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1. Introduction

One approach to studying the stability of finite amplitude surface waves in deep
water is through the application of the lowest order nonlinear evolution equa-
tion,which is the nonlinear Schrödinger equation.Zakharov’s [12] study is along
this line, allowing for finite amplitude wave trains to be subjected to modulational
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perturbations in two horizontal directions both along and perpendicular to the
direction of the wave train. Benney and Newell [1] and Hasimoto and Onto [10]
derived a single equation describing long-time evolution of the envelope of one
dimensional surface-gravity wave packet on the surface of water of finite depth.
Devey and Stewartson [3],M. Matinfar [9] S. Ahmadi [5] extended this for a two
dimensional wave packet and showed that the nonlinear evolution equation in this
case is governed by two coupled equations. These equations including the effect of
capillarity were derived by Djordjevic and Redekopp [6] which give the nonlinear
evolution equation of a two dimensional capillary gravity wave packet. The corre-
sponding equation for a one dimensional wave packet was obtained by Kawahara
[8].
The third order nonlinear evolution equations have been derived by Pierce and

Knobloch[11] for two counterpropagating capillary gravity wave packets on the
surface of water of finite depth.The resulting equations are asymptotically exact
and nonlocal and generalize the equations derived by Djordjevic and Redekopp [6]
for counterpropagating waves. In the present paper third order nonlinear evolution
equations are derived for two counterpropagating capillary gravity wave packets
in the surface water of infinite depth in the presence of wind flowing over water.
So this paper is an extension of the evolution equations derived by Pierce and
knobloch [11] for an infinite depth water and in the presence of wind flowing over
water. These evolution equations remain valid when the dimensionless wind velocity
is less than a critical velocity. This critical velocity is defined by the fact that a wave
becomes linearly unstable if the wind velocity exceeds this critical velocity. From
these evolution equations stability analysis is investigated for a uniform standing
surface capillary gravity wave trains with respect to longitudinal perturbation.The
expressions for the maximum growth rate of instability and the wave number at
marginal stability are derived.Graphs are plotted for maximum growth rate of
instability and for wave number at marginal stability against wave steepness for
some different values of dimensionless wind velocity. It is observed that in the third
order analysis the maximum growth rate of instability increases steadily with the
increase of wave steepness.The growth rate is found to be appreciably much higher
for dimensionless wind velocity approaching its critical value. The wave number at
marginal stability has also been plotted against wave steepness for some different
values of dimensionless wind velocity.

2. Basic Concept and Basic Equations

We take the common horizontal interface between water and air in the undisturbed
state as z = 0 plane and assume that air flows over water with a velocity u in
a direction that is taken as the x- axis. We take z = ζ(x, y, t) as the equation
of the common interface at any time t in the perturbed state.We introduce the
dimensionless quantities ϕ̃, ϕ̃

′
, ζ̃, (x̃, ỹ, z̃), t̃, ṽ, γ̃ and s̃ which are respectively,the

perturbed velocity potential in water, perturbed velocity potential in air, surface
elevation of the water-air interface,space coordinates,time,air flow velocity,the ratio
of the densities of air to water and surface tension.
These dimensionless quantities are related to the corresponding dimensional

quantities by the following relations

ϕ̃ =
√
k30/g ϕ, ϕ̃

′
=

√
k30/g ϕ

′, (x̃, ỹ, z̃) = (k0x, k0y, k0z),



A. K. Dhar & J. Mondal/ IJM2C, 05 - 03 (2015) 277-289. 279

ζ̃ = k0ζ, t̃ = ωt, ṽ =
√
k0/g u, γ̃ = ρ ′/ρ, s̃ = Tk20/g,

where k0 is some characteristic wave number, g is the acceleration due to
gravity, ρ and ρ′ are the densities of water and air respectively and T is the
dimensional surface tension. In the future, all the quantities will be written in
their dimensionless form with their tilde sign (∼) dropped.
The perturbed velocity potentials ϕ and ϕ

′
satisfy the following Laplace equa-

tions

∇2ϕ = 0 in −∞ < z < ζ (1)

∇2ϕ′ = 0 in ζ < z <∞ (2)

The kinematic boundary condition for water is(
∂ϕ

∂z
− ∂ζ

∂t
=
∂ϕ

∂x

∂ζ

∂x
+
∂ϕ

∂y

∂ζ

∂y

)
, when z = ζ (3)

which gives a necessary condition for equality of water velocity at the interface
normal to it to the normal velocity of the interface.
Similar condition for air is the following(
∂ϕ ′

∂z
− ∂ζ

∂t
− v

∂ζ

∂x
=
∂ϕ ′

∂x

∂ζ

∂x
+
∂ϕ ′

∂y

∂ζ

∂y

)
, when z = ζ (4)

The condition of continuity of pressure at the interface gives

{
∂ϕ

∂t
− γ

∂ϕ ′

∂t

}
+

(
1− γ

)
ζ − γv

∂ϕ ′

∂x
= −1

2

{(
∂ϕ

∂ x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
}

+
γ

2

{(
∂ϕ ′

∂ x

)2

+

(
∂ϕ ′

∂y

)2

+

(
∂ϕ ′

∂ z

)2
}

+ s

{
1 +

(
∂ζ

∂ x

)2

+

(
∂ζ

∂ y

)2
}− 3

2

{(
∂ζ

∂ x

)2 ∂2ζ

∂ y2
+

(
∂ζ

∂ y

)2 ∂2ζ

∂ x2
− 2

∂ζ

∂ x

∂ζ

∂ y

∂2ζ

∂ x∂ y
+

∂2ζ

∂ x2
+
∂2ζ

∂ y2

}
(5)

when z = ζ
Finally ϕ and ϕ′ should satisfy the following boundary conditions at infinity

∂ϕ

∂z
→ 0 when z → −∞ (6)

∂ϕ′

∂z
→ 0 when z → +∞ (7)

Since the disturbance is assumed to be a progressive wave we look for solutions of
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the equations(1)–(7) in the following form

P = P00 +

∞∑
m=−∞

∞∑
n=−∞

{Pmn exp i(mψ1 + nψ2) + P ∗
mn exp−i(mψ1 + nψ2)} ,

(8)
where P stands for ϕ, ϕ′ and ζ; ψ1 = kx−ωt, ψ2 = kx+ωt. In the summation on
the right of equation (8), (m,n) ̸= (0, 0). Here ϕ00, ϕmn, ϕ

∗
mn, ϕ

′
00, ϕ

′
mn, ϕ

′∗
mn are

functions of z, x1 = ϵx, y1 = ϵy, t1 = ϵt; ζ00, ζmn, ζ
∗
mn are functions of x1, y1, t1. ϵ is

a small parameter measuring the weakness of wave steepness, which is the product
of wave amplitude and wave number and the sign * denotes complex conjugate.
The linear dispersion relation determining ω(
1+γ

)
ω2−2γωv+γv2−

(
1−γ

)
−s = 0 (9)

which gives two values of ω given by

ω± =

(
γv±

√
1− γ2 − γv2 + s

(
1− γ

))
/
(
1+γ

)
(10)

which corresponds to two modes and we designate these two modes as posi-
tive and negative modes. The positive mode moves in the positive direction of

the x-axis with a frequency {
√

1− γ2 − γv2 + s
(
1− γ

)
+ γv}/

(
1 + γ

)
while the

negative mode moves in the negative direction of the x-axis with a frequency(√
1− γ2 − γv2 + s

(
1− γ

)
− γv

)
/
(
1 + γ

)
. If v is replaced by −v the frequency

of the positive mode becomes equal to the frequency of the negative mode. So the
results for the negative mode can be obtained from those for the positive mode
by replacing v by −v. Therefore we have made a nonlinear analysis for the pos-
itive mode only and then we have obtained the results for the negative mode by
replacing v by −v .
From the expression (10) for ω± we find that for linear stability v should satisfy

the condition

|v| <
√{

1− γ2 + s
(
1− γ

)}
/γ (11)

So our present analysis will remain valid as long as the dimensionless flow velocity

of the wind becomes less than the critical value
√{

1− γ2 + s
(
1− γ

)}
/γ. For air

flowing over water γ = 0.00129 and this critical value becomes 27.87 for s = 0.075.

3. Derivation of evolution equations

On substituting the expansions (8) in equations (1),(2),(6),(7)
and then equating the coefficients of exp i(mψ1 + nψ2) for
{(m,n)=(1, 0),(0, 1),(2, 0),(0, 2),(1, 1),(−1, 1)} we get the following equations:(

∂2

∂z2
−△2

mn

)
ϕmn = 0 (12)

(
∂2

∂z2
−△2

mn

)
ϕ′mn = 0 (13)
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∂ϕmn

∂z
→ 0 at z → −∞ (14)

∂ϕ′mn

∂z
→ 0 at z → +∞ (15)

where ∆mn is the operator given by

∆2
mn =

{
(m+ n)− iϵ

∂

∂x1

}2

− ϵ2
∂2

∂y21
(16)

The solutions of equations (12) and (13) satisfying boundary conditions (14) and
(15) respectively can be put in the following forms

ϕmn = exp (△mnz)Amn (17)

ϕ′mn = exp (−△mnz)A
′
mn (18)

where Amn, A
′
mn are functions of x1, y1 and t1.

On substituting the expansions (8) in the Taylor expanded forms of equations
(3)–(5) about z = 0 and then equating the coefficients of exp i(mψ1 + nψ2) for
{(m,n)= (1, 0),(0, 1),(2, 0),(0, 2),(1, 1),(−1, 1)} on both sides,we get the following
equations

(
∂ϕmn

∂z

)
z=0

+i

{
(m− n)ω + iϵ

∂

∂t1

}
ζmn = amn (19)

(
∂ϕ′mn

∂z

)
z=0

+i

{
(m− n)ω + iϵ

∂

∂t1

}
ζmn−iv

{
(m+ n)− iϵ

∂

∂x1

}
ζmn = bmn

(20)

−i
{
(m− n)ω + iϵ

∂

∂t1

}
(ϕmn)z=0 + iγ

{
(m− n)ω + iϵ

∂

∂t1

}
(ϕ′mn)z=0

+s∆2
mnζmn + (1− γ)ζmn − iγv

{
(m+ n)− iϵ

∂

∂x1

}
(ϕ′mn)z=0 = cmn

(21)

where amn, bmn, cmn are contributions from nonlinear terms and ( )z=0 implies
the value of the quantity inside parentheses at z = 0. Now for the above six
values of (m,n) we obtain six sets of equations,in which we substitute the solu-
tions for ϕmn, ϕ

′
mn given by (17) and (18). The sets of equations corresponding

to {(m,n)=(1,0),(0,1)},{(m,n)=(2, 0),(0, 2),(1, 1), (−1, 1)} will be called, respec-
tively,the first and second sets.
To solve the above three sets of equations we make the following perturbation
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expansions for the quantities Amn, A
′
mn, ζmn for the above values of (m,n):

Fmn =
∞∑
p=1

ϵpF (p)
mn, for (m,n) = (1, 0), (0, 1)

=

∞∑
p=2

ϵpF (p)
mn, for (m,n) = (2, 0), (0, 2), (1, 1), (−1, 1)

(22)

where Fmn stands for Amn, , A
′
mn and ζmn.

On substituting the expansions (22) in the above three sets of equations and then
equating coefficients of various powers of ϵ on both sides,we obtain a sequence of
equations. From the first order (that is lowest order) and second order equations
corresponding to (19)and (20) of the first set of equations we obtain solutions for

A
(1)
10 , A

′(1)
10 , A

(2)
10 , A

′(2)
10 and A

(1)
01 , A

′(1)
01 , A

(2)
01 ,A

′(2)
01 respectively. Next, from the second

order equation corresponding to (19),(20) and (21) of the second set of equa-

tions,we obtain solutions for (A
(2)
20 , A

′(2)
20 , ζ

(2)
20 ),(A

(2)
02 , A

′(2)
02 , ζ

(2)
02 ),(A

(2)
11 , A

′(2)
11 , ζ

(2)
11 ),

(A
(2)
−11, A

′(2)
−11, ζ

(2)
−11) respectively. Following Pierce and Knobloch [11] we use the

following transformations of all perturbed quantities in slow space coordinates and
time

ξ+ = x1−cgt1, ξ− = x1+cgt1, ζ = y1, τ = ϵt1, (23)

where cg is the group velocity given by cg = (dω/dk)k=1. The equations corre-
sponding to (21) for {(m,n)=(1, 0),(0, 1)} of the first set of equations,which has
not been used in obtaining the above perturbation solutions can be put in the

following convenient forms after eliminating A
(p)
mn, A

′(p)
mn

[
ω2
1+γ

(
ω1−vk

)2−(
1−γ

)
∆10

]
ζ10 = −iω1a10−iγ

(
ω1−vk

)
b10−∆10c10

(24)

[
ω2
1+γ

(
ω1−vk

)2−(
1−γ

)
∆01

]
ζ01 = −iω1a01−iγ

(
ω1−vk

)
b01−∆01c01

(25)
where a10, b10, c10, a01, b01, c01 are contributions from nonlinear terms.
From equations (24) and (25) we get the following equations in two successive

orders starting from the lowest order two.
O(ϵ2):

ζ
(1)
10

∂ξ−
= 0 , (26)

ζ
(1)
01

∂ξ+
= 0. (27)
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which shows that ζ
(1)
10 and ζ

(1)
01 are independent of ξ− and ξ+ respectively. O(ϵ3):

i
∂ζ

(1)
10

∂τ
+iγ0

∂ζ
(2)
10

∂ξ−
+γ1

∂2ζ
(1)
10

∂ξ2+
+γ2

∂2ζ
(1)
10

∂ζ2
= δ1ζ

(1)2

10 ζ
(1)∗

10 +δ2ζ
(1)
10 ζ

(1)
01 ζ

(1)∗

01 ,

(28)

−i∂ζ
(1)
01

∂τ
+iγ0

∂ζ
(2)
01

∂ξ+
+γ1

∂2ζ
(1)
01

∂ξ2−
+γ2

∂2ζ
(1)
01

∂ζ2
= δ1ζ

(1)2

01 ζ
(1)∗

01 +δ2ζ
(1)
01 ζ

(1)
10 ζ

(1)∗

10 .

(29)
Using equations (26) and (27) in equations (28) and (29) respectively we obtain
the following third order nonlinear evolution equations for two counterpropagating
waves:

i
∂ζ

(1)
10

∂τ
+ iγ0

∂ζ
(2)
10

∂ξ−
+ γ1

( ∂2
∂ξ2+

+
∂2

∂ξ2−

)
ζ
(1)
10 + γ2

∂2ζ
(1)
10

∂η2

= δ1|ζ(1)10 |2ζ(1)10 + δ2|ζ(1)01 |2ζ(1)10

(30)

−i∂ζ
(1)
01

∂τ
+ iγ0

∂ζ
(2)
01

∂ξ+
+ γ1

( ∂2
∂ξ2+

+
∂2

∂ξ2−

)
ζ
(1)
01 + γ2

∂2ζ
(1)
01

∂η2

= δ1|ζ(1)01 |2ζ(1)01 + δ2|ζ(1)10 |2ζ(1)01

(31)

where the coefficients γ0 , γ1 , γ2 and δ1 , δ2 are given in the Appendix.
In equation (30),if we restrict to the nonlinear evolution of unidirectional wave

train propagating in the positive direction of x-axis, that is if we set ζ01 = 0 and
assume that ζ10 is independent of ξ−, then we recover the third-order nonlinear
evolution equation for a capillary gravity waves in the presence of wind flowing
over water. This reduced equation in the absence of capillarity is found to be same
as equation (34) of Dhar and Das [4] after neglecting the fourth order terms. This
reduced equation for v = 0, γ = 0 and s = 0 has also been verified to be equivalent
to equation (2) of Janssen [7] if we consider the third order terms only.
As each of the left and right propagating waves sees the counterpropagating

wave only through its mean square amplitude,the nonlocal mean field equations
suitable for stability analysis obtained from (30) and (31) by applying the averaging
procedure of Pierce and Knobloch [11]. Therefore,following them we define the
average of a function of two variables ξ+ and ξ− with respect to any one of these
two variables by

⟨h⟩± =
1

p±

∫ ( 1

2
)p±

−( 1

2
)p±

h dξ± (32)

where p+ and p− are the periods of the function h with respect to ξ+ and ξ−
respectively. If h is not periodic, then by ⟨h⟩± we shall mean

⟨h⟩± =

∫ ∞

−∞
h dξ± (33)
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provided the above integral exists.
Taking the average of equation (30) with respect to ξ− over the period of ζ10 we

get the following third order nonlocal mean-field equation for ζ10:

i
∂ζ

(1)
10

∂τ
+ γ1

∂2ζ
(1)
10

∂ξ2+
+ γ2

∂2ζ
(1)
10

∂η2

= δ1|ζ(1)10 |2ζ(1)10 + δ2|ζ(1)
2

01 |ζ(1)10 ,

(34)

Similarly taking the average of equation (31) with respect to ξ+ over the period of
ζ01 we get the following third order nonlocal mean-field evolution equation for ζ01:

−i∂ζ
(1)
01

∂τ
+ γ1

∂2ζ
(2)
01

∂ξ2−
+ γ2

∂2ζ
(1)
01

∂η2

= δ1|ζ(1)01 |2ζ(1)01 + δ2|ζ(1)10 |2ζ(1)01 ,

(35)

In equations (34) and (35), if we put v = 0, γ = 0 then we get nonlocal mean field
evolution equations in the third order (lowest order) for infinite depth water. These
reduced equations become the same as equations (1b) of Pierce and Knobloch [11]
when we proceed to the limit as h→ ∞.

4. Stability Analysis

Equations (34) and (35) admit the solution

ζ10 = ζ
(0)
10 = α0 exp

(
i∆ωτ

)
, ζ01 = ζ

(0)
01 = α0 exp

(
−i∆ωτ

)
(36)

where α0 is real constant and the nonlinear frequency shift

∆ω = −
(
δ1 + δ2

)
α2
0 (37)

To study modulational stability of these wave trains we introduce the following
perturbations

ζ10 = ζ
(1)
10 + ϵζ

(2)
10 = ζ

(0)
10

(
1 +R10

)
(38)

ζ01 = ζ
(1)
01 + ϵζ

(2)
01 = ζ

(0)
01

(
1 +R01

)
(39)

where

R10 = R10

(
ξ+, ζ, τ

)
, R01 = R01

(
ξ−, ζ, τ

)
.

Now we substitute (38) and (39) in equations (34) and (35) respectively and lin-
earize and finally separate into real and imaginary parts to obtain the following
equations in the lowest order

−∂R
i
10

∂τ
+ γ1

∂2R r
10

∂ξ2+
+ γ2

∂2R r
10

∂η2
= 2δ1α

2
0R

r
10 + 2δ2α

2
0R

r
01. (40)
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∂R r
10

∂τ
+ γ1

∂2R i
10

∂ξ2+
+ γ2

∂2R i
10

∂η2
= 0 (41)

where superscripts r and i indicate real and imaginary parts of the associated vari-
ables. In the transverse direction we consider the following uniform perturbations

R r
10 = p10 + r10e

iλξ+ + r∗10e
−iλξ+ , R i

10 = q10 + s10e
iλξ+ + s∗10e

−iλξ+ ,

R r
01 = p01 + r01e

iλξ− + r∗01e
−iλξ− , R i

01 = q01 + s01e
iλξ− + s∗01e

−iλξ− ,

(42)

where p, q, r, s are functions of τ only.
We have assumed the dependence on τ to be of the form exp(−iΩτ). Now intro-

ducing perturbation relations (42) in equations (40) and (41) and equating coeffi-
cient of eiλξ+ , on both sides we obtain the flowing equations from the lowest order
equations (40) and (41)(

γ1λ
2 + 2δ1α

2
0

)
r10 − iΩ1s10 = 0 (43)

iΩ1r10 + γ1λ
2s10 = 0 (44)

The nontrivial solution of (43) and (44) is given by

Ω2 = γ1λ
2
(
γ1λ

2 + 2δ1α
2
0

)
or Ω =

{
γ1λ

2
(
γ1λ

2 + 2δ1α
2
0

)} 1

2

(45)

From relation (45), we observe that instability occurs when γ1δ1 < 0 for long
wavelengths that is for λ→ 0+. When instability condition is fulfilled, the growth
rate of instability Γ is given by

Γ =
[
−γ1λ2

(
γ1λ

2 + 2δ1α
2
0

)] 1

2 (46)

For λ2 = −δ1α2
0/γ1, we obtain the following expression of the maximum growth

rate of instability

Γm = |δ1|α2
0 (47)

At marginal stability

γ1λ
2+2δ1α

2
0 = 0

and the wave number λ at marginal stability is given by

λ =

√
2δ1α0√
|γ1δ1|

(48)
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Figure 1. Maximum growth rate of instability Γm against wave steepness α0 for some different values of
dimensionless wind velocity v. Here γ = 0.00129. and s = 0.075 for all the graphs.

Figure 2. Maximum growth rate of instability Γm against wave steepness α0 for some different values of
dimensionless wind velocity v. Here γ = 0.00129. and s = 0.075 for all the graphs.
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Figure 3. Wave number λ at marginal stability against wave steepness α0 for some different values of
dimensionless wind velocity v. Here γ = 0.00129 and s = 0.075 for all the graphs except for the one with
s = v = γ = 0 written on the graph.

Figure 4. Wave number λ at marginal stability against wave steepness α0 for some different values of
dimensionless wind velocity v. Here γ = 0.00129 and s = 0.075 for all the graphs.

In Figures 1 and 2 the maximum growth rate Γm of instability which can
be obtained from equation (47) has been plotted against wave steepness α0 for
some different values of dimensionless wind velocity v and for s = 0.075. From
these graphs it is found that for waves with sufficiently small waves numbers the
maximum growth rate of instability Γm increases steadily with the increase of
wave steepness α0. The maximum growth rate also increases with the increase of
dimensionless wind velocity v . The growth rate is found to be appreciably much
higher for dimensionless wind velocity approaching its critical value. Again in
Figures 3 and 4 the wave number λ at marginal stability which can be obtained
from equation (48) has been plotted against wave steepness α0 for some different
values of dimensionless wind velocity v. From these graphs it is observed that the
instability regions are shortened with the increase of the absolute value of the
wind velocity.
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5. Conclusions

The third order nonlinear evolution equations have been derived by Pierce and
Knobloch [11] for two counterpropagating capillary gravity wave packets on the
surface of water of finite depth.The resulting equations are asymptotically exact
and nonlocal and generalize the equations derived by Djordjevic and Redekopp [6]
for counterpropagating waves.Our paper is an extension of the evolution equations
derived by Pierce and knobloch [11] for an infinite depth water and in the presence
of wind flowing over it. From these evolution equations instability condition
is obtained and graphs are plotted showing maximum growth rate of instabil-
ity Γm against wave steepness α0 for some different values of dimensionless wind
velocity v. From the graphs it is found that the maximum growth rate of instability
Γm increases steadily with the increase of wave steepness α0. The maximum
growth rate also increases with the increase of dimensionless wind velocity v. The
growth rate of instability is found to be appreciably much higher for dimensionless
wind velocity approaching its critical value. Graphs are also plotted for the wave
number λ at marginal stability against wave steepness α0 for some different values
of dimensionless wind velocity v. From the graphs it is observed that the instabil-
ity regions are shortened with the increase of the absolute value of the wind velocity.
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6. Appendices

Coefficients of the evolution equations (3.33) and (3.34)

γ0 =
2γvω − 2γv2 + (1− γ) + 3s

(1 + γ)ω2 − γvω
, γ1 =

2γvcg − (1 + γ)c2g − γv2 + 3s

2(1 + γ)ω2 − 2γvω
,

γ2 =
(1− γ)− 2γvcg + 3s

4(1 + γ)ω2 − 4γvω
,

δ1 = [(2ω4 + 6ω2 − 9s) + γ{21
2
(ω2 + v2) + 2(2 + p1)(ω − v)(ω − v − 2ω2)

−(1 + 2p1)ω + 15ωv}+ γv(ω − v)(6p1 + 9)]/[12ω2 − 8ω4 − γ(ω − v)2],

δ2 = [31ω4 − 23ω2 + s2(1− γ)− 8s+ 8γ(ω − v)2,
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where cg =
2γvω − 2γv2 + (1− γ) + 3s

2(1 + γ)ω − 2γv
.
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