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Abstract. In this paper, we apply fractional complex transform to convert the fractional
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1. Introduction

In recent years, considerable interest in fractional differential equations has been
stimulated due to their numerous applications in the areas of physics and engineer-
ing. Many important phenomena in electromagnetism, acoustics, viscoelasticity,
electrochemistry and material science are well described by differential equations
of fractional order [8, 9]. To find the explicit solutions of linear and nonlinear frac-
tional differential equations, many powerful methods have been used such as the
variational iteration method [2, 10], homotopy perturbation method [1], and the
Exp-function method [12]. The fractional complex transform was first proposed by
He and Li [3]. We extend the fractional complex transform method to solve the
fractional nonlinear Schrödinger equations. The fractional nonlinear Schrödinger
equation

i
∂αΨ(X, t)

∂tα
= −1

2
∇2βΨ+ Γ(X) + ν|Ψ|2Ψ, X ∈ Rn, t > 0 (1)

with initial condition

Ψ(X, 0) = Ψ0(X), (2)
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where Ψ is unknown function,Γ(X) is known, ν is a real constant and 0 < α, β ⩽
1 are parameters describing the order of the fractional Jumaries derivative [6,
7]. Nonlinear Schrödinger equation is one of the canonical nonlinear equations in
physics, arising in various field such as nonlinear optics, plasma physics, and surface
waves.

2. Fractional complex transform

Jumaries derivative [6, 7] is a modified Riemann-Liouville derivative defined as

Dγ
z f(z) =


1

Γ(−γ)
d
dz

∫ z
0 (z − τ)−γ−1(f(τ)− f(0))dτ, γ < 0,

1
Γ(1−γ)

d
dz

∫ z
0 (z − τ)−γ(f(τ)− f(0))dτ, 0 < γ < 1,

(f (γ−n)(z))(n), n ⩽ γ < n+ 1, n ⩾ 1,
(3)

where f(z) is a real continuous (but not necessarily differentiable) function.The
fundamental mathematical operations and results of Jumaries derivative are given
in [6, 7]. In this section, we review some of them.

Dγ
z c = 0, γ > 0, c = constant,

Dγ
z (cf(z)) = cDγ

z f(z), γ > 0, c = constant,

Dγ
z zβ = Γ(1+β)

Γ(1+β−γ)z
β−γ , β > γ > 0,

Dγ
z (f(z)g(z)) = (Dγ

z f(z))g(z) + f(z)(Dγ
z g(z)),

Dγ
z (f(z(t))) = f ′

z(z) · z(γ)(t) = f
(γ)
z (z)(z′t)

γ .

3. Examples

The fractional complex transform [3, 4][5] can convert a fractional differential equa-
tion into its differential partner.
Example 1. Consider the fractional nonlinear Schrödinger equation

i
∂αΨ(x, t)

∂tα
= −1

2

∂2βΨ(x, t)

∂x2β
− |Ψ|2Ψ, x ∈ R, t > 0. (4)

with initial condition

Ψ(x, 0) = eix
β/Γ(1+β), (5)

By the fractional complex transform

T = p
tα

Γ(1 + α)
, X = q

xβ

Γ(1 + β)
, (6)

where p and q are constants which are unknown to be further determined. Using
Jumariers chain rule [6, 7], we have

∂αΨ
∂tα = ∂Ψ

∂T
∂αT
∂tα = p Ψ

∂T ,

∂2βΨ
∂x2β = ∂2Ψ

∂X2 (
∂βX
∂xβ )2 = q2 ∂2Ψ

∂X2 .

(7)
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By setting p = 1 and q = 1, we have

i
∂Ψ

∂T
= −1

2

∂2Ψ

∂X2
− |Ψ|2Ψ, X ∈ R, T > 0, (8)

with initial condition

Ψ(X, 0) = eiX , (9)

The exact solution is given in [1] as follows:

Ψ(X,T ) = cos(X + T/2) + i sin(X + T/2) = ei(X+T/2). (10)

Hence,

Ψ(x, t) = cos( xβ

Γ(1+β) +
tα

2Γ(1+α)) + i sin( xβ

Γ(1+β) +
tα

2Γ(1+α))

= e
i( xβ

Γ(1+β)
+ tα

2Γ(1+α) .

Example 2. Consider the fractional nonlinear Schrödinger equation

i
∂αΨ(x, t)

∂tα
= −1

2

∂2βΨ(x, t)

∂x2β
+Ψcos2(xβ/Γ(1 + β)) + |Ψ|2Ψ, x ∈ R, t > 0. (11)

with initial condition

Ψ(x, 0) = sin(xβ/Γ(1 + β)). (12)

By the fractional complex transform

T =
tα

Γ(1 + α)
, X =

xβ

Γ(1 + β)
, (13)

We find

i
∂Ψ

∂T
= −1

2

∂2Ψ

∂X2
+Ψcos2(X) + |Ψ|2Ψ, (14)

with initial condition

Ψ(X, 0) = sin(X). (15)

The exact solution is given in [1] as follows:

Ψ(X,T ) = sin(X)e−3Ti/2. (16)

Hence,

Ψ(x, t) = sin(
xβ

Γ(1 + β)
)e

−3itα

2Γ(1+α) .
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Example 3. Consider the two dimensional fractional Schrödinger equation

i∂
αΨ(x,y,t)

∂tα = −1
2(

∂2βΨ
∂x2β + ∂2βΨ

∂y2β )

+Ψ(1− sin2(xβ/Γ(1 + β)) sin2(yβ/(1 + β)))

+|Ψ|2Ψ, x, y ∈ R, t > 0.

(17)

with initial condition

Ψ(x, y, 0) = sin(xβ/Γ(1 + β)) sin(yβ/(1 + β)). (18)

By the fractional complex transform

T =
tα

Γ(1 + α)
, X = Y =

xβ

Γ(1 + β)
. (19)

We find

i∂Ψ(X,Y,T )
∂T = −1

2(
∂2Ψ
∂X2 + ∂2Ψ

∂2Y 2 )

+Ψ(1− sin2(X) sin2(Y ))

+|Ψ|2Ψ, x, y ∈ R, t > 0.

(20)

with initial condition

Ψ(X,Y, 0) = sin(X) sin(Y ). (21)

The exact solution is given in [11] as follows:

Ψ(X,Y, T ) = sin(X) sin(Y )e−2iT . (22)

Hence,

Ψ(x, y, t) = sin(
xβ

Γ(1 + β)
) sin(

yβ

Γ(1 + β)
)e

−2itα

Γ(1+α) . (23)

4. Conclusion

The fractional complex transform is very simple and use of this method does not
need the knowledge of fractional calculus.
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