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oblique incidence conditions in continuously variable medium. It is found that there is no 
reflection but total reflection in geometrical optics in inhomogeneous medium and the total 
reflection condition is given. Epstien [4] investigated reflection wave in an 
inhomogeneous absorbing medium by solving wave equation with variable coefficient 
based on hypergeometric function. The procedure represented that the reflection is always 
very insignificant, except the case when conductivity is small and where we have 
conditions very near to total reflection, which is the same as mechanism of transmission of 
acoustic or electromagnetic wave in earth atmosphere. When refraction index varied with 
the form as parabola, the asymptotic expansions of Weber’s function [25] was developed 
bythe method of the steepest descent. The solution of the radio wave propagation in 
inhomogeneous electromagnetic field was expressed in the form of the residue series. In 
terms of uniform of seawater, Potter and Murphy [17] employed variables separation and 
elliptic coordinates conversion to investigate wave equation in a medium with a particular 
velocity variation. The result corresponded in part to actual underwater measurements and 
it yielded a shadow zone as well as propagation of acoustic wave in atmosphere without 
acoustic wave propagation. In elastic solid medium, Caviglia and Morro [3] studied an 
elastic wave propagation in case that a uniaxially-inhomogeneous layer with certain 
thickness,sandwiched between two homogeneous half infinite spaces. Then existence and 
uniqueness for the solution were proved. The similar physical model has been established 
by Mieczyslaw C. [15]. The couple systems of ordinary differential equation for amplitudes of 
forward and backward waves were derived to obtain the analytical solution and explicit 
expressions for reflection and transition coefficient.Robins [18] discussed the Helmholtz 
equation for the case of horizontal stratification, both sound speed and density varying 
continuously with depth.  
The analytical solutions to forms of sound-speed and density were outlined in terms of 
well-known special functions such as Bessel and Airy functions, which were capable of 
giving good agreement with real density and speed profiles in marine sediments. Watanabe 
and Payton [23] derived impulsive and time-harmonic Green’s functions for SH waves in 
an inhomogeneous elastic solid. A critical frequency that distinguishes the wave nature of 
the response was found in the case of a linear velocityvariation.Rovithiset al. [19] 
investigated a vertical seismic wave response of inhomogeneous soil deposits over a 
homogeneous layer on a rigid base. The problem is treated analytically leading to a closed 
form analytical solution for the base-to-surface transform function. Peng and Liu [16] 
introduced WKBJ approximate theory to investigate dispersion relations of Love surface 
wave, when a vertical heterogeneous half-space with medium parameters that varied 
continuously was covered with a certain thickness of homogeneous and isotropic elastic 
medium. 
Researchers had discussed the theory of plane waves such as; Sinha [20] studied the 
transmission of elastic waves through a homogenous layer sandwiched in homogenous 
media. Tooly et al., [22] discussed reflection and transmission of plane compressional 
waves. Gupta [8] solved the problem of Reflection of elastic waves from a linear transition 
layer.  Agemi [1] studied the problem on the global existence of nonlinear elastic waves. 
Gedroit et al., [6] solved the problem of finite-amplitude elastic wave amplitude in solids. 
Gol'dberg [7] had taken interaction of plane longitudinal and transverse elastic waves, 
Johnson et al., [10] discussed the nonlinear generation of elastic waves in crystalline rock. 
Hughes [9] had taken the case of second-order elastic deformations in solids. Jones and 
Kobett [11] studied the interaction of plane elastic waves in an isotropic solid. John [12] 
discussed the interaction of elastic waves in an isotropic medium. Kakar and Kakar [13] 
studied propagation of Love waves in a non-homogeneous elastic media. Kakar and 
Gupta [14] also discussed propagation of Love waves in a non-homogeneous orthotropic 
layer under ‘P’ overlying semi-infinite non-homogeneous medium. 
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Many scientists had solved the problems of reflections and transmissions of elastic waves 
from interface by using typical methods [21,24], but in the present paper, we drive the 
solution of Navier’s equations by using time-dependent methods (which describes the 
propagation of an elastic pulse through a planar slab of finite width). These methods are 
much easier than the earlier methods used. We consider first the case of homogeneous 
slab then inhomogeneous slab. The velocity is constant for homogeneous case but it is 
continuously varying for non-homogeneous case. The time-dependent methods are 
applied to solve the transmitted and reflected pulses. 

2. Basic Concept 

Consider an infinite absolutely rigid plane plate (screen/surface, which is well wielded 
contact with the surrounding elastic medium. Let x-y-plane coincide with the plate (where 
central part of the plane is shown). The z-axis is taken normal to the plate in the upward 
direction. As horizontal section of the interface is shown and the media are taken in the 
x-y-plane (-∞<x<∞, -∞<y<∞). If we disturb the plate sufficiently rapidly in such a 
manner that it remains parallel to itself (plane parallel moment; horizontal plane), then at 
any instant of time the displacement of any point of the interface will be same. The 
displacement vector iu  is taken to be independent of x and y. the medium in front of the 
interface will of course be compressed, while behind it, on the negative z-axis will be 
stretched. The state will be transmitted in the medium in directions parallel to z-axis. The 
problem is formulated by assuming the following assumptions. 

• Media are taken to be continuous at the interface due to perfect welded contact, 
with surrounding elastic medium, during the transmission of motion through the 
interface. The media do not slip relative to each other, so that at the 
interfaceresultant horizontal motions above and below are equal in pairs. 

• The condition of the interaterrestrial contacts for the vertical motions are 
analogous, there can be neither exploitation nor formation if intermediately 
cavities at the interface during motion, then 1 2 0,w w− = where 1w  and 2w are 
the resultant vertical motions in the lower and upper media respectively. 

3. Governing Equations and Used Method 

The equations of motion of three-dimensional elasticity 
 

, ,ij j i if uσ ρ ρ+ = &&     (1) 
 
The stress-strain relations (Hooke’s law) 
 

2 ,ij kk ij ijσ λε δ με= +     (2) 
 
The strain-displacement relations (Cauchy’s relations) 
 

, ,
1 ( )
2ij i j j iu uε = +     (3) 

 
Where, λ, μ are Lamb’s Constant and ρ is the density of the medium, iu   are the 

displacement components, ijδ are elastic constants, ijσ  are the stress tensor components, 
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ijε  are the deformation tensor components, kkε is the trace of deformation tensor, if are 
the volume force components. 
 
Substituting Equation (3) in Equation (1), we get 
 

, , ,( ),ij i i ij i j j iu u uσ λ δ μ= + +     (4) 
 
Substituting Equation (4) and Equation (1) and simplifying, the Navier’s equation of 
motion in terms of displacements can be obtained in the form: 
 

, ,( ) ,j ji i jj i iu u f uλ μ ρ ρ+ + + = &&    (5) 
 
In vector form:  
 

2( ) ,iu u f uλ μ μ ρ ρ+ ∇∇⋅ + ∇ + = &&    (6) 
 
In terms of rectangular Cartesian coordinates (6) can be written as 
 

2 2 2 2
2

2 2( ) ,x
u v w uu f

x x y x z t
λ μ μ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ + + + ∇ + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

2 2 2 2
2

2 2( ) ,y
u v w vv f

x x y x z t
λ μ μ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ + + + ∇ + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

  (7) 

2 2 2 2
2

2 2( ) .z
u v w ww f

x x y x z t
λ μ μ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ + + + ∇ + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

 

where, 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 is a Laplacian operator. 

In the absence of body forces the equation of motion in vector form reduces to 
 

2( ) ,iu u uλ μ μ ρ+ ∇∇⋅ + ∇ = &&     (8) 
 
The solutions of Equation (8) are given by  
 

1 2z
z zw f t f t
a a

α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦  

( ) ( )1 2z

or

w f z at f z atα ⎡ ⎤= − + +⎣ ⎦
 

(9) 

( ) ( ) 1 2, ,x y
z zu v f t f t
b b

α α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦  

(10) 
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( ) ( ) ( ) ( )1 2, ,x y

or

u v f z bt f z btα α ⎡ ⎤= − + +⎣ ⎦
 

The first term ( )1f z at− , ( )1f z bt− , 1
zf t
a

⎛ ⎞−⎜ ⎟
⎝ ⎠

, 1
zf t
b

⎛ ⎞−⎜ ⎟
⎝ ⎠

 in the above expressions 

represents the transmission of waves in the positive z-direction i.e. outgoing wave or 

advance wave and the second term ( )2f z at+ , ( )2f z bt+ , 2
zf t
a

⎛ ⎞+⎜ ⎟
⎝ ⎠

, 2
zf t
b

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

represents the transmission in the negative z-direction i.e. incoming wave or retarding 
wave. Here , ,u v w  are the components of  iu   and they vary with time but they differ 

only in the cosine of angles made by iu with the axis of co-ordinates , ,x y zα α α . For sake 

of convenience, the coefficient of α's ( ), ,x y zα α α  are taken to be unity as they do not 

affect the general behavior of the field variables. Since the terms of the above solution 
functions are arbitrary therefore they have bounded derivatives up to second order. 
In case of the present problem, the displacements are assumed as: 

1. Incident Wave ; ( )z a=  in the medium 1M ( ), ,z a x y−∞ < ≤ −∞ < <∞ : 

( )0I IW W z c t= −
 

Where, c0 is the velocity of propagation in medium M1 

2. Reflected Wave; ( )z a=  in the medium 1M  

( )0R RW W z c t= +  

3. Transmitted Wave  into the slab S ( ), ,a z b x y≤ ≤ −∞ < <∞ :

( )1W W z c t+ += −  
Where, c0 is the velocity of propagation in  M2 

4. Wave reflected from the upper boundary ( )z b= of slab into the slab:

( )1W W z c t− −= +  

5. Wave transmitted into the medium 2M  from slab:  

( )0T TW W z c t= − i.e. medium 1M  is similar to 2M  
 

4. Case of Single-Layer Slab 

We shall assume that the slab lies perpendicular throughout to the z-axis in 3ℜ  , with 
faces at 0z a= >  and z b a= > , and is isotropic in the horizontal x and y directions 
for slab ' 'S ( ), , .a z b x y≤ ≤ −∞ < <∞  The incident wave has finite energy and 
propagates in the positive z-direction, normal to the slab and incident from below.Under 
the above assumptions the problem essentially becomes one directional. The propagation 
velocity is 0c  outside the slab and 1c  inside the slab, where 0c and 1c  are constants 

with 1 00 c c< <   (see Fig-1). The general form of the solution is taken as: 
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( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 1

1 1

0 2

, + −

− + + −∞ < ≤

= − + + ≤ ≤

= − ≤ < ∞

I R

T T

W z c t W z c t if z a for M

W z t W z c t W z c t if a z b for S

W W z c t if b z for M

(11) 

 
Figure 1. Single layer slab 

4.1 Solution of the problem 
 
The field variables ,RW ,W+ W− and TW  for the given value of IW can be found from 
the displacement and stress-boundary conditions at the interfaces. But in this case, we 
have taken the coefficient of α’s ( ), ,x y zα α α  equal to unity. Therefore, we apply the 

displacement boundary conditions coupled with travel-time of wave and using the lag in 
time for the waves travelling in the same direction with different velocities of propagation.  
At the interfaces z a=   and z b=   we assume that is ( ),W z t continuous at all times t. 
Therefore, at z a=  this leads to  
 

( ) ( ) ( ) ( )0 0 1 1
0 0 0 0

1 1 1 1
I RW z c t W z c t W z c t W z c t

c c c c+ −− + + = − + +  (12) 

( ) ( ) ( ) ( )0 0 1 1
0 0 1 1

1 1 1 1
I RW z c t W z c t W z c t W z c t

c c c c+ −− − + = − − +  (13) 

 
Adding Equation (12) and Equation (13), we get 
 

( ) ( ) ( )0 1 0 1
0 1 1

0 0 1 0 1

2
I

c c c cW z c t W z c t W z c t
c c c c c+ −

+ −
− = − − +  (14) 

or 

( ) ( ) ( )0 11
1 0 1

0 1 0 1

2
I

c ccW z c t W z c t W z c t
c c c c+ −

−
− = − + +

+ +
  (15) 

 
Subtracting Equation (12) and Equation (13), we get 
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( ) ( ) ( )1 0 1 0
0 1 1

0 0 1 0 1

2
R

c c c cW z c t W z c t W z c t
c c c c c+ −

− +
+ = − + +  (16) 

or 

( ) ( ) ( )1 0 1 0
0 1 1

1 12 2R
c c c cW z c t W z c t W z c t

c c+ −

− +
+ = − + +   (17) 

 
Combining Equation (15) and Equation (17), we get 
 

( ) ( ) ( )0 1 0
0 0 1

0 1 0 1

2
R I

c c cW z c t W z c t W z c t
c c c c −

−
+ = − + +

+ +
  (18) 

 
Now Equation (15) and Equation (18) must hold at all times t. therefore put 1 ,u a c t= −  

then ( ) 1t a u c= −  and Equation (15) becomes 
 

0 0 11

0 1 1 0 1

2( ) ( ) (2 )I
c c ccW u W a a ut W a u

c c c c c+ −

⎛ ⎞ −
= − − + −⎜ ⎟+ +⎝ ⎠

 (19) 

 
Since this holds for all u, we can put 1u z c t= − and get 
 

0 0 11
1 1 1

0 1 1 0 1

2( ) ( ) ( ).I
c c ccW z c t W a z a c t W a z c t

c c c c c+ −

⎛ ⎞ −
− = + − − + − +⎜ ⎟+ +⎝ ⎠

 
(20) 

 
Similarly if we put 0 ,v a c t= +  then ( ) 0t v a c= −  and Equation (18) becomes 
 

0 1 0 1

0 1 0 1 0

2( ) (2 ) ( )R I
c c c cW v W a v W a a v
c c c c c−

⎛ ⎞−
= − + − −⎜ ⎟+ + ⎝ ⎠  (21) 

 
When 0v z c t= + , we get 

0 1 0 1
0 0 0

0 1 0 1 0

2( ) (2 ) ( )R I
c c c cW z c t W a z c t W a z a c t
c c c c c−

⎛ ⎞−
+ = − − + + − −⎜ ⎟+ + ⎝ ⎠ (22) 

 
Equation (20) and Equation (22) give RW  andW+  in terms of IW  and W− It must be 
noted that all the above relations are hold for values of z and t.

  
Similarly, at the other interface ,z b=  we get 
 

0 1
1 1

0 1

( ) (2 ),c cW z c t W b z c t
c c− +

−
+ = − −

+    (23) 
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0 1
0 0

0 1 0

2( ) ( )T
c cW z c t W b z b c t

c c c+

⎛ ⎞
− = + − −⎜ ⎟+ ⎝ ⎠    (24) 

giving W- and WT in terms of W+ for all z and t. 

Now if we combine Equation (20) and Equation (23) we get 

 
2

0 1
1 0 1 1

0 1

( ) ( ) (2 2 ),c cW z c t W z c t W b a z c t
c c+ +

⎛ ⎞−
− = − + − + −⎜ ⎟+⎝ ⎠   (25) 

where, 

01
0 1 1

0 1 1

2( ) ( ) .I
ccW z c t W a z a c t

c c c
⎛ ⎞

− = + − −⎜ ⎟+ ⎝ ⎠    (26) 
 
Equation (25) can be solved for W+  by iteration, we get 

 
2

0 1
0 1

0 0 1

(2 ( ) )
n

n

c c W n b a z c t
c c

∞

=

⎛ ⎞−
= − + −⎜ ⎟+⎝ ⎠
∑

  (27) 

 
2

0 1 0 01
1

00 1 0 1 1 1

2 2 ( ) ( ) .
n

I
n

c c c cc W a n b a z a c t
c c c c c c

∞

=

⎛ ⎞ ⎛ ⎞−
= + − + − −⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠

∑  
(28) 

 
Also, Equation (23) can be solved for W−  by iteration, we get 

0 1
1 1

0 1

2 1

0 1
0 1

0 0 1

( ) (2 )

(2 ( ) 2 ).
n

n

c cW z c t W b z c t
c c

c c W n b a b z c t
c c

− +

+
∞

=

⎛ ⎞−
+ = − −⎜ ⎟+⎝ ⎠

⎛ ⎞−
= − + − −⎜ ⎟+⎝ ⎠
∑  (29) 

 
Using, Equation (27) and Equation (28) to find TW from Equation (19) and RW  from 
Equation (17). 
 

Discussion 

1. If the incident wave is WI bounded, then W0 in the Equation (26) is also bounded, and 

hence series in Equation (27) and in Equation (28) are convergent. 
2. If the incident wave IW  is a periodic having time period 0(2 2 ) /b a c−  then 0W  

will also be periodic with time period 1(2 2 ) /b a c− . Hence, Equation (27) reduces to
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2

0 1
1 0 1

0 0 1

( ) ( )
n

n

c cW z c t W z c t
c c

∞

+
=

⎛ ⎞−
− = −⎜ ⎟+⎝ ⎠

∑
 

2
0 1

1 0 1
0 1

0 1 0
1 1

0 1

( )( ) ( )
4

( ) ( )
2 I

c cW z c t W z c t
c c

or

c c cW z c t W a z a c t
c c

+

+

+
⇒ − = −

⎛ ⎞+
− = + − −⎜ ⎟

⎝ ⎠

  (30)
 

 

The factor 
2

0 1

0 1

( )
4

c c
c c
+

in Equation (29) is called an amplitude enhancement factor. The 

enhancement factor depends on the ratio of 1 0/c c  but not the incident wave form. Hence, 
enhancement factor can be written as 

 
2 2

0 1

0 1

( ) (1 )
4 4

c c
c c

ηξ
η

+ +
= =

 

Where, 1

0

c
c

η =
 

As, 1

0

c
c

η =   increases, the amplitude enhancement factor decreases and vice-versa. 

 

Using Equation (29) and Equation (24), the transmitted wave is 

 
2

0 0 1 0
0 0 1 0

0 1 0 1 1

2 ( )( ) ( ) ( ) )
4T I

c c c cW z c t W z c t W a b a z c t
c c c c c

⎛ ⎞+
− = − = + − + −⎜ ⎟+ ⎝ ⎠ (31) 

Using Equation (29) and Equation (22), the reflected wave is 

 
2

0 1 0 1 0 1
0 0 02

0 1 0 1 0 1

4 ( )( ) (2 ) (2 ) 0
( ) 4R I I

c c c c c cW z c t W a z c t W a z c t
c c c c c c

⎛ ⎞− +
+ = − − − − − =⎜ ⎟+ +⎝ ⎠ (32) 

 

We observe that the transmitted wave has the same amplitude as that of the incident wave 

but it lags in time due to the width of the slab. The amplitude of the reflected wave is zero. 

This means that the slab is transparent to any pulse train with resonant time period. 

 

5. Case of Multiple-Layer Slab 
We now consider a multiple-layer slab having n  layers with interfaces ia , 
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0 10 na a a< < < <LLLL  and propagation velocity jc  in the thj  layer.
  

The general form of the solution is taken as: 
 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

0 0 0

1 2

1

,
I R

j j
j j j j

T T n n

W z c t W z c t if z a

W z t W z c t W z c t if a z a for M

W W z c t if a z
+ − −

+

− + + −∞ < ≤

= − + + ≤ ≤

= − ≤ < ∞ (33)
 

 
5.1. Solution of the problem 

The solution has been found in the same way as it is done in the previous case for single 

layer; here we just piece together the solutions of previous section. Now from Equation 

(20) we have   

 
( ) ( ) ( )1 1 1

1 1 1 1
1 1

2( ) ( ) ( ( )).k k kk k k k
k k k k k k k

k k k k k

c c c cW z c t W a z a c t W a z a c t
c c c c c

− − −
+ + − − − − −

− −

⎛ ⎞ −
− = + − − + − − +⎜ ⎟+ +⎝ ⎠

(34) 

 
 

Figure2.Multiple layers slab 
 
 

A similar expression gives ( )1kW −
+  in terms of ( )2kW −

+ and ( )1kW −
−  if we combine the 

expressions obtained for ( )jW+ (1 )j m≤ ≤ and set ( )0
IW W+ = , we get 

 

( )

( )

1 2
1 0 0

0 1
00 1 1

1 1
1

1 1
1 1

2( ) ( )

2 ( ) .

m m
m i

m I i m m
ii i i i m

mm m
j i j jji

j i m m
j i ji j i i j j i i m

c c cW z c t W a a z a c t
c c c c

c c cc W a a z a c t
c c c c c c

− −
+

+ −
== + +

− −
−+

− − −
= == + −

⎛ ⎞ ⎛ ⎞
− = + Δ + − +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

⎛ ⎞Δ⎛ ⎞ ⎛ ⎞
− × − Δ − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − ⎝ ⎠⎝ ⎠⎝ ⎠

∑∏

∑ ∑∏
(35) 

 
Here we have 1j j ja a a+Δ = − and 1j j jc c c+Δ = − and for simplicity we put 0m i

l m
−
=Σ = , 
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In the same way we have 
 

( ) ( )

( )

1 1

1

1

1

2( ) ( )

( ( )).

k kk k
k k k k

k k k

kk k
k k k

k k

c cW z c t W a z a c t
c c c

c c W a z a c t
c c

− +
− −

−

+
+

+

⎛ ⎞
+ = + − +⎜ ⎟+ ⎝ ⎠
−

− − − +
+

  (36) 

 
Similar expression gives ( )jW−  in terms of ( )1jW +

− and ( )1kW −
− for ( )jW+ ( )k j n≤ ≤ and 

combining these expressions and setting  ( )1 0nW +
− =  , we get 

 

( )

( )

1

1 1

1

2( )

( ) .

jn
jk i

k
j k j k i i j j

k
j jj

j i k k
i k i k

ccW z c t
c c c c

c c
W a a z a c t

c c

−

−
= = + +

−

−
=

⎛ ⎞Δ⎛ ⎞
− = ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
⎛ ⎞

× + Δ − − +⎜ ⎟
⎝ ⎠

∑ ∏

∑    (37) 

Put  Equation (36) and Equation (29), we get 
 

( )

( )

2
0 0

1 1
0 1

1 1 1 1
1 1

1 1

1
1

( ) ( )

( )( )

( ) .

m
m

m m I j i m m
i i m

m n
jk i

m k j k
k j k k k i j j

j m
j j jj

j j j m m
i k i ki i m

c cW z c t C W a a z a c t
c c

ccC C D D
c c c c

c c c
W a a a z a c t

c c c

−

+ − −
= +

−
− − − −

= = − +

− −

+ −
= + =

⎛ ⎞
− = + Δ + − +⎜ ⎟

⎝ ⎠
⎛ ⎞Δ⎛ ⎞Δ

− ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
⎛ ⎞

× + Δ + Δ + − +⎜ ⎟
⎝ ⎠

∑

∑∑

∑ ∑

 

(38) 
Where,  

1
1

1
0 1

2j
i

j
i i i

cC
c c

−
+

−
= +

=
+∏ and

1
1

1
0 1

2j
i

j
i i i

cD
c c

−
+

−
= +

=
+∏

  (39) 

Equation (38) can be solved by iteration, as we did for Equation (25), the solution is very 

complicated therefore for sake of convenience, we developed, as for Equation (27), the 

series solution is   
 

( ) ( )
2

0
( ) ( )m m

m p m
p

W z c t W z c t
∞

+
=

− = −∑    
(40) 

Where, 

( )
2

0 0
0 1 0 1

0 1

( ) ( )
m

m
m m I i m m

i i m

c cW z c t C W a a z a c t
c c

−

− −
= +

⎛ ⎞
− = + Δ + − +⎜ ⎟

⎝ ⎠
∑

 (41) 
 
there is no reflection at the interface, and 
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( )

( )

2 1 1 1 1
1 1

11 1
1

2 1 1
1 0 1

( ) ( )( )

2( ) .

m n
jm k i

p m m k j k
k j k k k i j j

jj m
j j jm i

p j j j m m j
i k i k ii i m i i

ccW z c t C C D D
c c c c

c c c cW a a a z a c t D
c c c c c

−
− − − −

= = − +

−− −
+

− −
= + = = +

⎛ ⎞Δ⎛ ⎞Δ
− = − ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
⎛ ⎞

× + Δ + Δ + − + =⎜ ⎟ +⎝ ⎠

∑∑

∑ ∑ ∏
(42) 

involves 2p reflections at interfaces within the slab (see fig. 2) 
 

RW and TW are calculated as done in Equation (22) and Equation (24) 
 

0 0 1
0 0 0

0 1 0 1 0

2( ) (2 ) ( ) .R I
c c cW z c t W a z c t W a z a c t

c c c c c−

⎛ ⎞Δ
+ = − − + + − −⎜ ⎟+ + ⎝ ⎠ (43)

 

1 1
1 1

1 1

2( ) ( ) .n n
T n n

n n n n

c cW z c t W b z b c t
c c c c

+ +
+ + +

+ +

⎛ ⎞
− = + − −⎜ ⎟+ +⎝ ⎠   (44)

 

 
Discussion 
If the incident wave IW  is a periodic having time period 0(2 ) /ja cΔ  then jth layer is 

resonant, and will appear transparent to the waveforms 1jW −
+ and 1jW +

−  . The delay in 
each pulse time is 

0 (2 ) /j ja a c+ Δ∑     (45) 
 

6. Case of Continuous Slab 

Finally, we take the case of continuous slab in which the wave velocity varies continuously 

and differentially across the slab. 

 
( )
( )
( )

( )

( ) ( )

( )

c a if z a

c c z c z if a z b

c b if b z

−∞ < ≤

= ≤ ≤

≤ < ∞
  (46) 

6.1. Solution of the Problem 

This case be treated as the limiting case of multiple slab of preceding section and it can be 

solved by replacing ai by z, and let 
( ), ,i i i

dc zn a dz c a
dz

→∞ Δ Δ Δ →   but 0a a= and 

nb a= remain constant. Therefore for limiting case, 
 

1
0

0

( )
( )

zm

i
i i a

c c aa dz
c c z

−

=

Δ →∑ ∫
    (47)
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/

1

( )
2 ( )

i i

i i

c a c z
c c c z+

Δ Δ
→

+     (48) 
 
Also, 

1

1

1 1

2 1
2

ji

i i i

cc
c c c

−

+

+ +

Δ⎛ ⎞
= −⎜ ⎟+ ⎝ ⎠    (49) 

Hence, 
 

11 1
1 1

1
0 01 1

1 1 1

0 0 01 1 1

2 1( ) 1
2

1 1 11
2 2 2

m m
i i

m i
i ii i i i

m m i
ji

i i j
i i ji i i i j

c cC a
c c c a

cca a a
c c a c a

−
− −

− +
−

= =+ +

− − −

= = =+ + +

⎛ ⎞ ⎛ ⎞Δ
= = − Δ⎜ ⎟ ⎜ ⎟+ Δ⎝ ⎠ ⎝ ⎠

⎛ ⎞Δ⎛ ⎞Δ
= − Δ + Δ Δ⎜ ⎟⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠⎝ ⎠

∏ ∏

∑ ∑∑
  (50)

 

For n→∞Equation (50) reduces to 
 

/ / /
1

1

1
/ 2

( ) ( ) ( )( ) 1
2 ( ) 2 ( ) 2 ( )

1 ( ) 1 ( )exp exp (log ( ) log ( ))
2 2 ( ) 2 ( )

z z u

m a a a

z

a

c u c u c vC du dvdu
c u c u c v

c u c adu c z c a
c u c z

−
− → − + −

⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ ∫

∫

L

 (51)

 

Similarly we can find that 
 

1

1

1 1

2 1
2

ji

i i i

cc
c c c

−

+

+ +

Δ⎛ ⎞
= +⎜ ⎟+ ⎝ ⎠    (52)

 

 
From Equation (51), it follows that 
 

1
2

1
1

( )( )
( )m

c aD
c z

−
−

⎛ ⎞
→ ⎜ ⎟

⎝ ⎠
    

(53)
 

Therefore, Equation (34) becomes by using Equation (52) and Equation (53) 
 

1
2

1
/2

( ) ( )( ( ) ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) 2 ( ) ( )

z

I a

z z

a y

c a c uW z c z t W a du c a t
c z c u

c z c y c yduW y du c y t dy
c y c y c u

+

−

⎛ ⎞ ⎛ ⎞
− = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫

∫ ∫
  (54)

 

And Equation (36) becomes by using Equation (52) and Equation (53) 
 

1
/2( ) ( ) ( )( ( ) ) ( )

( ) 2 ( ) ( )
b x

y y

c y c x c xW y c y t duW x du c x t dx
c x c x c u− +

⎛ ⎞ ⎛ ⎞
− = + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫  

(55) 
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Comparing Equation (54) and Equation (55) 
 

1
2

1
/ /2

( ) ( )( ( ) ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( ) 2 ( ) ( ) ( )

z

I a

z b x z

a y y y

c a c uW z c z t W a du c a t
c z c u

c z c y c x c x c xW x du du c x t dxdy
c x c y c x c u c v

+

+

⎛ ⎞ ⎛ ⎞
− = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− × + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫

∫ ∫ ∫ ∫
(56) 

Equation (56) can be solved for W+ by iteration. Hence, we have 
1

2

2
0

( )( ( ) ) ( ( ) )
( )p

p

c aW z c z t W z c z t
c z

∞

+
=

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
∑

  (57) 
Where, 

1
2

0
( ) ( )( ( ) ) ( )
( ) ( )

z

I a

c a c uW z c z t W a du c a t
c z c u

⎛ ⎞ ⎛ ⎞
− = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫

  (58) 
 
involves no reflections, and 
 

1
/ /2

2
0

2 2

( ) ( ) ( )( ( ) )
( ) 2 ( ) 2 ( )

( ) ( ) ( )
( ) ( )

z b

p a y
p

x z

p y y

c z c y c xW z c z t
c x c y c x

c x c xW x du du c x t dxdy
c u c v

∞

=

−

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
⎛ ⎞

× + + −⎜ ⎟
⎝ ⎠

∑ ∫ ∫

∫ ∫
  (59) 

 
involves 2p reflections. 
 
Equation (43) and Equation (44) gives 
 

( ( ) ) ( ( ) )RW z c a t W z c a t if z a−+ = + ≤   (60) 
 

( ( ) ) ( ( ) )TW z c a t W z c a t if z b+− = − ≥   (61) 

7. Conclusion 

We observe that the transmitted wave has the same amplitude as that of the incident wave 

but it lags in time due to the width of the slab. The amplitude of the reflected wave is zero. 

This means that the slab is transparent to any pulse train with resonant time period. The 

time dependent method is much easier than other methods.  
The incident wave IW  is a periodic having time period 0(2 ) /ja cΔ  for multiple slab. 
The jth layer is resonant in the multiple slab, and will appear transparent to the waveforms 

1jW −
+ and 1jW +

−  . The delay in each pulse time is 0 (2 ) / .+ Δ∑ j ja a c
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