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Abstract 
 

The determination of the optimal distribution of the catalytic activity profile, which 
maximizes the catalytic effectiveness, in created unsteady state conditions, is analyzed and 
treated numerically for the case of a simple reaction. It was proven that the modulation, of the 
temperature and the reactant concentration of the external bulk fluid, leads to a considerable 
increase of the catalytic effectiveness. The optimal active element distribution is a Dirac- δ 
function i.e. all the catalyst must be deposited at a specific distance from the center of the 
catalytic pellet. It was shown that this optimal position changes with time in a sinusoidal manner. 
This purpose can be achieved by the use of ultrasounds to artificially control the activity profile. 

 
Keywords: Unsteady state; Optimal catalyst distribution; Forced perturbation; Temperature 
modulation; Concentration modulation 
 
 
1. Introduction 
 

The general objective of using nonuniform active phase distribution on an inert support in 
preparing chemical catalysts is to improve the performance of a catalyst pellet. In many works, 
treating this problem [2, 3, 6, 7, 8, 9, 10, 11, 12, 13], it is well established that the performances 
of the supported catalysts can be improved, in a significant way, by distributing the active 
element inside the inert support. This spatially nonuniform deposition of the catalytic active 
material leads to an improved catalytic performance–in terms of effectiveness, selectivity, 
resistance to deactivation, or in the prevention of the thermal runaway-. This is essentially due to 
the interactions between the chemical kinetics and the physical transport processes.  

Morbidelli et al. [6, 7] prove analytically, for a Langmuir-Hinshelwood bimolecular 
reaction, that the optimal activity distribution is a Dirac-δ function, i.e., all the catalyst must be 
deposited in a specific position from the pellet center. Dougherty and Verykios [2, 3] employed a 
numerical search utilizing the orthogonal collocation method to integrate the state equations. 
They found, for the case of consecutive and parallel reactions, that the Dirac-δ function is the 
optimal activity distribution. Their study encompasses practically all the aspects of catalysis with 
nonuniformly activated catalysts. Vayenas and Pavlou [12], analyse the problem of the optimal 
active element distribution, in the presence or absence of the mass and heat transfer. They 
investigate the impact of different modes of transport on the optimal active element position and 
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also on the catalytic performance. Baratti et al. [10, 11] show numerically that the catalyst 
distribution within the pellet is a Dirac-δ function.  This result has been fully generalized by Wu 
et al. [9], for the most general case of an arbitrary number of reactions, following arbitrary 
kinetics and occurring in a nonisothermal pellet with finite external heat and mass transfer 
resistances. 

The use of created unsteady state conditions by modulation of the temperature and the 
reactants concentrations is another way to improve the catalytic reactor yields. This technique 
shows increased transient reactions rates compared with those in the steady state conditions. 
Zhdanov [14] and Hansen [15] investigate theoretically and experimentally the effects of the 
modulation technique on the catalytic performance. They show that the kinetic rates increase 
with an improvement in the selectivity and a less catalyst deactivation. 

Andreev et al. [16], study the impact of light field on the cooperative behaviour of adatoms 
on a homogeneous surface of dielectric, semiconductor, or metal. They demonstrate that lateral 
interaction of induced dipoles entails surface migration of adatoms in the radial direction beyond 
the illuminated area to form on it either a “crater” or, conversely, a “hump”. Their result was 
applied by Andreev [17] in order to increase the productivity of porous catalyst granule. He 
proves that the effectiveness of various catalytic processes increases by creating artificially 
unsteady state conditions using ultrasounds. In this context, Andreev [18, 19] gives the 
conditions required to maximize the productivity of porous catalyst granules with a controlled 
activity profile and also the mathematical base for using ultrasounds in a homogeneous and a 
heterogeneous catalysis. Investigation of the critical phenomena on porous catalyst granule with 
a controlled activity profile was carried out to define the optimal operating conditions for such 
catalytic reactors [20]. 

The objective of this present work is to show the effects of modulation of the temperature 
and the reactants concentrations on the effectiveness by a numerical analysis, in the case of a 
simple reaction scheme, taking place in a nonisothermal symmetrical pellet, working under 
artificially created unsteady state conditions.  
 
 
2. Formulation of the problem 
 

Let us consider the simple chemical reaction 
 

oduitsPrA 1k⎯→⎯                    (1) 
 

For a nonisothermal reaction occurring in a symmetrical porous pellet with nonuniform 
active element distribution, the steady state mass and heat balance is given by [1]: 
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The rate constant density function a(x), defined as the ratio of the local rate constant k(x) to 

its volume averaged value k  [22, 23]. 
 

( ) ( )
k
xkxa =                           (3) 

 
The density function must satisfy the following integral: 
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The boundary conditions used here are given by:   
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Here it is supposed that the external concentrations and the temperature of the bulk fluid 

vary periodically with time, so that, the integral values in created unsteady state are equal to 
those in the steady state respectively.  
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where 0
~

fC  and 0
~

fT  are the reactants concentrations and the temperature of the external bulk 

fluid in the steady state case conditions, respectively; P1 and P2 are arbitrary positive numbers; τ1 
and τ2 are the periods of change of the functions ( )tC f

ˆ  and )(ˆ tT f .  
For practical simplifications it is supposed that the periods of change τ1 and τ2 are 

significantly larger in comparison with the characteristic time of the catalytic process proceeding 
in the porous catalyst granule (quasi steady state) [17]. So, only the reactants concentrations (Cf) 
and the temperature (Tf) of the external bulk fluid (equation 5b) vary with time. 

The functions of modulation (equations 6a and 6b) can be satisfied by using sinusoidal 
function: 

 
( ) )tsin(CCtC fff ωσ100 +=                   (7a) 
( ) )tsin(TTtT fff ωσ 200 +=                        (7b) 

 
where 1σ  and 2σ  are the amplitudes of the temperature and the concentration respectively, ω  is 
the rotational frequency [s-1]. We can introduce the dimensionless parameters:  
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The equations (2a) and (2b) can be rewritten in the form: 
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With the boundary conditions: 
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The dimensionless form of the equation (4) is given by: 

 

( ) ( )∫ =+
1

1
0
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With the catalytic effectiveness defined by the following equation: 
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The dimensionless kinetic term is given by:  
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Since the effectiveness factor given by equation (11) is time-dependent, the time-average 

value is calculated and compared with that in the steady state conditions.  
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According to equation (13) there is an improvement of the effectiveness if the integral 

effectiveness η  is greater than the effectiveness )0(η  in the steady state conditions. 
 
3. Numerical procedure  
 

The objective is to determine the value of the activity distribution a(s) which maximizes the 
performance index given by equation (11); and satisfies the constraint (10) and the diffusion-
reaction equations (8a, 8b). The numerical resolution technique is based on the orthogonal 
collocation method [4, 5] with orthogonal polynomials given in (x2) because of the 
concentrations and the temperature profiles symmetry. This method allows reducing a system of 
differential equations (8a, 8b) to a set of nonlinear algebraic equations. The number of internal 
collocation points NC was taken equal to 7.  
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with NCi ,1=  

 
Equations (9b) are used to calculate uR (uNC+1) and θR (θNC+1). 
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A and B are the first and second derivative matrices in the symmetrical orthogonal 

collocation method [4, 5] for different geometries (α=0: slab; α=1: cylindrical; α=2: sphere) and 
NC internal collocation points. In order to solve the system of the nonlinear algebraic equations 
(14a) and (14b) using the boundaries (15a) and (15b), the Newton-Raphson method is used. The 
values of the catalyst activity at the collocation points, unknown at this stage, were regarded as 
the adjustable parameters of the optimization problem. The objective function is given by 
equation (11), which can be evaluated by using the Gauss-Jacobi quadrature formulae, where the 
quadrature points coincide with the collocation points [5]. The search of the catalyst activity 
which maximizes equation (11) is operated with the Interior-point algorithm. This approach is 
used to solve a sequence of approximate constrained minimization problems.  

In searching for the set of a(i) values, two constraints must be satisfied. The first one derives 
from the physical meaning of the activity function [10, 11]: 

 
0)ia( ≥   (i=1, N+1)              (14) 

 
While the second is given by equation (10), which by using the Gauss-Jacobi quadrature 

formulae reduces as follows [10, 11]: 
 

( ) )1/(1wia
1N

1i
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+

=
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where wi are the Lobatto weight functions [10, 11]. 
 
4. Results and discussion  
 
4.1. The steady state regime 
 

The effects of the heat of reaction β on the optimal activity distributions which maximize 
productivity or yield are shown in Fig. 1. It was found that the egg-white activity distribution is 
the optimal one. Increasing the value of the heat of reaction parameter leads to a significant 
intraparticle temperature gradients. So the catalytic activity shifts toward the pellet center to 
make best use of higher temperatures in this part of the catalyst. 

Fig. 2 shows that for small values of φ  (i.e. kinetic control) the inner activity distribution 
(egg-yolk) is the one which maximizes the effectiveness; for large values of φ  (i.e. diffusion 
control) it was found that the outer activity distribution (egg-shell) is the optimal one; Finally, 
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for intermediate values of the Thiele modulus, the middle distribution (egg-white) has the 
highest effectiveness factor.  
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Fig. 1. The optimal catalyst distribution in steady state conditions. 

0,01 0,1 1 10 100

0,4

0,6

0,8

1,0

1,2

Sopt=0.9890.118 < Sopt<0.989Sopt=0.118 

st
ea

dy
 s

ta
te

 p
ro

du
ct

iv
ity

, η
(0

)

Thiele Modulus, φ

β=0.06
γ=30
Bim=+∞  
Bih=+∞

 

Fig. 2. The effects of the Thiele modulus on the productivity in unsteady state conditions.  
 
4.2. The artificially created unsteady state regime 
 

Fig. 3 shows the influence of the modulation of the concentration and the temperature on the 
effectiveness factor. The effectiveness factor varies with time in a sinusoidal manner having a 
peak in the neighbourhood of t /τ = 0.25 which is the point where sinus function is equal to one. 
The modulation function is therefore maximal. The first half of the period is very characteristic 
of the enhancement process where the ratio )0(/)( ηη t  (Enhancement factor) is greater than one. 
In the second half of period no enhancement was found (relaxation part). Fig. 4 shows that the 
time-average value η  will be greater than the productivity in the steady state.  
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Fig. 5 shows that the optimal active sites location, 73.0=optS  for the steady state case shifts, 
with increasing the modulation functions, to the outside of the pellet. This location allows the 
reduction of diffusion limitations. The location of optimal catalyst activity moves back to the 
interior of the pellet with decreasing the modulation functions. 
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Fig. 3. The time variation of the catalytic productivity. 
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Fig. 4. The effects of the Thiele modulus on the mean productivity. 
 
4.2.1. The effects of the Thiele modulus on productivity 
 

Fig. 6 shows the variation of the effectiveness factor with the Thiele modulus. The ratio of 
the effectiveness in unsteady state conditions to the effectiveness in steady state was found to be 
always greater than one for practically all the values of the Thiele modulus.  
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Fig. 5. Enhancement factor as a function of Thiele modulus. 
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Fig. 6. The time variation of the location of the optimal catalyst distribution. 
 
4.2.2. The effects of the Prater parameter β on the catalytic productivity 
 

In this study the values of β was taken less than 0.15 to avoid problems of instability 
(Multiple steady states) according to Luss criterion [21] in the case of a nonisothermal first order 
simple reaction with external mass and heat transfer resistance. This Criterion, announces that 
stability domain is calculated by the following relation 
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Fig. 7 shows that increasing the value of β, increases the catalytic productivity for a 
moderate Thiele modulus. For high values ofφ , less productivity was obtained. 
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Fig. 7. The effect of the Prater parameter on the mean productivity. 
 

Increasing the value of β, leads to an increase in the temperatures inside the catalytic pellet 
which can play a positive role in the catalytic act. The kinetic production inside the pellet 
becomes more important than at the surface of the pellet. The effectiveness factor is higher than 
one. 
 
4.2.3. The effects of perturbation parameters  
 

Fig. 8 shows the effects of the modulation of the concentration on the productivity. It is 
found that increasing σ1 gives higher productivity than that obtained in the steady state 
conditions (σ1=0). This increase is monotonous. Fig. 9 shows the effect of the modulation of the 
temperature on the productivity. As for the case of the modulation of the reactant concentration, 
the same result was found for the modulation of the temperature. The only difference is that the 
productivities calculated were hundred times higher than those calculated in the steady state 
conditions, for high σ2. 
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Fig. 8. The variation of the mean productivity with respect to amplitude 1σ . 



Y. Benguerba et al. / J. Iran. Chem. Res. 2 (2009) 121-131 

 

 

130 

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0

5

10

15

20

25

30

35

40

45

50

M
ea

n 
pr

od
uc

tiv
ity

, η

Temperature amplitude, σ2

φ=0.5
β=0.06
γ=30
σ1=0.1
Bim=+∞       Bih=+∞

 
Fig. 9. The variation of the mean productivity with respect to amplitude 2σ . 
 
5. Conclusion 

 
The modulation, of the temperature and the concentrations of the external bulk fluid, 

investigated in this study, gives a good enhancement of the effectiveness factor which will 
increase the effective rate of the disappearance of reactants or the formation of products in the 
case of a simple reaction used in a fixed bed catalytic reaction. The numerical investigation has 
shown that the optimal catalyst distribution change in a sinusoidal manner. This purpose can be 
achieved by the use of an electromagnetic field like ultrasounds. It should be noted that the 
results of this study are theoretical and that the effects of some parameters on the productivity 
must be studied experimentally to confirm such results. 

 
Notation 
 
a(s)  Catalyst distribution function 
Bim  Biot number of mass transfer ( ec D/Rk ) 
Bih  Biot number of heat transfer ( e/hR λ ) 
C  Reactant concentration in solid phase, mol m-3 

Cf   Reactant concentration in fluid phase, mol m-3 
CR   Reactant concentration at the surface of pellet, mol m-3 

De  Effective diffusion coefficient, m2 s-1 

E  Activation Energy, cal mol-1 
r(c,T) Rate of reaction, mol m-3 s-1 

( )θ,uf  Dimensionless rate of reaction  
h  Heat transfer coefficient, cal m-2 K-1s-1  
kc   Mass transfer coefficient, m s-1 

R  Radius of catalytic pellet, m   
U  Dimensionless concentration 
UR  Dimensionless concentration at the surface pellet 
RG   Ideal gas constant, joule mol-1 K-1 

s  Dimensionless distance from center of the pellet  
T  Temperature in solid phase, K 
Tf  Temperature in fluid phase, K 
TR  Temperature at the surface of pellet, K 
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Vp  Catalytic pellet volume, m3 

x  Distance from the center of pellet, m 
 
Greek Letters 
 
wi  Lobatto coefficient  
θ  Dimensionless Temperature  

2φ   Thiele Modulus 
β   Dimensionless heat of reaction (Prater coefficient) 
γ   Dimensionless activation energy,(E/RGTf0) 
λe  effective pellet thermal conductivity, cal K-1 m-1 s-1  

0η   Catalyst effectiveness factor (productivity) in steady state regime 
)t(η   Catalyst effectiveness factor (productivity) in unsteady state regime 

η   Mean effectiveness factor on period τ. 
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