
International Journal of

Mathematical Modelling & Computations
Vol. 02, No. 04, 2012, 309- 320

Hybrid Functions Approach and Piecewise Constant Function by

Collocation Method for the Nonlinear Volterra-Fredholm Integral

Equations

S. M. Mirzaei a,∗

aDepartment of Mathematics, Minoodasht Branch, Islamic Azad University, Minoodasht,

Iran.

Received: 23 February 2012; Accepted: 20 June 2012.

Abstract. In this work, we will compare two approximation method based on hybrid Legen-
dre and Block-Pulse functions and a computational method for solving nonlinear Fredholm-
Volterra integral equations of the second kind which is based on replacement of the unknown
function by truncated series of well known Block-Pulse functions (BPfs) expansion.
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1. Introduction

Integral equation has been one of the principal tools in various areas of applied
mathematics, physics and engineering. Integral equation is encountered in a
variety of applications in many fields including continuum mechanics, poten-
tial theory, geophysics, electricity and magnetism, antenna synthesis problem,
communication theory, mathematical economics, population genetics, radiation,
the particle transport problems of astrophysics and reactor theory, fluid me-
chanics, etc. Many of these integral equations are nonlinear, see ([17]-[3]). Some
computational methods for approximating the solution of linear and nonlinear
integral equations are known. The classical method of successive approximation
for Fredholm-Hammerstein integral equations was introduced in [16]. Brunner in
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[4] applied a collocation type method and Ordokhani in [13] applied rationalized
Haar function to nonlinear Volterra-Fredholm-Hammerstein integral equations.
A variation of the Nystrom method was presented in [13]. A collocation type
method was developed in [19]. The asymptotic error expansion of a collocation
type method for volterra-Hammerstein integral equations has been considered in
[? ]. The aim of this work is to present two numerical methods for approximating
the solution of nonlinear Fredholm-Volterra integral equation of the form:

u(x) = f(x) + λ1

∫ x

0
k1(x, s)ψ1(s, u(s)) ds+ λ2

∫ 1

0
k2(x, s)ψ2(s, u(s)) ds, (1)

where the parameters λ1, λ2 and functions f(x), ψ1(s, u(s)), ψ2(s, u(s)) and
k1(x, s), k2(x, s) are known and in L2[0, 1) and u(x) is an unknown function. In
this work we suppose ψ1(s, u(s)) = (u(s))α and ψ2(s, u(s)) = (u(s))β where α, β
are positive integers.

2. Hybrid Functions

We use the Hybrid Legendre and Block-Pulse functions as basis for reducing these
NV-FIEs to a system of nonlinear algebraic equations. We present Hybrid Legendre
and Block-Pulse useful properties such as operational matrix of integration, prod-
uct matrix, integration of the cross product and coefficient matrix and use them
for transform our NV-FIE. As showed in our examples our method in analogy to
existed methods works better. This paper is organized as follows: In subsection 2.1
we introduce hybrid functions and its properties. In Subsection 2.2 we apply these
set of Hybrid functions for approximating the solution of NV-FIEs. Convergence
analysis is given in Subsection 2.3.

2.1 Definition of hybrid functions of Block-Pulse and Legendre

Consider the Legendre polynomials Lm(x) on the interval [1, 1]

L0(x) = 1, L1(x) = x, (m+ 1)Lm+1(x) = (2m+ 1)xLm(x)−mLm−1(x),

such that m = 1, 2, 3, · · ·
Set {Lm(x) : m = 0, 1, · · · } in Hilbert space L2[−1, 1] is a complete orthogonal
set. A set of Block-Pulse functions bi(x), i = 1, 2, · · · , n and the orthogonal set of
hybrid functions

hij(x), i = 1, 2, · · · , n, j = 0, 1, · · · ,m− 1,

that produces by Legendre polynomials and Block-Pulse functions on [0, 1) are
defined as follows respectively:

bi(x) =

{
1, (i−1)

n ⩽ x < i
n

0, otherwise

hij(x) =

{
Lj(2nx− 2i+ 1), (i−1)

n ⩽ x < i
n

0, otherwise
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Any function u(x) ∈ L2[0, 1) can be expanded as u(x) = Σ∞
i=1Σ

∞
j=0 cijhij(x),

where the hybrid coefficients are given by

cij =
(u(x), hij(x))

(hij(x), hij(x))
, i = 1, 2, ...,∞ , j = 0, 1, ...,∞,

so that (., .) denotes the inner product. If u(x) is piecewise constant or may be
approximated as piecewise constant, then the sum may be terminated after nm
terms, that is u(x) ∼= Σn

i=1Σ
m−1
j=0 cijhij(x) = CTh(x), where

C = [c10, ..., c1,m−1, c20, ..., c2,m−1, ..., cn0, ..., cn,m−1]
T , (2)

h(x) = [h10(x), ..., h1,m−1(x), h20(x), ..., h2,m−1(x), ..., hn,m−1(x)]
T . (3)

We can also approximate the function k(x, s) ∈ L2([0, 1)× [0, 1)) as follows:

k(x, s) ∼= hT (x)kh(s),

so that

Kij =

(
h(i)(x),

(
k(x, s),h(j)(s)

))(
h(i)(x),h(i)(x)

)(
h(j)(s),h(j)(s)

) , i, j = 1, 2, ..., nm.

The integration of the vector h(x) defined in (3) is given by∫ x

0
h(x′)dx′ ∼= Ph(x), (4)

where P is the nm × nm operational matrix for integration and is given in [7] in
details.
The integration of the cross product of two hybrid function vectors h(x) can be
obtained as

D =

∫ 1

0
h(x)hT (x)dx =


L 0 · · · 0
0 L · · · · · · 0
...
...

. . .
...

0 0 · · · L

 ,
where matrix L is a m×m diagonal matrix that can be seen in [7].

It is always necessary to evaluate the product of h(x) and hT (x) that be called the
product matrix of hybrid functions. Let

H(x) = h(x)hT (x), (5)

where H(x) is nm× nm matrix. By multiplying the matrix H(x) in vector C that
defined in (2) we obtain

H(x)C = C̃h(x), (6)
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where C̃ is nm×nm matrix and called the coefficient matrix. Basic multiplication
properties of arbitrary two hybrid function hij(x) and hkl(x) are described in [6].

2.2 Outline of the method for NV-FIEs via Hybrid functions

Consider the nonlinear Volterra-Fredholm integral (1). We put

u(x) ∼= UTh(x), (7)

where U is an unknown nm-vector and h(x) is given by (3). Likewise, k1(x, s),
k2(x, s) and f(x) are expanded into the hybrid functions as follows

k1(x, s) ∼= hT (x)K1h(s), k2(x, s) ∼= hT (x)K2h(s), (8)

f(x) ∼= F Th(x), (9)

where K1,K2 are known nm-matrices and F is a known nm-vector.
After substituting the approximate (7), (8), (9) in (1) we get

UTh(x) ∼= F Th(x) + λ1h
T (x)K1

∫ x

0
h(s)ψ1(s, U

Th(s))ds

+λ2h
T (x)K2

∫ x

0
h(s)ψ2(s, U

Th(s))ds. (10)

Functions ψ1(s, U
Th(s)) = (UTh(s))α and ψ2(s, U

Th(s)) = (UTh(s))β are known
which can be expanded into the hybrid functions as

(u(s))α ∼= UT
α h(s), (u(s))

β ∼= UT
β h(s). (11)

In the next subsection, we consider computing Uα and Uβ in terms of U , which
Uα, Uβ are mn-vectors whose elements are nonlinear combination of the elements
of the vector U . Substitute (11) in (10) produces

UTh(x) ∼= F Th(x) + λ1h
T (x)K1

∫ x

0
h(s)hT (s)Uαds

+λ2h
T (x)K2

∫ 1

0
h(s)hT (s)Uβds. (12)

Note that by use of (4) and (6) we have
∫ x
0 h(s)hT (s)Uαds =

∫ x
0 Ũαh(s)ds =

ŨαPh(x), by this relation and D we get

UTh(x) ∼= F Th(x) + λ1h
T (x)K1ŨαPh(x) + λ2h

T (x)(K2DUβ). (13)

In order to find U we collocate (13) in nm nodal points of Newton-Cotes as

xp =
2p− 1

2nm
, p = 1, 2, ..., nm. (14)
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then we have following system of nonlinear equations

UTh(xp) ∼= F Th(xp) + λ1h
T (xp)K1ŨαPh(xp)

+λ2h
T (xp)(K2DUβ) , p = 1, 2, ..., nm. (15)

This nonlinear system of equations can be solved by Newton’s method. We used the
Mathematica software to solve this nonlinear system. After solving above nonlinear
system we can achieve U , then we will have our unknown u(x) as UTh(x), that is
the approximate solution of NV-FIE (1).

2.2.1 Evaluating Uα and Uβ

For numerical implementation of the method explained in section 2.2, we need
to evaluate Uα and Uβ, so that the elements of each one are nonlinear combination
of the elements of the vector U . From (6) and (7), We have

(u(x))2 ∼= (UTh(x))(UTh(x)) = UTh(x)hT (x)U = UT Ũh(x) = U2h(x), (16)

where the vector U2 = UT Ũ is a mn-row vector, then for (u(s))3 we get

(u(x))3 ∼= (UTh(x))(U2h(x)) = UTh(x)hT (x)UT
2 = UT ŨT

2 h(x) = U3h(x), (17)

Therefore with this method we can approximate (u(s))α and (u(s))β for arbitrary
α and β. Suppose that this method holds for α− 1 where (u(x))α−1 = Uα−1h(x),
we shall obtain it for αas follows

(u(x))α = u(x)(u(x))α−1 ∼= (UTh(x))(Uα−1h(x))

= UTh(x)hT (x)UT
α−1 = UT ŨT

α−1h(x) = Uαh(x), (18)

we have similar relation for β. So, the components of Uα and Uβ can be computed
in terms of components of unknown vector U .

2.3 Convergence analysis

We assume the following conditions on k1, k2 and ψ1, ψ2 for (1).
1. M1 ≡ sup0⩽x,s⩽1|k1(x, s)| < ∞,M2 ≡ sup0⩽x,s⩽1|k2(x, s)| < ∞;
2. ψ1(s, x), ψ2(s, x) are continuous in s ∈ [0, 1] and Lipschitz continuous in x ∈ R,
i.e., there exists constants C1, C2 > 0 for which

|ψ1(s, x1)− ψ1(s, x2)| ⩽ C1|x1 − x2| forall x1, x2 ∈ R,

|ψ2(s, x1)− ψ2(s, x2)| ⩽ C2|x1 − x2| forall x1, x2 ∈ R,

Theorem 2.1 The solution of Nonlinear Volterra-Fredholm Integral Equation by
using hybrid functions converges if 0 < γ < 1.
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Proof For NV-FIE by assumption
∫ x
0 |k1(x, t)|dt ⩽

∫ 1
0 |k1(x, t)|dt for 0 < x < 1;

We see that there exists a constant γ = |λ1|M1C1 + |λ2|M2C2 > 0 such that

∥unm(x)− u(x)∥ = maxx∈[0,1]|unm(x)− u(x)|

⩽ maxx∈[0,1]|λ1|
∫ x

0
|k1(x, s)||ψ1(s, unm(s))− ψ1(s, u(s))|ds

+maxx∈[0,1]|λ2|
∫ 1

0
|k2(x, s)||ψ2(s, unm(s))− ψ2(s, u(s))|ds

⩽ (|λ1|M1C1 + |λ2|M2C2)maxx∈[0,1]|unm(x)− u(x)| ⩽ γmaxx∈[0,1]|unm(x)− u(x)|.

We get (1− γ)∥unm(x)−u(x)∥ ⩽ 0 and choose 0 < γ < 1, when n→ ∞, it implies
∥unm(x)− u(x)∥ → 0 . ■

3. Piecewise Constant Function by Collocation Method

3.1 Review of Some Related Papers

Some computational methods for approximating the solution of linear and nonlin-
ear integral equations are known. The classical method of successive approximation
for Fredholm-Hammerstein integral equations was introduced in [16]. Brunner in
[4] applied a collocation type method and Ordokhani in [13] applied rationalized
Haar function to nonlinear Volterra-Fredholm-Hammerstein integral equations. A
variation of the Nystrom method was presented in [10]. A collocation type method
was developed in [9]. The asymptotic error expansion of a collocation type method
for volterra-Hammerstein integral equations has been considered in [6]. Yousefi in
[19] applied Legendre wavelets to a special type of nonlinear Volterra-Fredholm
integral equations of the form

u(x) = f(x) + λ1

∫ x

0
k1(x, s)F (u(s))ds+ λ2

∫ 1

0
k2(x, s)G(u(s))ds, 0 ⩽ s, x ⩽ 1,

(19)
where f(x) , and k1(x, s), k2(x, s) are assumed to be in L2(R) on the interval

0 ⩽ s, x ⩽ 1. Yalcinbas in [16] used Taylor polynomials for solving Equation (1)
with F (u) = up and G(u) = uq . Orthogonal functions and polynomials receive
attention in dealing with various problems that one of those in integral equation.
The main characteristic of using orthogonal basis is that it reduces these problems
to solving a system of nonlinear algebraic equations. The aim of this work is to
present a numerical method for approximating the solution of nonlinear Fredholm-
Volterra integral equation of the form:

u(x) = f(x) + λ1

∫ x

0
k1(x, s)(u(s))

mds+ λ2

∫ 1

0
k2(x, s)(u(s))

nds, 0 ⩽ s, x ⩽ 1,

(20)
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where m and n are nonnegative integers and λ1 and λ2 are constants. For this
purpose we define a n-set of BPfs as

bi(x) =

{
1, (i−1)

n ⩽ x < i
n

0, otherwise

The functions bi(x) are disjoint and orthogonal. That is,

bj(x)bi(x) =

{
0, i ̸= j
bi(t), i = j

< bj(x)bi >=

{
0, i ̸= j
1
n , i = j

A function u(x) defined over the interval [0, 1) may be expanded as:

u(x) =

∞∑
i=1

uibi(x), (21)

In practice, only n-term of (21) are considered, where n is a power of 2, that is

u(x) ∼= un(x) =
n∑

i=1

uibi(x), (22)

with matrix from:

u(x) ∼= un(x) = uxb(x), (23)

where u = [u1, u2, ..., un]
x and

b(x) = [b1(x), b2(x), ..., bn(x)]
x.

In a similar manner, [u(x)]m can be approximated in term of BPfs

[u(x)]m ∼= ũxb(x)

that we need to calculate vector ũ whose elements are nonlinear combination of
the elements of the vector u For this purpose, we can write u(x) = uxb(x) and
[u(x)]m ∼= ũxb(x).
So,

ũxb(x) = [uxb(x)]m (24)
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now using bj(x)bi(x) leads to

b(x)bx(x) =


b1(x) 0 ... 0
0 b2(x) ... 0

. . .

0 ... 0 bn(x)


also from bi(x) we get
0 ⩽ x < 1

n implies that b1(x) = 0 and bi(x) = 0 for i=2, ..., n.
1
n ⩽ x < 2

n implies that b2(x) = 1 and bi(x) = 0 for i = 1, ..., n and i ̸= 2.
n−1
n ⩽ x < 1 implies that bn(x) = 1 and bi(x) = 0 for i=1,..., n-1. Therefore,

simply we obtain

∫ 1

0
b(x)bx(x)dx =

1

n
I, (25)

where, I is the identity matrix of order k. By incorporating these results we have

ũu = ũxI = n

∫ 1

0
ũxb(x)bx(x)dx = n

∫ 1

0
[uxb(x)]mbx(x)dx.

Hence,

ũx = n

∫ 1

0
[uxb(x)]mbx(x)dx = n

n∑
i=1

∫ t

n

t−1

n

[uxb(x)]mbx(x)dx,

= n

n∑
i=1

∫ i

n

i−1

n

[uxb(x)]m−1ux[b(x)bx(x)]dx. (26)

So using (26) leads to

ũx = n

∫ 1

n

0

[u1, u2, ..., un]


1
0
...
0
0




m−1

[u1, u2, ..., un]


1 0
0
0
. . .

0 0

 dx

+n

∫ 2

n

1

n

[u1, u2, ..., un]


0
1
0
...
0




m−1

[u1, u2, ..., un]


0 0
1
0
. . .

0 0

 dx+ ...
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+n

∫ 1

n−1

n

[u1, u2, ..., un]


0
0
...
0
1




m−1

[u1, u2, ..., un]


0 0
0
0
. . .

0 1

 dx

= n

∫ 1

n

0
um−1
1 [u1, 0, ..., 0]dx+ n

∫ 2

n

1

n

um−1
2 [0, u2, ..., 0]dx+ ...

= n

∫ 1

n−1

n

um−1
m [0, ..., 0, um]dx = [um1 , u

m
2 , ..., u

m
m].

Now for evaluating the integral
∫ x
0 b(x)bx(x)dx at the collocation points

xj =
j − 1

2

n
, j = 1, 2, ..., n, (27)

we may proceed as follows

∫ xj

0
b(x)bx(x)dx =

∫ j− 1
2

n

0
b(x)bx(x)dx

∫ 1

n

0
b(x)bx(x)dx

+

∫ 2

n

1

n

b(x)bx(x)dx+ ...+

∫ j−1

n

j−2

n

b(x)bx(x)dx+

∫ j− 1
2

n

j−1

n

b(x)bx(x)dx

=


∫ 1

n

0 1dx 0
0
. . .

0 0

+


0 0∫ 2

n
1

n

1dx

0
. . .

0 0

+ ...

+



0 0
. . .

0∫ j−1

n
j−2

n

1dx

0
. . .

0 0


+



0 0
. . .

0
0∫ j− 1
2

n
j−1

n

1dx

0
. . .

0 0


=

1

n
Dj (28)
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where,

Dj = Diag

[
1, 1, ...,

1

2
, 0, ..., 0

]
n×n

,

in fact, the diagonal matrix Dj , j = 1, 2, ..., n is defined as follows :

Dj
mn =


1 , m = n = 1, 2, · · · , j − 1
1
2 , m = n = j
0 , m = n = j + 1, · · · , n.

Also, K(x, t) ∈ L2[0, 1)2 may be approximated as:

K(x, t) ∼=
n∑

i=1

n∑
j=1

Kijbi(x)bj(t),

or in matrix form

K(x, t) ∼= bt(x)kb(t), (29)

where k = [Kij ]1⩽i,j⩽n and Kij = n2
∫ 1
0

∫ 1
0 K(x, t)Bi(x)Bj(t)dxdt.

3.2 Solution of the Nonlinear Fredholm-Volterra Integral Equations

In order to use BPfs for solving nonlinear Fredholm-Voterra integral equations
given in (20), we first approximate the u(s), f(s), (u(x))m, (u(x))n, k1(x, s) and
k2(x, s) with respect to BPfs

u(s) ∼= bs(s)u, (30)

f(s) ∼= bs(s)f , (31)

(u(x))m ∼= ũs
1(x)b(x), (32)

(u(x))n ∼= ũs
2(x)b(x), (33)

k1(x, s) ∼= bs(s)k1b(x), (34)

k2(x, s) ∼= bs(s)k2b(x), (35)

where n-vectors u, f , ũ1, ũ2 and n × n matrices k1 and k2 are BPfs coefficients of
u(s), f(s), (u(x))m, (u(x))n, k1(x, s) and k2(x, s) respectively. For solving (20), we
substitute (30-35) into (20), therefore

bs(s)u = bs(s)f + λ1b
s(s)k1

∫ s

0
b(x)bs(x)dxũ1 + λ2b

s(s)k2

∫ 1

0
b(x)bs(x)dxũ2.

(36)
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Table 1. Approximate and exact solution for u(x)

x Hybrid n=8 BPFs n=8 Hybrid n=16 BPFs n=8 Exact

0.1 -1.9904 -1.9847 -1.9901 -1.9876 -1.99
0.2 -1.9605 -1.9505 -1.9601 -1.9532 -1.96
0.3 -1.9105 -1.8857 -1.9101 -1.8905 -1.91
0.4 -1.8406 -1.7905 -1.8401 -1.8122 -1.84
0.5 -1.7507 -1.7650 -1.7501 -1.7666 -1.75
0.6 -1.6408 -1.6650 -1.6402 -1.6589 -1.64
0.7 -1.5108 -1.5091 -1.5102 -1.5080 -1.51
0.8 -1.3607 -1.3205 -1.3601 -1.3342 -1.36
0.9 -1.1905 -1.1103 -1.1901 -1.1297 -1.19

We now collocate (36) at n points sj , j = 1, 2, ..., n defined by (27) as

bs(sj)u = bs(sj)f+λ1b
s(sj)k1

∫ sj

0
b(x)bs(x)dxũ1+λ2b

s(sj)k2

∫ 1

0
b(x)bs(x)dxũ2

(37)
by using (25) and (28) and the fact that b(sj) = ej where ej is the j-th column of
the identity matrix of order n, (37) may then be restated as

uj = fi +
λ1
n
etjk1D

jũ1 +
λ2
n
etjk2ũ2 , j = 1, 2, ..., n. (38)

(38) gives n nonlinear equations which can be solved for the elements ũ1 using
Newtons iterative method.

3.3 Error in BPfs Approximation

Theorem 3.1 If a differentiable function u(s) with bounded first derivative on
(0, 1) is represented in a series of BPfs over subinterval [ i−1

n , i
n), we have ∥e(s) =

O( 1n)∥, where e(s) = un(s)− u(s).

Proof See [15]. ■

4. Numerical results

Consider the following nonlinear volterra-Fredholm integral equation

u(x) = − 1

30
x6 +

1

3
x4 − x2 +

5

3
x− 5

4
+

∫ x

0
(x− s)(u(s))2ds+

∫ 1

0
(x+ s)u(s)ds,

with the the exact solution u(x) = x2−2 [13]. Now we can solve the equation with
these methods and the results are displayed in the Table 1.

5. Conclusion

In this paper we have presented two methods for the numerical solution of Nonlinear
Volterra-Fredholm Integral Equations based on hybrid legendre and Block-Pulse
functions. These two methods are Piecewise Constant Function by Collocation
Method and Hybrid Functions Approach. The results obtained by these two meth-
ods to solve an equation, we reach the conclusion that Hybrid Functions Approach
method is more accurate.
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