDK2/cyclin-A2 showing 
molecule 9 with important receptor residues. 



J.B. Ghasemi & et al. / J. Iran. Chem. Res. 4 (2011) 235-249 

 

 

248 

 

 
 

 
Fig. 9. The MOLCAD electrostatic (a), lipophilic (b), hydrogen bonding (c) surface of ATP-
inding site of CDK2/cyclin-A2 (PDB code: 2WXV) within the compound 9. 
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