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1. Introduction

Consider the Hamiltonian systems

—JiL—B(t)u = VH(uat)a (1)
where B(t) is a symmetric 2N x 2N matrix, continuous and T-periodic in ¢,
H(u,t) € CY(R x R*,R) is a T-periodic functionin t and strictly convex, J =
<19 _éN) is the standard 2N x 2N symplectic matrix, Iy is the N x N identity
n
matrix, VH(t,u) = 8%51“) = H'(t,u). Suppose that H, Vt € [0,T] satises the
conditions:

(A1) : VH(t,u) + B(t)u = Ag(t,u)u + o(|u|) as |u| — 0,
(A9) : VH(t,u) + B(t)u = Ao (t,u)u + o(|u|]) as |u] — oc.

where Ay, and Ay are 2N x 2N matrix-valued continuous map of u, and are also
symmet-rically positive-definite matrix for any v € R* and |.| is a norm over R?V.
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THEOREM 1.1 Suppose that H(u,t) € C'(R x R* | R) satisfies:

(1) 2 ‘u|2 ) 5 00 as |u| — oo uniformly in t.

2) 2 ‘u|2 ) 50 as |u| — 0 uniformly in t
(8) There exist constants X > 2 and dy > 0 such that

|V H(tu)| < di(jul*" +1)

for all (t,u) € [0,T] x R*;
(4) There exist constants > X —1, do >0, and L > 0 such that

(VH(t,u),u) — 2H (t,u) > do|ul®, V]u| > L, Vt €[0,T)]

If 0 is an eigenvalue of — J(d—H) — B(t) with periodic boundary conditions,
assume also the condition:
(5) There exist § > 0 such that
(i) H(t,u) > 0 Viul <6, Vi € 0,7]
(i) H(t,u) <0 Y|u| <9, Vt€|[0,T]
Then problem (1) has at least one nontrivial T-periodic solution, [2]. Our main

result is the following theorem.

THEOREM 1.2 Assume H(u,t) € C'(R x R?N,R) satisfies (A1), (A2) and the
following three conditions:

(A3)  Ap < Ao(t,u) < Ao, iT(Aor) = iT(Ao2)
(Ag) Asr < Axo(t,u) < Ascr, i7(Axct) = 17(Ax2), V7(Axc2) =0
(A5) ir(Ax2) < iTAge where (A1), (Ao2), (Ax2), (Aco1)are symmetric

positive-definite constant matrices.

Then the system (1) has at the least

Slir(a02) = i (Auco)]

nonzero T-periodic orbits.
Here for any symmetrically positive definite matriz A, i7(A) and vp(A) express
its Ekeland index and nullity. We have the following formulas:

_22{ <ak},VT(A):2§{jEN;%<ak}

=1

where the spectrum of JA consists of +ay, ap >0, k=1,2,...,n. Ekeland index
was generally defined for any A € C([0,T]; GLs(R*Y)) satisfying A(t) is positively
definite for any t € [0,T] in [5].

A brief description will be given in Section 2. where Ay = Age and A1 = Anea.

2. Ekeland Index Theory

Let LL([0,T); GLs(R"N)) be a subset of L®([0,T); GLs;(R")) such that for any
clement A of that there exists an € > 0 satisfying A(t) > ely for a.e t € [0,T].
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Ekeland index theory is about a classication of L°([O, T]; GLs(R")) associated to
the following system:

Ji+ A(t)u(t) = 0 2)
u(0) = u(T) (3)

Let HL. = ic LQ([O T]; R?N) |f0 t)dt = Oandxsatlsﬁes( ) with inner prod-
uct (z,y) = fo ))dt and norm ||z|| = f |(¢)|?dt)'/2. for any A €
LY([0,T];GL (RQN)) we deﬁne B(t) = A"1(t) and

T
qga(u,v) = % /(—Ju(t),i)))dt+ /(B(t)d(t),{)(t))dt ;. Yu,v € I:I% (4)
0 0

We have the following theorem:

THEOREM 2.1 The I;[% can be split into three parts as follows

HL =EY(A) @ E°(A) @ E~(A)

such that qr is positive definite, null and negative definite on E(A), E°(A), and
E~(A) respectively. Moreover E°(A) and E~(A) are finitely dimensional.

DEFINITION 2.2 For any symmetric positive definite matrices of A €
LE([0,T]; GLs(R*Y)),we define

vr(A) = dim E°(A), ir(A) = dim E~ (A)

We call vp(A) and ip(A) the nullity and index respectively.

Ekeland index was first defined in [4] (also see [5]) for any A €
LX([0,T); GL(R*Y)) which is continuous for ¢+ € [0,7] and then was defined
in [3] of 2006 for any A € L([O,T); GLs;(R?")). The more general Maslov type
index for symplectic paths was defined in [1, 2, 7, 8]. These index theories have
important application in the study of nonlinear Hamiltonian systems, [5, 8]. We
see [1, 2, 6] for multiple periodic solutions of asymptotically linear Hamiltonian
systems. As in [3], for any Ay, Ay € GI,(RY) , we write 4; < Ay if Ay — A; is
positively semi-definite, and write A; < Ao if Ay — A; is positively definite. For
any Ay, Ay € L®((0,T); GLs(R*Y)) , we write A; < Ao if Aj(t) < As(t) for a.e
t € (0,7) and write A1 < Ay if A; < As and A (t) < As(t) on a subset of (0,7)
with nonzero measure.

From [3, 4, 5] we have the following properties about Ekeland index.

PROPOSITION 2.3
1) ir(A),vr(A) are finite.
2) vr(A) is the dimension of the solution subspace of the system (2)(3).
8) ir(A) = EO<_3<T VS(A)} ir(A) = Zo<s<1 vr(sA). . .
4) If Ao then ip(Ay) < ir(A2) and ir(Ar) + vr(Ar) < ir(Ag2) + vr(A2); if
A1 < AQ, then iT(Al) + I/T(Al) < iT(AQ).
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5) There exist 6 > 0 such that
galu,u) > dlfull Vu € BF(A); qaluu) < —dllul| Vu € B (A).
PROPOSITION 2.4 Under assumptions (Aa) and (A4) we have
H* (t,v) = Boo(t,u)v +o(|v]) as |v] =0

where Boo(t,u) = (Aso(t,u)) ™!, u = H* (t,v).

Proof Set u = H* (t,v) where H*(z) is the Legendre transform of H(z). For the
Legendre transform one can refer to [11, chapter 2]. By duality formula, we have
v = H'(t,u). From assumption (Ay) and (A4) there exist positive numbers ¢; and
co such that

alul < v < eglul as |u] = oo

We also have

[H* (t,v) = Boo(t, u)v|/ V] = |u — Boo(t,u)H'(t, u)|/|v|
= {|Boo (t, u) (H' (,U) — Ao (t, u)u)|/|ul}|ul/|v]
< o|(H'(t,u) — Ao (t,u)ul/|u] — as  |v] — oo

where ¢ > 0 is a constant. [ |
The following lemma is crucial for us to prove the main theorems in this paper.

LEMMA 2.5 (Cf. Theorem 6.2 in [11].)

Let X be a Banach space and ¢ € C(X, R) be an S'-invariant functional satisfying
(PS). LetY and Z be closed invariant subspace of X with codimY and dim Z finite
and codimY < dim Z. Assume that the following conditions are satisfied:

Fiz(SY) cY, ZnFiz(')=0,

infp > —
inf ¢ o0

there exist 1 > 0 and ¢ < 0 such that p(u) < ¢ whenever uw € Z and ||u|| = r. If
u € Fiz(SY) and ¢'(u) = 0 then ¢(u) < 0.

Then there exists at least % (dim Z codimY) distinct S!-orbits of critical points
of ¢ with critical values less or equal to c.
Some concepts related are as follows.
Let G be a topological group. A representation of G over a Banach space X is a
family {T'(g9) }4c of linear operators T'(g) : X — X such that

T(0) =1d, T(g1+g2) =T(g91)*T(g2)
(g,u) = T(g)u, (g,u) = T(g)u is continuous.

A subset A of X is invariant (under the representation) if T'(g)A = A for all g € G.
A representation {T'(g) }gec of G over X is isometric if ||T'(g)u|| = ||u|| forallg € G
and all © € X, where ||.|| is a stand norm over X. Fix(S') = {u € R?N|T(0)u =
u V0 € S'}, where S' ~ R/TZ. A mapping M between two invariant subsets
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of X (under the representation of G) is equivariant if MoT (g) = T(g)oM for all
g € G. A functional ¢ : X — R is invariant for the representation {T'(g)}seq of

topological group G if @oT(g) = ¢, g € G. These concepts above can be found in
[11, Chapters 5 and 6].

3. Proof of the Main Result

Recall that H}. = {4 € L*([1,T]; |f0 =0,2(0) = z(T)}. Define
T
/[ (Jo,v)+ H*(0)| dt v e H} (5)
0

where H*(t, ) is the Legendre transform of H (¢, z). It is well known that every T-
periodic solution of (1) is a critical point of the functional ¢ (). And this functional
is continuously differentiable on H} and is invariant for the representation of S ~
R/TZ defined over HJ by the translations in time (T'(0)v)(t) = v(t+0) if t+6 < T
and (T(Q)v)(t) =v(t+60—T) ift+ 6 > T for any 0]0,T]. We are in a position to
apply Lemma, 2.5. Tt is obvious that Fix(S') = 0. According to the definition of
Fix(S1).

Fix(S') = {u|T(@)u=u Ve S' ~R/TZ}. (6)

By (T(0)v)(t) = v(t + 0) = v, we have v is constant function. Since v € H}., we
have fUT v(t)dt = 0 so that v = 0. It follows from (A3) that the linear system

Ju + Aglu(t) =0

has nontrivial T-periodic solution. Indeed by vp(Ag2) = 0, we know vy (Ag) = 0.
Since H is strictly convex and H'(0) = 0 by (A1), 0 is the unique equilibrium point
of (1). Without loss of generality, we can assume that H(0) = 0. Since H'(0) = 0,
this implies H*(0) = 0.

THEOREM 3.1 wvery sequence (vy,) in HE such that @' (v,) — 0 contains a conver-

gent subsequence [3].

THEOREM 3.2 The functional ¢ is bounded from below on a closed invariant sub-
space Y of HY of codimension ir(As) [5].

THEOREM 3.3 There exists an invariant subspace Z ofﬁ% with dimension i7(Ag1).
and some r > 0 such that p(v) < 0 whenever v € Z and ||v|| =r [5].

Proof of Theorem 1.2
We verify assumptions of Lemma 2.5. First Fix(S') = 0 and ¢(0) = 0. Second

¢ is S'-invariant and satisfies the (PS)-condition by Theorem 3.1. At last set
Y = Et(Ax2), Z = E~(Aqy); it follows that

’iT(AOOQ) = codimY < dimZ =dim E~ (A(]l) = ’it(Agl) = ’iT(AOQ)

Then all the assumptions of Lemma 2.5 are satisfied by Theorem 3.2 and 3.3. Thus
Lemma 2.5 implies the existence of at least
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3 lir(A) = ir(Acca)]

distinct orbits {T'(0)v; : 0 € S'} of critical points of ¢ outside of Fix(S') = 0. By
Theorem 2.3 in [11], u; = H* (i) is a T-periodic solution of (1) and for j # k the
u; and uy, describe different orbits by the same argument in [11, Proof of Theorem
7.2]. This completes the proof.

4. Conclusion

In [8] has been shown the existence of multiple T-periodic solutions for the au-
tonomous Hamiltonian systems:

u(t) = JAH (u(t))  u € R*™.

We have shown that the Hamiltonian systems:

—Ju— B(t)u = AH (u,t),

where B(t) is a symmetric 2N x 2N-matrix, continuous and T-periodic in ¢,
H € CY(R x R*™,R) is a T-periodic function in ¢ and strictly convex, has at
the least a nonzero T-periodic orbits. We leave the reader with special cases which
without assumptions (As) or (A4) or (As) main result is verify which has not been
established yet.
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