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Abstract.In this paper, we have proposed a study on controllability and optimal harvesting
of a prey predator model and mathematical non linear formation of the equation equilibrium
point of Routh harvest stability analysis. The problem of determining the optimal harvest
policy is solved by invoking Pontryagin′s maximum principle dynamic optimization of the
harvest policy is studied by taking the combined harvest effect as a dynamics variable.
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1. Introduction

The first continuous time predator prey model was the Lotka Volterra model [8],
It was proposed in the 1920 by Volterra. Discussed in the model Rosenzweig
MacArthur model using formulation of predator prey interaction. Using the in-
troduction to mathematical modeling and chaotic Dynamics, by Ranjit kumar
Upadhyay et. al., [12]. In many resilience and stability of harvested predator prey
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system using harvested effort model formulated by [6]. Their approach controlla-
bility and optimal harvesting of the prey predator model in the method of optimal
harvesting policy for combined harvesting for both predator and prey models have
also been discussed in[3, 15]. In many work have been Holling type II function
formulated the equation [9, 16]. Theory of the model origins and evaluation of the
predator prey by [1]. Some concepts has been studied a predator prey system with
arranging the mathematical model based in [2, 7]. In the present paper, we consider
a predator prey model, assume optimal harvesting problem using economic dynam-
ics phase diagrams and their economic application by Ronald shone[13]. Using the
book mathematical theory of optimal processes by Pontryagin .L.S et. al.,[10].
Pontryagin′s principle problem suggested that optimal harvesting effort problem
formatted the maximum value of continuous and discrete type model. Using the
optimal processes by Clark.C.W. The equilibrium point and stability analysis cal-
culated by [4, 13]. A simple mathematical model of non linear dynamics [5]. The
model assumption and functional responses will be calculated by [3, 4, 11, 14].

2. The Mathematical Model

• In the Rosenzweig MacArthur model using formulation of predator model in-
teraction are as follows, the life histories of each population involve continuous
growth and overlapping generations. The predator p dies out exponentially in
the absence of its most favorite prey q, the predators feeding rate saturates at
high prey densities the age saturates of both the populations are ignored. It is
assumed that the per capita growth rate of prey in the absence of predation
defined by the function f grow. Logistically with the intrinsic growth rate r per
capita rate of self reproduction on for the prey.

• The limited growth model using populations cannot continue growing exponen-
tially over time due to limited resources or competition for food with other

species where f(p) = (r − ξp) by p = k =
r

ξ
carrying capacity.

• The functional response of the prey is taken as A1(p) =
upq

(p+ w)
and Holling type

functional response.

• The functional response of the predator is taken as A2(q) =
vpq

(p+ w1)
• The predator population using harvesting. Let E represent the effort used for

harvesting. Assume that catch per unit effort is proportion to the density of the
stock level q. Where γ is called the catch ability coefficient and Eγ is called the
mortality rate.

dp

dt
= (r − ξp)p− upq

(p+ w)
(1)

dq

dt
=

vpq

(p+ w1)
− sq − γEq (2)

p : The prey population at time t.
q : The predator population at time t.
(r − ξp) : Limited growth rate model.
r : The maximum per capita growth rate of prey population.
ξ: Measures the intensity of competition among individuals of species p for
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spaces,food and so on.
u : Maximum rate of per capita removal of prey species p due to predator by its

predator q.
s : Measures how fast the predator q will die when there is no prey to capture, kill

and eat.
v : The conversion coefficient form individuals of prey into individuals of predator.
γ : The constant predation rate by the predator population.
E : The constant harvesting effort
w : value of population density of p at which per capita removal rate is half of its
u
w1 : population density of the prey at which per capita gain per unit time in q is
half of its maximum value of v

3. Boundedness of the Model

All solutions of model equation(1,2) are uniformly bounded.
Proof:
Let p(t), q(t) be any solution of model(1,2)
Now,consider the equation A = vp+ uq,we get differential with respect t,
dA

dt
= v

dp

dt
+ u

dq

dt
dA

dt
= v(r − ξp)p− upq

(p+ w)
+ u

vpq

(p+ w1)
− sq − γEqP

dA

dt
= vr − ξp2 − vupq

(p+ w)
+

uvpq

(p+ w1)
− usq − uγEqPand Letw = w1

dA

dt
⩽ vr − ξp2 − 0− usq − uγEq

⩽ vp(r − ξp)− qu(s+ γE) + 0,where ρ = min{r − ξp, s+ γE}
⩽ 0 + ρA,

dA

dt
+ ρA ⩽ 0

Applying a theorem on differential inequalities,we obtain
0 ⩽ A(p, q) ⩽ 0 +A(p(0), q(0))e−tρ

and for t → ∞
0 ⩽ A(p, q) ⩽ ϵ
Thus all solutions of (1,2)enter into the region
B = {(p, q) : 0 ⩽ A ⩽ ϵ, for any ϵ}

4. Equilibrium Point

The first critical point (0,0)

The second critical point

{
p =

r

ξ
, q = 0

}
The third critical point{p∗ = −w1 (Eγ + s)

Eγ + s− v
, q∗ =

1

u
[(r − ξp∗)(p∗ + w)]}

The jacobian matrix
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−pξ + r − uq

p+ w
+ p

(
−ξ +

uq

(p+ w)2

)
− pu

p+ w

q

(
v

p+ w1
− vp

(p+ w1)
2

)
vp

p+ w1
− Eγ − s



5. Nature of the Equilibrium and Stability Analysis

In this section, we shall discuss the stability properties of the equilibrium J0, J1, J2.
The Jacobian of the system about the equilibrium point J0(0, 0) is given by[

r 0

0 −Eγ − s

]
Hence the eigenvalues of this system are λ1 = r and λ2 = (−Eγ − s) < 0
The equilibrium point J0(0, 0) is a unstable point.
Since Re(λ) ̸= 0for both eigenvalues.The fixed point is hyperbolic.
since the eigenvalues are real and are of opposite signs.
Hence J0(0, 0) is a hyperbolic saddle point.
i.e J0(0, 0) is a saddle point.

The axial equilibrium point

{
p =

r

ξ
, q = 0

}
exists.

Then

{
p =

r

ξ
, q = 0

}
is asymptotically stable(or) unstable (or)hyperbolic saddle

point according as
vr

r + ξw1
− γE − s+ r ⩾ 0.

Proof:

The Jocobian matrix for J1

{
p =

r

ξ
, q = 0

}
is given by

−r − ru

r + ξw

0
rv

r + ξw1
− γE − s


The eigenvalues areλ1 = −r and λ2 =

vr

(r + w1ξ)
− γE − s

If λ < 0, That is
vr

(r + w1ξ)
< γE + s, Then the equilibrium point J1

(
r

ξ
, 0

)
is

asymptotically stable.

when E >
1

γ

{
rv

r + ξw1
− s

}
[or] (Eγ + s) >

rv

r + ξw1

Otherwise J1

{
p =

r

ξ
, q = 0

}
is unstable.

If depends on the value of the parameters v, r, w1, s, E, ξ, γ.Ifλ2 > 0the eigenvalues

are real and are of opposite sings and the fixed point

{
p =

r

ξ
, q = 0

}
is a

hyperbolic saddle point if(Eγ + s) >
rv

r + ξw1
The conversion rate of the predator is sufficient to overcome losses due to death
and harvesting.
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6. The Interior Equilibrium Point: Stability Analysis

The interior equilibrium point (p∗, q∗) exists.Then(p∗, q∗) is locally asymptotically
stable or unstable according as

(1) (Eξ + s) >
ξw(Eγ − v + s) + rv

(2ξw1 + r)

(2) (Eξ + s) >
rv

ξw1 + r

Proof:
The eigenvalues of J2(p

∗, q∗) are the root of Λ(λ) = c2λ
2 + c1λ+ c0 = 0

by the Routh-Hurwitz theorem, the necessary and sufficient conditions for local
stability are given by c2 > 0, c1 > 0, c0 > 0.
Now,c1 > 0and
w1 (Eγ + s) (−Eγ wξ + 2Eγ w1 ξ + Eγ r − swξ + 2 sw1 ξ + vwξ + rs− rv)

(Eγ w − Eγ w1 + sw − sw1 − vw) (Eγ + s− v)
> 0

gives

(Eξ + s)(2ξw1 + r) > ξw(Eγ − v + s) + rv

[or]

(Eξ + s) >
ξw(Eγ − v + s) + rv

(2ξw1 + r)

Therefore sufficient condition is locally stability.

Now c0 > 0 and c0 = −(Eγ + s) (Eγ w1 ξ + Eγ r + sw1 ξ + rs− rv)

v
> 0,

gives Eξ + s >
rv

ξw1 + r
is always satisfied.

Otherwise, The equilibrium point (p∗, q∗) is asymptotically stable.
Its clear that (p∗, q∗) is locally asymptotically stable or unstable according as
c1 > or < 0.

7. Optimal Harvesting Policy

The optimal plan for harvesting a prey and predator equation.This approach
is based on the work of Pontryagian et al(1962),The present valueJmax of a
continuous time stream of revenues is given by J =

∫∞
0 e−δtπ(p, q, E, t)dt

where π(p, q, E, t) = (p1γq − C)E
C: The fixed constant cost per unit of harvesting intensity.
p1 : There is a fixed constant price per unit biomass of the harvested.
δ : The instantaneous annual rate of discount.
γ : The catch ability coefficient value,γ > 0.
The control variable E(t) is subject to the constrains 0 ⩽ E(t) ⩽ Emax where
Emax stands for a feasible upper limit on the harvesting effort.
The Hamiltonian for the problem is given by

H = e−tδ (p1γq − C)E +

[
−p2ξ + pr − up

p+ w

]
λ1 +

[
qvp

p+ w1
− Eγ q − sq

]
λ2 (3)
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where λ1 andλ2 are adjoint variables.
The adjoint equations are

dλ1

dt
= −∂H

∂p
= −

[
−2 pξ + r − uq

p+ w
+

uqp

(p+ w)2

]
λ1 −

[
qv

p+ w1
− qvp

(p+ w1)
2

]
λ2

dλ1

dt
=

[
2pξ − r +

uqw

(p+ w)2

]
λ1 −

[
qvw

(p+ w1)2

]
λ2 (4)

dλ2

dt
= −∂H

∂q
= −e−tδp1γE −

[
− up

(p+ w)

]
λ1 −

[
vp

(p+ w1)
− γE − s

]
λ1

dλ2

dt
= −e−tδp1γE +

[
up

(p+ w)

]
λ1 +

[
− vp

(p+ w1)
+ γE + s

]
λ1 (5)

From (1)and(2), We first consider a optimal equilibrium solution of the above
problem so that we may take simplify the equation

p

(
r − ξp− uq

(p+ w)

)
= 0

r = ξp+
uq

(p+ w)

q

(
vp

(P + w1)
− γE − s

)
= 0

γE + s =
vp

(p+ w1)

(4)and (5) become

dλ2

dt
= −e−δtp1γE +

[
up

(p+ w)

]
λ1 + 0

dλ1

dt
=

[
pξ − upq

(p+ w)2

]
λ1 −

[
qvw1

(p+ w1)2

]
λ2

differentiate (4) with respect to t,we get

d2(λ1)

dt2
=

[
pξ − upq

(p+ w)2

]
dλ1

dt
−

[
qvw1

(p+ w1)2

]
dλ2

dt

Given the second order derivative
d2λ1

dt
−

[
pξ − upq

(p+ w)2

]
dλ1

dt
−

[
qvw1

(p+ w1)2

] [
up

(p+ w)

]
λ1 = − qvw1

(p+ w1)2
e−δtp1γE

d2λ1

dt2
+A1

dλ1

dt
+B1λ1 = M1e

−δt (6)
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whereM1 = − qvw1

(p+ w1)2
p1γE and A1 = −

[
pξ − upq

(p+ w)2

]
< 0

B1 = −
[

qvw1

(p+ w1)2

] [
up

(p+ w)

]
> 0

where

N = µ2 +A1µ+B1 = 0 (7)

andµ1, µ2 are the root of the auxiliary equation. Therefore the two roots of
equations (6) are either both real and positive or complex conjugates with positive
real parts. The discriminant of (7) isX = A2

1 − 4B1

case:1
In this case, The roots of (7) are real and positive. The roots are given by

µ1 =
−A1+

√
X

2 andµ2 =
−A1−

√
X

2
The general solution is

λ1(t) = ζ1e
µ1t + ζ2e

µ2t +
M1

N
e−δt

Where N = µ2 +A1µ+B1 ̸= 0 and ζ1, ζ2are arbitrary constants
case:2
In this case, The roots of (7) are complex conjugates with positive real pares.

The root are given by µ1 =
−A1+i

√
X

2 andµ2 =
−A1−i

√
X

2
The general solution is

λ1(t) = e−A1tζ3cos(t
√
−X) + ζ4sin(t

√
−X) +

M1

N
e−δt

Where ζ3, ζ4are arbitrary constants
In case 1, The current shadow price etδλ1 remains bounded as t → ∞ if and only

if ζ1 = ζ2 = 0and then etδλ1 = (
M1

N
) = constant.

In case 2 , The current shadow price etδλ1 remains bounded as t → ∞ if and only

if ζ3 = ζ4 = 0and then etδλ1 = (
M1

N
) = constant.

Then in both the cases we have etδλ1 = (
M1

N
)

and similar term yields. etδλ1 = (
M2

N
)

WhereM2 = {µ+ [
uqw

(p+ w)2
− pξ]}p1γE. Again the condition that the Hamiltotion

H must be a maximum for E ∈ VE = [0, Emax] gives the condition

∂H

∂E
= e−δt(γqp1 − C)E − λ2qγ = 0 (8)

λ2qx = e−δt ∂π

∂E

This indicates that the total user cost of harvest per unit effort must be equal to
the discounted value of the future profit at the steady state effort level.

We must rewrite (8) in the form γq(p1 −
M2

N
) = C

Given the optimal equilibrium populations p = pδ, q = qδ and the optimal
harvesting effort E = Eδwhenδ → ∞ equation(9) leads to the obvious result
(γq∞p1) = C.
Thereforeπ(p, q, E) = 0. This shows that an infinite discount leads to complete
dissipation of economic revenue.
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Figure 1. Limited growth rate,x axis is time series t and y axis is prey values let as consider y=p(prey).

Figure 2. Prey predator interaction

8. Numerical Results

In our numerical experiments we use maple software and, In this section we illus-
trate some of the key findings of the system (1,2) numerically around the positive
stability for a wide range of parameter values. First, we consider the limited growth
range of parameter values r and ξ. Given we assume the values f(p) = (r − ξp)p.

where carrying capacity=
r

ξ
, r = 1, ξ = 1. In the initial value from

p1(0) = 0.5, p2(0) = 2, p3(0) = 3. The growth rate value is decreasing figure1.

(i)Whenp <
r

ξ
, f(p) > 0. This implies that the population is decreasing with
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Figure 3. Time series plot,x axis is time series t and y axis is prey value let as consider x=p(prey)

Figure 4. Time series plot,x axis is time series t and y axis is predator value let as consider y=q(predator)

Figure 5. Prey predator interaction.
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Figure 6. Prey predator interaction.

Figure 7. Competing species model,let us consider x axis prey values x=p(prey)and y axis predator values
y=q(predator)

Figure 8. Prey predator model phase plot,let us consider x axis prey values x=p(prey)and y axis predator
values y=q(predator
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time and approaches p =
r

ξ
.

(ii)When p >
r

ξ
, f(p) < 0. This implies that the population is decreasing with time

toward p =
r

ξ
.

In figure 3, The time series plot prey equation we have calculated by prey val-
ues is asymptotically stable and unstable values. In figure 4, The time series plot
predator equation we have calculated by predator values is asymptotically stable
and unstable values. The predator prey system of the equation (1,2) interaction
value we can find out the parameter values r = 2.0, ξ = 0.05, w = 10, w1 = 10, u =
1.0, s = 1.0, v = 2.0, γ = 1, E = 0.05using these sets of parametric values and ini-
tial values(p(0)=40,q(0)=50)the range of x,y direction(0,5...25 to 0,10,..,80) The
interaction values of prey predator model is very clear model in the figure (2).Same
as the parameter values change the initial value (p(0)=10,q(0)=10) the range of x,y
direction (350...550 to 0,10,..,60) and (400,...,1000 to 0,...,60) the interaction values
figure (5,6) given. In the initial value change of prey predator model interaction
values late of the interaction we can find out the model equation.
The interior equilibrium point will be structurally unstable (Λ(λ) > and ⩽ 0).
In the figure (7) the competing prey predator species will be existence limit cycle
exists and bounders conditions exists. In figure (8) the prey predator model using
Lotka Volterra model the species range is limit cycle exists and bounders condition
exists.

9. Discussion and Result

Motivated by real world considerations we have proposed and studied a predator
prey model in which the predator has a Holling type II functional response and lim-
ited prey growth. Given that the prey consumption provides the energy for predator
activity and that the predator functional response represents the prey consump-
tion rate per predator. We assumed that the per capita birth and death rates for
the predator were respectively increasing and decreasing functions of the predator
prey functional response. In this model very complicated limited growth prey value
is very small and predator harvesting value is very small. The prey growth rate
is high and competition food supply is very lowest value. The prey predator pop-
ulation is very lower value because the predator equation using harvesting effort
consumption. So for as the dynamical behavior is concerned, it is observed that
all the solutions of the system (1,2) are uniformly bounded which implies that the
system is biologically well behaved. Nature of the equilibrium(0, 0) and stability
analysis discussed in the stability condition proved by the saddle point. The ax-
ial equilibrium point ( rξ , 0). The criterion given in the theorem 5.1, Provides the
condition for stability or instability of the axial equilibrium point which is in turn,
indicates ecological balance or imbalance. It is also observed that the existence of
the positive equilibrium point(p∗, q∗). The criterion given in theorem 6.1, Provides
the condition for stability or instability of the interior equilibrium point which,
in turn, indicates ecological balance or imbalance. The optimal harvest policy of
exploiting is given and its solution is derived by using Pontryagin′s maximum prin-
ciple. It is shown that the total user cost of harvest per unit effort must be equal
to the the discount value of the future profit at the steady state effort. Further it
is noticed that an infinite discount rate leads to complete dissipation of economic
revenue. It is also established that δ = 0 leads to the maximization of the net eco-
nomic revenue. Dynamic optimization of the harvest policy is carried out by taking
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E(t) as a dynamic variable. The harvesting policy problem is the prey population
cost per unit effort time. In the mathematical modeling and diagrams using maple
software version 18th as used for numerical illustration.
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