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Abstract

In order to represent the potential energy function over the whole range of R, many potential
energy functions have been proposed. In the present paper, we employ many potential energy
functions, to use Numerov method for solving the nuclear Schrodinger equation for the IF
molecule, as an example of a heteronuclear diatomic molecules. Then we determine the
spectroscopic constantsw,, @,x,, B,, and «,of the IF molecule from vibrational and vibration-

e’ve

rotation levels obtained from solution of the nuclear Schrddinger equation. Finally, by
comparison of obtained values with the experimental ones, their accuracy rate is determined as
well as their deviation percentages from experimental values.

Keywords: Spectroscopic constants; Potential energy functions; Heteronuclear diatomic
molecules

1. Introduction

The molecular Schrddinger equation is extremely complicated to solve. The exact solution
of this equation is a formidable task due to the fact that the electronic and nuclear degrees of
freedom are scrambled in the related molecular Hamiltonian [1-5]. Based on the fact that nuclei
are much heavier than electrons, the Born-Oppenheimer approximation is a very efficient
method to treat the electronic and nuclear motions separately [6]. The electronic Schroédinger
equation and nuclear Schrodinger equation are as follows:

Hell//el = Eell//el’ (1)
(T;V + U)l//rv = EV/N’ (2)

where U is the electronic energy including internuclear repulsion which acts as the potential
energy for the nuclear Schrodinger equation. For diatomic molecules, the potential energy U
depends only on internuclear distance R. So this subject is a central-force problem [7-9]. As we
know, the nuclear-motion wave function is
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‘//N = Y/M (01\/¢N )P(R) (3)

where the Y* functions are the spherical harmonic functions with quantum number Jand » ,
and P(R) is the radial function.
So, the Schrddinger equation can be written in the form

2 2
- F"(R) + {U(R) + ‘W} F(R) = E F(R). (4)

2u 2,uR2

The latter equation looks like a one-dimensional Schrodinger equation with the effective
potential energy U(R)+J(J +1)h2 / Zsz .

At first, our goal in the present paper is to solve the nuclear Schrédinger equation for
heteronuclear diatomic molecules to obtain the vibration-rotation eigenvalues and
eigenfunctions.

In the perturbative method, we may improve the approximation by taking further terms in the
expansion of U. Note that, for large R, this expansion is not convergent. To represent the
potential energy function over the whole range of R, many potential energy functions such as
Morse, Rydberg, and so on, have been proposed [10-17]. These functions contain parameters
(usually three) that are evaluated from experimental quantities for the molecular electronic state
of interest [18].

In this paper, the nuclear Schrddinger equation for the IF molecule as a heteronuclear
diatomic molecules will be solved by the Numerov method. The potential functions of Morse
[19], Rydberg [20], Varshni(ll) [21], Varshni(lll) [21], Varshni(V1) [21], Poschl-Teller [22],
Hulburt-Hirschfelder [23], Frost-Musulin [24], Linnet [25], Lippincott [26], and Rosen-Morse
[27] are used to calculate the vibrational and vibration-rotation eigenvalues and eigenfunctions.
The accuracy of these potential functions are estimated by comparing the available experimental
values with the numerical results which we will obtain. Thereafter we will obtain the
spectroscopic constants @,, @,x,, B,, and «, from computed vibrational and vibration-rotation

energy levels.

2. Results and Discussion

2.1. Numerical solution of the vibrational Schrodinger equation of heteronuclear diatomic
molecules

Since we are dealing with small quantities, to solve the Schrdédinger equation by numerical
methods, we should reformulate the equation using dimensionless variables. We seek to find a
dimensionless reduced energy E, and a dimensionless reduced x coordinate x, which are defined
as

-2, E=", (5)
A

where the constant 4 has dimensions of energy, and B is a constant with dimensions of length.
Now, for instance, we consider the Schrodinger equation with the Varshni(ll1) potential function.
Substituting the Varshni(lll) potential function into (4) with J =0, the Schrodinger equation
becomes

e r N
7%//”()(:) + De |:l—ee_ﬂ(r —Tg )} v = Ey/, (6)
2u r
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where x=r-r,. Equation (6) contains the three constants x, g, and 7. Thus, by using the
constants, we can make the quantities of the equation dimensionless:

[5]=" [n] =M, [4]=m, (7)
therefore

A=up il (8)
let B = u°B°n¢ . Therefore

B=p

N [

©)

Since |t,//(x)|2 dx is the probability which is dimensionless, the w(x) must have the

dimensions of Iength'l’z. We now rewrite the Schrdodinger equation with Varshni(lll) potential
function in terms of the reduced variables D, ,., x,, v,,and E,..

e,r’

In view of (5), we have dx, /dx = Bt Substituting (5), (8) and (9) into (6), we obtain

2

—1/2\-1/2
(xr 'H’e,r)ﬂ_l/z vr (,B )

7

_2*}112(/3*”2)75/2 d:l/;u Dy, (i1 hz){l_ TerBY2 (e -2 (5Y)

= E(u72B )y, (pY2)712,
(10)

Dividing by B Y2 and simplifying (10), we have

2
2 2
—n d v, - 2 Ter _(x)g+2xrr ) -1 2
B SIaD, (WB |1 e Ny =E (B )y, (11)
2u dx, ’ x, + reyr)
Therefore,
) 2
d T, —(x242x.7,, .
Vo ap,, 1o ter ORI g, (12)
dx ' (x, + relr)
Since
' =Gy, (13)

we have y” =G » and hence

2
v (2
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Now, we are in the position to be able to solve the Schrddinger equation with Varshni(lll)
potential function via the Numerov method. In addition to finding the dimensionless
expression G, , we need to find relations between parameters that we need.

In order to find the relations between these parameters, we use the following three necessary
conditions [16, 21, 28]:

U(r,)-U(®) = -D,, (15)

("Uj “o, (16)
dr r=r,

d*U

(dVZ j = ke' (17)

e

then, letting A =k, /2D, , we have

f=—y" (18)

In a similar fashion, we can obtain relations between the parameters and the dimensionless
expression G, . Table 1 exhibits all potential functions together with their parameters and the

dimensionless expression G,. In the table, we make use of the symbols Azkerez/ZDe,
G=8a)exe/Be, and onzea)e/GB2 D

e e
equilibrium bond length, force constant, dissociation energy, vibrational frequency,
anharmonicity constant, equilibrium rotational constant, and the vibration-rotation coupling

constant, respectively.

where r,, &

e

w,, w,x,, B,, and «, stand for the

e’ e’e’

2.1.1. Determining S,, X, o, and X, max

To utilize the recursion relation [2]

5 0 1
2‘//11 “Vat g Gnl//ns + E Gn—ll//n—ls

W , 19
n 1-G, 5" /12 (19)

2

as well as the experession G,, we need to determine the intial and final values of x, and the
distance s, between the adjacent points. There are different methods to determine the intial and
final values of x,. First, we need to locate the boundaries between the classically allowed and
forbidden regions. The boundaries consist of points at which £, =7,. Table 2 demonstrates 4,
X, the spectroscopic numerical values, and the dimensionless expression G, for the IF
molecule with various potential energy functions.

xr,max '
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Potentials, relations between parameters, and the dimensionless expression G,..

Relations between

Potential Potential function The dimensionless expression G
parameters "
Y2
Morse P k P
De|:l—e ‘“] a=|_° 2D |:1—e XV} -2E
e,r r
2De
Y2
_ k x|
Rydberg D [1-(1+dx)e dx d = e 2D 1-(1+x)e " |-2E,
e r r I
De
. -2
Varshni 2 A¥2 4 -
r _ _ - —
) D, |1- <0 a= 2D, |1-—" " | -2E
r T, x, + re’r
- 2 2
Varshni . . AY2 4 p o )
—B(r° - - +2x,71, .
(|||) De l—ie B(re=r) ,3: ; , ZDEV,, 1- e,r B X, +2X,0, _2E,~
. 2 2
2
Varshni o AY2 4 X b
(V1) D |1-— e a= 2D |1- L Y
€ er r
r A r
e e,r
1/2
k
a= ¢
2D,
Poschl- D .
2| ar 2| ar e 2| X T 2| X T
Teller D, +M cosech — N sech™ | — N = 7 2 2| D, + M cosech L ~ N sech — - 2E,
2 2 1-y) ' 2 2
4
M=Ny
ar
y =tanh| ¢
2
12
k@
a=
2D,
—2ax —ax
HUIbUrt' Del: Lhe m% ’ 1|7 1|5 5F 5F? Gl
Hirschfelder b= 2—’12&3{4 2 T*E}J 2D, [(17 ey cxfe‘“" (- bx, )] -2E,
- ,
33 -2 4.4 -2
ca’xe " +ca x be u}
c=1-| —_|@+F)
ar,
Ao 3nre (nre —-4)
2nre -6
. a _ 4
Linnet D+ —be " nD,r, a, ~(xtr,0)
3 a= 2|D +— " _—be -E.
r e,r 3 r r
3—nr (x. +7 )
e r e,r
)1re
. 3D,
3-nr
e
.
A = —2ctanh (ej
Rosen- d
Morse D, 2|:De”_ + 4 tanh (xr + re”_) —C’_sech2 (x’_ + rw) - Er:|

r 2 r
De + Atanh — Csech | —
d d
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Table 1 continued
Potentials, relations between parameters, and the dimensionless expression G,..
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Relations between

Potential Potential function The dimensionless expression G
parameters r
—n(r-r,)? 2A -2
Lippincott D, 1o 25 P 20, 1 2 .y
. :
W1+2A -1
a=—
Frost « 2 SRR I
rost- - c ar, D + , _ _E
Musulin D, +e i A b=e °D,(1+ar) e 7€ tr ) r
- :
c= aDeeare re2
Table 2
A, X, X.max. the spectroscopic numerical values, and the numerical dimensionless

expression G, for the IF molecule with various potential energy functions.

Spectroscopic The numerical
Potential A X X, numerical : : :
.0 rmax dimensionless expression G
values !
Morse : -
a1t = 61770 -0.5 0.8 a = 1.740271x 10° 2% 4879.9403[1- ¢ :|2 -2E
R r L
ydberg d°n ™t =12.3540 -0.8 1.02 d = 2.461115x10° 2x2430.9701[1- (L+ x )e " |- 28,
Varshni 2 3236 2
(1 an = 30190 -0.29 0.4 a =1.216645 x 10° 2% 9984.5615 [17'—{" :| - 2E,
X +2.3236
. 2
Varshni (111) B nu™ =0.6497 -0.19 0.21 " 2 x 46397.29 [1 - ﬂe"“;”“’“‘°”“} - 2E,
£ = 3.185336 x 10 x, +1.0778
Varshni 43236 2
, X + 4.
(VI a'n'u’ =104534  -0.74 086 a = 2.263897 x10° 2 x 2883.5968 [1 LR } .y
4.3236
a=1.740271x10°
Poschl-Teller s s 4 05 07 N, =270728.48 N o s
ah u =6.1770 . . M 2020134736 2| 4879.9408 + 20291347 cosech : - 270728 48sech : -2
=0.93045256
Hulburt- a=1.740271x108
Hirschfelder a’hu’ = 61770 -0.52 0.7 b=—0.348194552 2x48799[(1-¢ )" - 0033857 7 1+ 034811 )] - 28,
¢=-0.033809103
a=1.992576x10°
Frost_ L (x,+3.8058) [ 24240946
Musulin a’h’u” =8.0979 -0.6 0.8 b,=804309.7531 2| 3722.3714 + ¢ —————— 8043097 |- £
x +3.8058

¢, =2424094.608
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Table 2 continued

TR Y

expression G, for the IF molecule with various potential energy functions

X, max, the spectroscopic numerical values, and the numerical dimensionless

Spectroscopic The numerical

i X X i . . .
Potential 4 0 max mi/rgﬁj régal dimensionless expression G,

n=1.30347x10°

H a,=653791.9266 653791.9 Y
L nh = 34653 -0.35 0.45 2| 8698.6383 + ~e1se7.5e 7T E,
b,=615697.6035

(x, +24892)

A=11.04565649

d=1.113229x10"®
Rosen-Morse 2[8757258.744 — 8738943 4tanh (xy + 1.7155)
d7n ™ =1.6458 -0.25 0.35 4, =-8738943.401 )
~4661670.4sech (x_ + 1.7155) -£]
C,=4661670.421 " ,
2
Lippincott T
PP ;127,2/[1 — 272.9158 -35 4.5 7 = 11.567585 x 10° 110.4494 | 1 — 2720 | _ 2E,

2.1.2. Using spreadsheet program to obtain vibrational eigenvalues and eigenfunctions

Now that our input data G,, s, , are obtained, we can employ (19) by some

software to draw the wave function and obtain the energy levels. Here we have used Excel
spreadsheet program, which has the following benefits: 1) Having a friendly environment for
programming, 2) Having a high power for numerical calculations, and 3) Having a high ability
for sketching the wave functions.

Now, we examine the correctness of the operation as well as the initial guess for E . BY

X, 5, and x

r,max

choosing the columns containing x, and »Psi,., we plot the wave function v, against x, . If the

sketched function has the well-behaved conditions of a wave function and its value at Psi

r,max IS

close to zero, then the guess for £, .. is satisfactory. But if the value of Psi, ., is not close the
zero we have to change the value of £, . To find a better value for £, . we proceed as
follows. We first put zero for £, . in the cell B3 and then by using the solver option we ask the

program to find the amount of energy such that Psi, ., is as close to zero as possible. The

solver option in Tools menu is one of the most useful features of Excel.

Since the cell F3 shows zero (Nodes = 0), we obtain the correct value of the first level of
energy. To find the second level of energy we slightly increase the first level of energy. Again,
by using solver option, we find a second level of energy. We must mention that the amount of
increase must not be so high that the number of nodes reaches 2 or so low that the solver option
can not find the next level of energy (a so-called “error”). We repeat the method for finding the
next levels of energy. The number of nodes shows the kind of the state to which the energy
belongs.

As a final control of the correct values of the energy levels, we have to check them against
the plotted wave functions (see Appendix (B)). Finally the program multiplies the energy values

E into the constant 4 to evaluate the energy values in terms of cm™ (See Appendix (A), cell

vib,r
K3). In the same way, one can calculate the wave function and vibrational energy of the IF
molecule with potential energy functions. In Table 3, the six lower level of vibrational energy

levels of the IF molecule are obtained in terms of cm™, where one can also find their deviation
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percentages from the analytical calculations of the existing molecular constants [29] (in the table
manual values are obtained from relation ¢, = w,(v+1/2)—w,x,(v+1/2)* +...).

Table 3
Six lower level of vibrational energy levels of the IF molecule in terms of cm™ and deviation
percentages from the analytical calculations of the existing molecular constants.

Potential E, E, E, E, E, E; % error

Morse 304.3436 908.3837  1506.205  2097.783  2683.093  3262.116  0.005553
Rydberg 304.3891  908.9551  1507.834  2101.011  2688.469  3270.194  0.136874
Varshni(ll) 304.2991  907.6058  1504.009  2093.526  2676.199  3252.248  -0.16252
Varshni(lll) 304.4331  909.4955  1509.255 2103.54 2692.186  3275.037  0.232856
Varshni(VI) 304.3633  909.0096  1508.038  2101.426  2689.151  3271.192 0.15136

Poschl-Teller 304.3511 908.4116  1506.292  2097.992  2683.509  3262.843  0.015406
Lippincott 303.9794  909.3626 1509.86 2105.443  2696.082  3281.752  0.285899
Hulburt-Hirschfelder ~ 304.3812  908.3633  1506.076 2097.5 2682.62 3261.419  -0.00294
Frost-Musulin 304.3616  908.4998 1506.54  2098.466  2684.266  3263.928  0.034345
Linnet 304.5278  909.8416  1510.265  2105.797  2696.438  3282.198 0.33651

Rosen-Morse 304.344  908.5784  1506.784  2098.932  2684.998  3264.957  0.051033
Manual value 304.34 908.34 1506.1 2097.62 2682.9 3261.94

2.2. Numerical solution of the vibration-rotation Schrodinger equation of heteronuclear
diatomic molecules

Since the radial function P(R) is a solution of the equation [2, 8]

2 2
- [P”(R) W2 P’(R)} + w P(R) +U(R)P(R) = Ei P(R), (20)
2u R 2uR

the vibration-rotation Schrodinger equation with Varshni (111) potential function will be

2

2 2
n 2 J(J +1)h B2
PSP+ %+D€ 1= P by = EPG), (21)
2u r 2ur r
therefore
i’ J(J + 1R r 2y |
2 I D e e Vo ) (22)
2u 2ur r

then, the dimensionless form of this equation will be

r 2 r

<Y

2
J(J+1 r —(x2+2x,
F": ( )+2D€YV [1_ e,r e (xr+ ere,r):| _2Er F (23)

from (13) it follows that, dimensionless expression of G, will be
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2
e—(x3+2x,re,,ﬂ)} 2k,

(24)

Comparing (24) and (14) we find out that the difference between the vibrational G, and the

vibration-rotation G, is only in the term J(J+1)/rr2 . S0, we can obtain the vibration-rotation G,

for all potentials by adding the '[ermJ(J+1)/r,2 to vibrational G

r

, and solve the related

Schrodinger equation numerically as before. Finally, we obtain the vibration-rotation energy
levels of the molecule. Tables 4 and 5, demonstrate the calculated vibration-rotation energy
levels of the IF molecule for the two initial vibrational states (v=0 and v=1).

Table 4
Rotational levels for vibrational state v=0 of the IF molecule in terms of cm™.

. EvJ
Potential .

EO,O EO,l EO,Z EO,3 EO,4 EO,S

Morse 304.3436 304.9027 306.0411 307.6978 309.9224 312.7544
Rydberg 304.3891 304.9482 306.0625 307.7848 309.9804 312.7765
Varshni(ll) 304.2991 304.8583 305.9866 307.6581 309.8927 312.6826
Varshni(ll1) 304.4331 304.9824 306.1209 307.7886 310.0256 312.8222
Varshni(VI) 304.3633 304.9245 306.0489 307.7188 309.9853 312.7213
Poschl-Teller 304.3511 304.9102 306.0386 307.7122 309.942 312.7389
Lippincott 303.9794 304.5386 305.6872 307.3448 309.5728 312.3682
Hulburt-Hirschfelder 304.3812 304.9403 306.0687 307.7364 309.9986 312.749
Frost-Musulin 304.3616 304.9206 306.0488 307.7191 309.9684 312.7429
Linnet 304.5278 305.0871 306.2255 307.8863 310.1244 312.9168
Rosen-Morse 304.344 304.9032 306.0316 307.7093 309.9386 312.7345
Table 5
Rotational levels for vibrational state v=1 of the IF molecule in terms of cm™.

. EvJ
Potential .

El,O El,l E1,2 E1,3 E1,4 E1,5

Morse 908.3837 908.9429 910.0613 911.7388 913.9756 916.7715
Rydberg 908.9551 909.5143 910.6326 912.3101 914.5468 917.3426
Varshni(ll) 907.6058 908.165 909.2833 910.9608 913.1975 915.9933
Varshni(ll1) 909.4955 910.0548 911.1733 912.8511 915.0882 917.8846
Varshni(VI) 909.0096 909.5688 910.6872 912.3648 914.6016 917.3976
Poschl-Teller 908.4116 908.9707 910.0891 911.7667 914.0035 916.7994
Lippincott 909.3626 909.9219 911.0403 912.7181 914.9551 917.7513
Hulburt-Hirschfelder 908.3633 908.9225 910.0409 911.7185 913.9552 916.7512
Frost-Musulin 908.4998 909.0589 910.1771 911.8544 914.0907 916.8862
Linnet 909.8416 910.4009 911.5195 913.1973 915.4343 918.2307
Rosen-Morse 908.5784 909.1376 910.2561 911.9338 914.1707 916.9669

2.3. Determination of @, and ,x, from vibrational levels

As we know, vibrational energy of an anharmonic oscillator is as follows [27, 28]:

where @, is vibration wavenumber and @,x,and @,y, are anharmonicity constants.

fc =0(v) = a)e(v+%)—a)exg(v+%)2 +a)€ye(v+%)3 + ...

(25)
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The distance between the two vibrational adjacent levels is obtained from the following
relation:

AQ =0(v+1)-0(v). (26)

thus:

AQ =0 -0x (2v+2)+a,y, (%—3v2—6v]+..., 27

which becomes finally as follows:
AQ, =@, —m,x,(2v+2). (28)

Therefore, to determine @, and ,x,, it should be clear at least three vibrational levels.
Now for example, we compute @, and @,x, of the IF molecule with Varshni(lll) potential

function. Wavenumbers of vibrational jumps of the IF molecule with Varshni(lll) potential
function are shown in Table 6.
According to the relation (28), if we draw the diagram AQ, in terms of (2v+2), it will

obtain a straight line which gives slope —,x, and y-intercept, @,. According to this method, for
the IF molecule with Varshni(lll) potential function, we obtain @, =610.7818 cm™ and
w,x,=2.7768 cm™,

Table 6
Wavenumbers of vibrational jumps of the IF molecule with Varshni (I11) potential function.

(v+l)—v (2v+2) AQ in terms of cm™®
1-0 2 605.0624
21 4 599.7595
3-2 6 504.2849
4-3 8 588.6461
5-4 10 582.8507

2.4. Determination of B,and «, from vibration-rotation levels

Vibration-rotation energy of anharmonic oscillators is as follows [30-32]:

£, =00 +F())=0, (v+%) _ox, (v+%)2 ot BIJ)-D I+ (29)

As we know, the selection rule of AJ =+1 ruling over transitions between rotational levels
results in a branch R (AJ =+1) and a branch P (AJ =-1). Each transition becomes marked
with R(J) or P(J).

In many cases, because of inequality of B’ and B”, the bands of the branches R and P are
asymmetric. To obtain B" and B" from spectral data, we use combination differences method. If
we need to obtain some information about one series of lower states or one series of upper ones
between which the transitions are occurred, then according to this method, the difference
between wavenumber of transitions with common upper state, only depends upon the
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characteristics of lower state. Likewise, the difference between wavenumber of transitions with
common lower state only depends upon the characteristics of the upper state.
As we know, in case of a vibration-rotation band, the lines R(0) and P(2) have got a

common upper state with J' =1 and as a result, v[R(0)]-v[P(2)]is only a function of B". The
transitions R(1) and P(3) are common in J'=2. Hence, we can say that in general
VI[R(J -1)]-v[P(J +1)]that is written as ASF(J), is only a function of B". For these
transitions, we have:

AJF(J) =VIR(J =1)]-V[P(J +1)] =]V, + BU(J +1) = B"J(J 1) = D'J*(J +1)* + D"J*(J -1)° |
—[‘70 +B'J(J+1)—B"J(J+1D)(J +2)-D'JA(J +1)* + D"J*(J +1)*(J + 2)2]
= (4B"-6D")(J +2)-8D'(J + )"

(30)
Thus, the diagram of changes A} F(J)/(J +1/2) in terms of (J +1/2)?, gives a line with the
slope —8D" and y-intercept (4B"—6D"). As the two R(J) and P(J) are common in low states,
therefore v[R(J)]-v[P(J)] is only a function of B’. So we will have:

Ny F(T) = VIR(I)]=VIP(J)] =] Vs + B'(J +1)(J +2) = B'J(J +1) = D'(J +1*(J + 2)° + D"J*(J +1)° |
[V, +BYJ(J =1)=B"J(J +1)=D'J*(J =1)* + D"J*(J +1)’ |
=(4B'-6D")(J +%) -8D'(J +%)3.
(31)

Thus, the diagram of changes A,F(J)/(J +1/2) in terms of (J +1/2)?, gives a line with the
slope —8D"and y-intercept (4B"—6D"). By regarding the relations (30) and (31) and also the
Tables 4 and 5, the values B, and B, for the IF molecule with Varshni(lll) potential function are
0.281226 and 0.279636, respectively. According to the relation [30]:

B8 _a(ng, (32)

Table 7
Spectroscopic constants of the IF molecule for all potential functions and deviation percentages
from experimental values.

Potential w,(cm™) w,x,(cm™) B,(cm™) a,(cm™) %error(av)
Morse 6103179323  3.127228291  0.282011202  0.001610499  -3.24623872
Rydberg 610.2920599  2.855192337  0.283067969  0.002324512  4.19364745
Varshni(l1) 610.0635947 3412313365  0.28180642  0.001482443  -2.69913534
Varshni(ll1) 610.781762  2.776840816  0.282022327  0.001590858  -6.29588047
Varshni(VI) 610.3198872  2.825683996  0.282108683  0.001672717  -4.82356128
Poschl-Teller 610.2436233  3.090876958  0.281869279  0.001515884  -4.81558776
Lippincott 610.3398071 2464203711  0.285706693  0.004056236  24.4029689
Hulburt-Hirschfelder 6102050543 3.14790117  0.282216684  0.001747487  -1.23548709
Frost-Musulin 610.2711679  3.059656064  0.281896637  0.001568289  -4.36299498
Linnet 610.2013369 2444552229  0.283332987  0.002465441  2.80348402
Rosen-Morse 610.3298391  3.034542004  0.282275484  0.001771445  -1.81748346
Experimental 610.24 3.12 0.2797111 0.0018738
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B and « become  0.28202cm® and  0.001591cm™,  respectively.

e e

Similarly, B, and «, are computed for other heteronuclear diatomic molecules with other
potential functions. The gained results for the IF molecule are inserted in Table 7.

3. Conclusions

In this paper, the nuclear Schrodinger equation for the IF molecule is solved by the
Numerov method. The potential functions of Morse, Rydberg, Varshni(ll), Varshni(lll),
Varshni(VI), Poschl-Teller, Hulburt-Hirschfelder, Lippincott, Frost-Musulin, Linnet, and Rosen-
Morse are used to calculate the quantum states, vibrational energy levels, and vibration-rotation
energy levels. The results are compared with the available experimental values and the accuracy
of these potential functions is estimated. Our calculations have utilized more than 200
worksheets of Excel spreadsheet software. Then the spectroscopic constantsw,, w,x,, B,, and

a, were computed from vibrational and vibration-rotation energy levels. To compute according

to this method, 5 Excel worksheets are used for the IF molecule with all of the potential
functions. The Hulburt-Hirshfelder potential function in comparison with other potential
functions, forecast the values of the spectroscopic constants with a higher accuracy. Totally, the
spectroscopic constants gained from this method, are in a very good accordance with
experimental values.

Appendix (A)

Programming by the Excel spreadsheet to obtain vibrational levels for the IF molecule with
Varshni (I11) potential function is as follows (the operations to be done in each cell are written in
front of each cell):

Al: Write Potential Function (U = D¢*[1- re/r *EXP(- g *(r"2-r."2)]"2)
A3: Write (Evibr=)

B3: Enter Evio,rguess

C3: Write (S=)

D3: Write (0.01)

A5: Write (x,)

B5: Write (Gy)

C5: Write (Psiy)

AT: Write (-0.19)

A8: Write (A7+$D$3)

A9-A47: Copy A8, Select A9-A47, Paste A8 in A9-A47

B7: Write (=2*46397.2898*(1-1.0778/(A7+1.0778)*EXP(-(A7"2+2*A7*1.0778)))"2-2*$B$3)
B8-B47: Copy B7, Select B8-B47, Paste B7 in B8-B47

C7: Write (0)

C8: Write (1E-4)

C9: Write (=(2*C8-C7+5*B8*C8*$D$3/2/6+B7*C7*$D$3"2/12)/(1-B9*$D$3"2/12))
C10-C47: Copy C9, Select C10-C47, Paste C9 in C10-C47

D9: Write (=IF(C9*C8¢(0; 1; 0))

D10-D47: Copy D9, Select D10-D47, Paste D9 in D10-D47

E3: Write (Nodes=)

F3: Write (=SUM(D9:DA47))

E5: Write (nPsiy)

E50: Write (=SUMSQ(C7:C47)*$D$3)

E7: Write (=C7/$E$50"0.5)

E8-E47: Copy E7, Select E8-E47, Paste E7 in E8-E47

G3: Write (Psi; Max=)
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H3: Write (=$E$47)
J3: Write (Eyip=)
K3: Write (=$B$3*0.64968)

Appendix (B)

The graphs of six lower vibrational wave functions versus x, for IF molecule with
varshni(lll) potential function.
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