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Abstract. This paper analyzes renewal input state dependent queue with N - policy wherein
the server takes exactly one vacation. Using the supplementary variable technique and recur-
sive method, we derive the steady state system length distributions at various epochs. Various
performance measures has been presented. Finally, some numerical computations in the form
of graphs are presented to show the parameter effect on various performance measures.
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1. Introduction

In real life queueing situations, it is observed that the server may become unavail-
able for a certain period of time due to many reasons. This period of server absence
from the system is known as vacation. Server vacation queues are utilizable in sit-
uations particularly when there is no customer in the queue so that he can stop
the regular service and attend some secondary jobs like maintenance works, taking
rest, etc. An excellent and comprehensive survey on this topic can be found in
[3], [9], etc. In a single vacation (SV) queue the server takes exactly one vacation
whenever the system becomes empty. If there are waiting customers at a vaca-
tion completion epoch, the server begins to serve them; otherwise he will wait for
customers to arrive. A GI/M/1 vacation queue has been analyzed in [2].
Queueing systems with N policy are useful to provide basic framework for effi-

cient modeling and analysis of several practical situations. The concept of N policy
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was introduced in [11], which turns the server on when the number of customers in
the system reaches a certain number N (≥ 1), and turns the server off when there
are less than N in the system. A recursive method for the GI/M/1/K queue with
N -policy has been presented in [6] using embedded Markov chain method. A finite
buffer GI/M/1 queue with SV under N -policy is studied in [7]. A recent study on
discrete time GI/D −MSP/1/K queue with N -policy have been discussed in [4]
by using supplementary variable technique.
Including various dependencies in a queueing model makes it more practical.

The batch service queue with change over times and Bernoulli schedule vacation
interruption has been studied by Vijaya Laxmi and Seleshi [10]. Further, it is often
observed that arrivals and their service times depend on the system state which is
termed as state dependent queues. An iterative algorithm for numerically comput-
ing the stationary queue length distributions of M(k)/G/1/N and GI/M(k)/1/N
queues has been developed in [12]. A computational algorithm of GI/M(n)/1/K
queue with state dependent vacations and N -policy is analyzed in [1]. The station-
ary distribution and the expected values of the first passage times from one level
to other levels are obtained using an algorithm presented in [5].
A state dependent arrival and second optional vacation of MX/G/1 queue-

ing model has been developed in [8]. The present literature shows that so far
the analysis of finite buffer GI/M(n)/1/SV queue with N -policy has not been
done, to the best of our knowledge. This motivated us to study the finite capacity
GI/M(n)/1/SV queue under N -policy.
In this paper, we focus on a finite buffer GI/M(n)/1/SV queue with N -policy.

The service times and vacation times are assumed to be exponentially distributed
and are state dependent. Using the supplementary variable technique and recur-
sive method, the steady state probabilities at various epochs are obtained. Some
performance measures such as blocking probability, the expected queue length,
the expected waiting time, etc. have been evaluated. Numerical results have been
illustrated in the form of graphs.

2. Description of the Model

Let us consider a GI/M(n)/1/K SV queue with N -policy. The inter-arrival times
of successive arrivals are assumed to be independent and identically distributed
random variables with cumulative distribution function A(x), probability density
function a(x), x ≥ 0, Laplace-Stiletjes transform (L.-S.T.) A∗(θ) with mean inter-
arrival time 1/λ = −A∗(1)(0), where h(1)(0) denotes the first derivative of h(θ)
evaluated at θ = 0. Customers are served on a first come first served (FCFS) queue
discipline. The service rates and vacation times are exponentially distributed with
rates µn (1 ≤ n ≤ K) and γn(0 ⩽ n ⩽ K), respectively, when there are n customers
in the system. The mean service rate µ and mean vacation rate γ are given by
µ =

∑K
n=1 µn/K, γ =

∑K
n=0 γn/K. The traffic intensity is given by ρ = λ/µ.

Let the state of the system at time t be described by the random variables Ns(t)
denoting the system size, U(t) the remaining inter-arrival time for the next arrival
and ζ(t) the state of the server, which is defined as

ζ(t) =

{
0, if the server is on vacation,
1(2), if the server is working (dormant).

The joint probabilities are defined as

πn,j(x, t) = Pr(Ns(t) ⩽ n, x ⩽ U(t) ⩽ x+ dx, ζ(t) = j), x ⩾ 0, 0 ⩽ n ⩽ K.
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At steady state as t → ∞, the above probabilities are given by πn,j(x), j = 0, 1, 2.

2.1 Steady state equations and solution

To obtain the system length distributions at arbitrary epoch, we first develop the
differential difference equations, using the inter-arrival time as the supplementary
variable, as follows.

−π
(1)
0,0(x) = µ1π1,1(x)− γ0π0,0(x),

−π
(1)
n,0(x) = −γnπn,0(x) + a(x)πn−1,0(0), 1 ⩽ n ⩽ K − 1,

−π
(1)
K,0(x) = −γKπK,0(x) + a(x)

(
πK−1,0(0) + πK,0(0)

)
,

−π
(1)
0,2(x) = γ0π0,0(x),

−π
(1)
n,2(x) = γnπn,0(x) + a(x)πn−1,2(x), 1 ⩽ n ⩽ N − 1,

−π
(1)
1,1(x) = −µ1π1,1(x) + µ2π2,1(x),

−π
(1)
n,1(x) = −µnπn,1(x) + µn+1πn+1,1(x) + a(x)πn−1,1(0), 2 ⩽ n ⩽ N − 1,

−π
(1)
N,1(x) = −µNπN,1(x) + µN+1πN+1,1(x) + γNπN,0(x) + a(x)πN−1,1(0)

+a(x)πN−1,2(0),

−π
(1)
n,1(x) = −µnπn,1(x) + µn+1πn+1,1(x) + γnπn,0(x) + a(x)πn−1,1(0),

N + 1 ⩽ n ⩽ K − 1,

−π
(1)
K,1(x) = −µKπK,1(x) + γKπK,0(x) + a(x)

(
πK−1,1(0) + πK,1(0)

)
,

where πn,j(0) are the respective rates of arrivals. Let π
∗
n,j(θ) be the L.-S.T. of πn,j(x)

with πn,j ≡ π∗
n,j(0), where πn,j ≡ π∗

n,j(0), where πn,j are the joint probabilities that
there are n customers in the system and the server is in state j at an arbitrary
epoch. Multiplying the above equations by e−θx and integrating with respect to x
from 0 to ∞ yields

(γ0 − θ)π∗
0,0(θ) = µ1π

∗
1,1(θ)− π0,0(0), (1)

(γn − θ)π∗
n,0(θ) = A∗(θ)πn−1,0(0)− πn,0(0), 1 ⩽ n ⩽ K − 1, (2)

(γK − θ)π∗
K,0(θ) = A∗(θ)

(
πK−1,0(0) + πK,0(0)

)
− πK,0(0), (3)

−θπ∗
0,2(θ) = γ0π

∗
0,0(θ)− π0,2(0), (4)

−θπ∗
n,2(θ) = γnπ

∗
n,0(θ) +A∗(θ)πn−1,2(0)− πn,2(0), 1 ⩽ n ⩽ N − 1, (5)

(µ1 − θ)π∗
1,1(θ) = µ2π

∗
2,1(θ)− π1,1(0), (6)

(7)
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(µn − θ)π∗
n,1(θ) = µn+1π

∗
n+1,1(θ) +A∗(θ)πn−1,1(0)− πn,1(0),

2 ⩽ n ⩽ N − 1, (8)

(µN − θ)π∗
N,1(θ) = µN+1π

∗
N+1,1(θ) + γNπ∗

N,0(θ) +A∗(θ)πN−1,1(0)

+A∗(θ)πN−1,2(0)− πN,1(0), (9)

(µn − θ)π∗
n,1(θ) = µn+1π

∗
n+1,1(θ) + γnπ

∗
n,0(θ) +A∗(θ)πn−1,1(0)− πn,1(0),

N + 1 ⩽ n ⩽ K − 1, (10)

(µK − θ)π∗
K,1(θ) = γKπ∗

K,0(θ) +A∗(θ)
(
πK−1,1(0) + πK,1(0)

)
− πK,1(0). (11)

Adding equations (1) - (11), taking limit as θ → 0 and using the normalization

condition
∑K

n=0 πn,0 +
∑K

n=1 πn,1 +
∑N−1

n=0 πn,2 = 1, we obtain
∑K

n=0 πn,0(0) +∑K
n=1 πn,1(0)+

∑N−1
n=0 πn,2(0) = λ. The left hand side denotes the mean number of

entrances into the system per unit time and is equal to mean arrival rate λ.

2.2 Derivation of rate probabilities πn,j(0) and πn,2(0)

To obtain the steady state distribution of number of customers in the system at pre-
arrival epochs, we first evaluate the rate probabilities πn,j(0), j ≤ n ≤ K; j = 0, 1
and πn,2(0), 0 ≤ n ≤ N − 1.
Substituting θ = γK in (3), we get

πK−1,0(0) =

(
1−A∗(γK)

A∗(γK)

)
πK,0(0)

From (3), we have

π∗
K,0(θ) =

A∗(θ)−A∗(γK)

(γK − θ)A∗(γK)
πK,0(0)

Substituting θ = γn for n = K − 1, . . . , 1 in (2), we get

πn−1,0(0) =
πn,0(0)

A∗(γn)
, n = K − 1, . . . , 1.

From (2), we obtain

π∗
n,0(θ) =

A∗(θ)πn−1,0(0)− πn,0(0)

(γn − θ)
, n = K − 1, . . . , 1.
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Substituting θ = µn (2 ≤ n ≤ K − 1) in (11)–(6) we get

πK−1,1(0) =
1−A∗(µK)

A∗(µK)
πK,1(0)−

γK
A∗(µK)

πK,0(0),

πn−1,1(0) =
πn,1(0)

A∗(µn)
−

µn+1π
∗
n+1,1(µn)

A∗(µn)
−

γnπ
∗
n,0(µn)

A∗(µn)
, n = K − 1, . . . , N + 1,

πN−1,1(0) =
πN,1(0)

A∗(µN )
−

µN+1π
∗
N+1,1(µN )

A∗(µN )
−

γNπ∗
N,0(µN )

A∗(µN )
− πN−1,2(0),

πn−1,1(0) =
πn,1(0)

A∗(µn)
−

µn+1π
∗
n+1,1(µn)

A∗(µn)
, n = N − 1, . . . , 2,

where π∗
n,1(θ) are given by the following:

π∗
K,1(θ) =

γKπ∗
K,0(θ) +A∗(θ)(πK−1,1(0) + πK,1(0))− πK,1(0)

(µK − θ)
,

π∗
n,1(θ) =

γnπ
∗
n,0(θ) + µn+1π

∗
n+1,1(θ) +A∗(θ)πn−1,1(0)− πn,1(0)

(µn − θ)
,

n = K − 1, . . . , N + 1,

π∗
N,1(θ) =

γNπ∗
N,0(θ) + µN+1π

∗
N+1,1(θ) +A∗(θ)πN−1,1(0)

(µN − θ)

+A∗(θ)πN−1,2(0)− πN,1(0)

(µN − θ)
,

π∗
n,1(θ) =

µn+1π
∗
n+1,1(θ) +A∗(θ)πn−1,1(0)− πn,1(0)

(µn − θ)
, n = K − 1, . . . , 2,

For θ = γn (0 ≤ n ≤ K), π∗
n,0(θ) are given by

π∗
K,0(θ) = −A∗(1)(θ) (πK−1,0(0) + πK,0(0)) ,

π∗
n,0(θ) = −A∗(1)(θ)πn−1,0(0), 1 ≤ n ≤ K − 1.

For θ = µn (1 ≤ n ≤ K), π∗
n,1(θ) are given by

π∗
K,1(θ) = −

(
γKπ

∗(1)
K,0 (θ) +A∗(1)(θ)(πK−1,1(0) + πK,1(0))

)
,

π∗
n,1(θ) = −

(
γnπ

∗(1)
n,0 (θ) + µn+1π

∗(1)
n+1,1(θ) +A∗(1)(θ)πn−1,1(0)

)
,

N + 1 ≤ n ≤ K − 1,

π∗
N,1(θ) = −

(
γNπ

∗(1)
N,0 (θ) + µN+1π

∗(1)
N+1,1(θ)

+A∗(1)(θ)πN−1,2(0) +A∗(1)(θ)πN−1,1(0)

)
,

π∗
n,1(θ) = −

(
µn+1π

∗(1)
n+1,1(θ) +A∗(1)(θ)πn−1,1(0)

)
, 2 ≤ n ≤ N − 1.



304 P. Vijaya Laxmi & V. Suchitra/ IJM2C, 04 - 04 (2014) 299-307.

For θ = 0, from (5) we obtain π∗
n,2(θ) = (πn−1,2(0)−γnπ

∗(1)
n,0 (θ))/λ, 1 ≤ n ≤ N −1.

2.3 Relation between steady state distribution at pre-arrival and arbitrary
epochs

Let π−
n,j , j ≤ n ≤ K, j = 0, 1; π−

n,2, 0 ≤ n ≤ N − 1 denote the pre-arrival epoch
probabilities, that is, an arrival finds n customers in the system and the server is
in state j at an arrival epoch. Applying Bayes’ theorem, we have

π−
n,j = πn,j(0)/λ, j ≤ n ≤ K, j = 0, 1; π−

n,2 = πn,2(0))/λ, 0 ≤ n ≤ N − 1. (12)

Setting θ = 0 in (3), (2), (11) - (6) and using (12), the relations between pre-arrival
and arbitrary epoch probabilities are obtained as

π0,0 =
λ

µ1

[
π−
N,0 + π−

K,1 + π−
N−1,1 + π−

0,0 +
N−2∑
n=2

π−
n,0 −

N−3∑
n=1

π−
n,1

]
,

πn,0 =
λ

γn

[
π−
n−1,0 − π−

n,0

]
, 1 ⩽ n ⩽ K − 1,

πK,0 =

(
λ

γK

)
π−
K−1,0,

π1,1 =
λ

µ1

[
π−
N,0 + π−

K,1 + π−
N−1,1 +

N−2∑
n=3

π−
n,0 −

N−3∑
n=1

π−
n,1

]

πn,1 =
λ

µn

[
π−
N,0 + π−

K,1 − π−
N−1,1 +

N−2∑
n=n+1

π−
n,0 −

N−3∑
n=n

π−
n,1

]
, 2 ≤ n ≤ N − 3,

πN−2,1 =
λ

µN−2

[
π−
N,0 + π−

K,1 − π−
N−1,1

]
,

πN−1,1 =
λ

µN−1

[
π−
N,0 + π−

K,1 + π−
N−1,1 − π−

N−2,1

]
,

πN,1 =
λ

µN

[
π−
N−1,0 + π−

N−1,1 − π−
K−2,1 + π−

K,1 + π−
N−1,2

]
,

πn,1 =
λ

µn

[
π−
n−1,0 + π−

n−1,1 − π−
K−2,1 + π−

K,1)

]
, N + 1 ≤ n ≤ K − 1,

πK,1 =
λ

µK

[
π−
K−1,0 + π−

K−1,1

]
.

Differentiating (5) and setting θ = 0 , we obtain πn,2 = π−
n−1,2−γnπ

∗(1)
n,0 (0), 1 ≤ n ≤

N − 1. Finally using the normalization condition, we have π0,2 = 1−
∑K

n=0 πn,0 −∑K
n=1 πn,1 −

∑N−1
n=1 πn,2.
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Table 1. The mean queue length and blocking probability for different

values of K and λ in the single vacation E5/M(n)/1/K system. N = 3.

K = 5 K = 10 K = 15
λ Lq Ploss Lq Ploss Lq Ploss

2.0 2.97929 0.28151 5.58354 0.05726 6.48208 0.00540
2.1 3.05245 0.30598 5.93068 0.07550 7.16482 0.01002
2.2 3.11753 0.32940 6.24198 0.09556 7.84477 0.01703
2.3 3.17558 0.35173 6.51762 0.11691 8.50055 0.02676
2.4 3.22751 0.37298 6.75960 0.13904 9.11369 0.03925
2.5 3.27409 0.39316 6.97092 0.16150 9.67141 0.05429

3. Performance Measures

Once the state probabilities at various epochs are known, one can evaluate various
performance measures of the model. The average queue Lq, blocking probability
Ploss, the average waiting time in the queue Wq of a customer using Little’s rule
can be obtained as:

Lq =

K∑
n=1

(n− 1)πn,0 +

K∑
n=1

(n− 1)πn,1 +

N−1∑
n=1

(n− 1)πn,2;

Ploss = π−
K,0 + π−

K,1; Wq = Lq/λ̂,

where λ̂ = λ(1− Ploss) is the effective arrival rate.

4. Numerical Results

In this section, we study the effect of model parameters on the system performance
measures. The capacity of the system is fixed at K = 10 and the threshold value
at N = 5. The traffic intensity is taken as ρ = 0.5 and for 1 ≤ n ≤ N the various
parameters of the model are assumed to be µn = ln[n+0.4], γn = ln[n+0.1] and
γ0 = 0.1 with means µ = 1.61722, γ = 1.40818, respectively. For HE2 distribution
we have taken λ1 = 0.385845, λ2 = 3.0, σ1 = 0.4 and σ2 = 0.6.
Table 1 shows the effect of buffer content K and the mean arrival rate λ on

the various performance measures. The inter-arrival distribution and the threshold
values are assumed to be E5 and N = 3, respectively. One can observe that Lq and
Ploss increase as λ increases. Furthermore, as K increases Lq increases and the loss
probability decreases, this fact being common in practical experience.
Figure (a) presents the effect of N on expected queue length Lq for various inter-

arrival time distributions. From the figure it can be observed that as N increases,
Lq increases. Further, for fixed N , HE2 distribution yields highest queue lengths
whereas deterministic distribution yields the lowest.
Figure (b) demonstrates the effect of mean service rate µ on the expected queue

length Lq for various values of γ when the inter-arrival times follow HE2 distri-
bution. For fixed γ, the expected queue length decreases with the increase of µ.
Moreover, Lq decreases with the increase of mean vacation rate γ.
The impact of arrival rate λ on Wq for various inter-arrival time distributions is

presented in Figure (c). It can be observed that as λ increases, the expected queue
lengths increase, as intuitively expected. Further, for a fixed λ, among all the
distributions considered, deterministic distribution yields the least queue lengths
whereas HE2 distribution the highest queue lengths.
The effect of λ on Ploss with state dependent and constant service rate models

is demonstrated in Figure (d) when the inter-arrival times are assumed to be de-
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terministic. One may observe that the blocking probability in case of models with
state dependent services are lower when compared to models with constant service
rates. Hence, for better utilization of the server, one may consider queueing models
with state dependent services which reduces the blocking of customers effectively.

5. Conclusions

This paper presents a GI/M(n)/1/K/SV queue with N -policy. The inter-arrival
times of customers are arbitrarily distributed while the service rates and vaca-
tion rates are exponentially distributed. A recursive method has been developed
to obtain the steady state system length distributions at pre-arrival and arbitrary
epochs. Various performance measures of the model have been presented. Compu-
tational experiences are demonstrated with a variety of numerical results in the
form of graphs. The recursive method developed in this paper is easy to implement
and can be adopted to analyze more complex models such as GI [X]/M(n)/1/K
working vacation queue with N -policy, GI [X]/M(n)/1/K queue with Bernoulli
scheduled vacation interruption, etc., which are left for future investigation.
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