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On Coneigenvalues of a Complex Square Matrix
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Abstract. In this paper, we show that a matrix A € M, (C) that has n coneigenvectors,
where coneigenvalues associated with them are distinct, is condiagonalizable. And also show
that if all coneigenvalues of conjugate-normal matrix A be real, then it is symmetric.
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1. Introduction

In section 2 of this paper, we recall some definitions and propositions of similarity
transformation. In sections 3 and 4 we present definitions and propositions that are
need for consimilarity transformation, and recall coneigenvalue and coneigenvector
definitions of matrices, and prove that if | uy |, | p2 |,- .-, | sk | are distinet coneigen-
values of A € M,(C), then {z(1),2® ... 2"} is a linearly independent set, where
| i | is a coneigenvalue associated with coneigenvector @, i=1,2,... k. this
proposition imply that if a matrix A € M, (C) has n distinct coneigenvalue as-
sociated with coneigenvectors, then A is condiagonalizable. Also show that if all
coneigenvalues of conjugate-normal matrix A be real, then it is symmetric.
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2. Similarity and diagonalizable

Recall that a matrix B € M,(C) is said to be similar to a matrix A € M, (C) if
there exists a nonsingular matrix S € M, (C) such that B = S~1AS. Also recall
that, if the matrix A € M,,(C), is similar to a diagonal matrix, then A is said to
be diagonalizable.

Since diagonal matrices are especially simple and have very nice properties, it
is of interest to know for which A € M, (C), there is a diagonal matrix in the
similarity equivalence class of A, that is, which matrices are similar to diagonal
matrices.

THEOREM 2.1 Let A € M,(C), Then A is diagonalizable if and only if there is a
set of n linearly independent vectors, each of which is an eigenvector of A.

LEMMA 2.2 Suppose that A1, Az, ..., A, are eigenvalues of A € My,(C), no two
of which are the same, and suppose that 29 s an etgenvector associated with
Nyi=1,....k. Then {z(V 2@ 2"} is a linearly independent set.

THEOREM 2.3 If A € M, (C), has n distinct eigenvalues, then A is diagonalizable.

For the proofs of these properties, we refer the reader to [2].
In the next section we are going to construct consimilarity from similarity (see
[1], 3], [4] and [5]) .

3. Coneigenvalue and coneigenvector

The most important quantities related to similarity transformations of a matrix
are its eigenvalues and eigenvectors. Now, that we deal with consimilarity trans-
formations (The transformation A — S~1AS is called a consimilarity transfor-
mation by the consimilarity nonsingular matrix S ), we should instead speak of
‘con’-analogues of these quantities. Recall that:

DEFINITION 3.1 matrices A, B € M,,(C) are said to be consimilar if B = S~tAS
for a nonsingular matriz S.

In this section we recall coneigenvalue defination of a matrix, that for a matrix
A € M, (C) exist only n coneigenvalue. The coneigenvalues of A are preserved by
any consimilarity transformation.

To give an exact definition, we introduce the matrices

AL:ZA and AR:AZ:TL.

Although the products AB and BA need not be similar in general, Ay, is always
similar to Ag (see [[2], p. 246, Problem 9 in Section 4.6]). Therefore in the subse-
quent discussion of their spectral properties, it will be sufficient to refer to one of
them, say, Ar. The spectrum of A; has two remarkable properties:

1. It is symmetric with respect to the real axis. Moreover, the eigenvalues A and
A are of the same multiplicity.

2. The negative eigenvalues of Ay, (if any) are necessarily of even algebraic mul-
tiplicity.

For the proofs of these properties, we refer the reader to [[2], pp. 252.253].

DEFINITION 3.2 Let

MAL) = [, ooy An)
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be the spectrum of Ar. The coneigenvalues of A are the n scalars py, ..., iun defined
as follows: If \; € AN(Ar) does not lie on the negative real axis, then the correspond-
ing coneigenvalue p; is defined as a square root of A\; with nonnegative real part
and the multiplicity of u; is set to that of A; :

i = A2, Rep; > 0.

With a real negative \; € M ApL), we associate two conjugate purely imaginary
coneigenvalues

S|

pi = £A

the multiplicity of each being half the multiplicity of ;.
The set {1, ..., ip } is called the conspectrum of A and will be denoted by cA(A).
For a subspace L € M, (C) define
L= {z|r € L},

where T is the component-wise conjugate of the column vector z.

DEFINITION 3.3 L is called a coninvariant subspace of A if
AL C L.

The fundamental fact on coninvariant subspaces is the following theorem.

THEOREM 3.4 FEvery matriv A € M,(C)(n > 3) has a one- or two-dimensional
coninvariant subspace.

proof as given in [1].

DEFINITION 3.5 Let L is a coninvariant subspace of A and dimL = 1, then every
nonzero vector x € L is called a coneigenvector of A.

If matrix A € M,(C) has a coneigenvector x, then there exist a coninvariant
subspace L, where x € L, and AL C L. Since dimL = 1, can suppose that L =
span{x}, this means that AT = px, for some p € C. in this equation u is called
coefficient associated with coneigenvector .

THEOREM 3.6 Let A € M, (C) has a coneigenvector x, and  is coefficient asso-
ciated with x, then | 1 | is a coneigenvalue of A.

Proof We know AZ = pz. But then

AAT = A(pz) = pAz = ppz =| p |° 7,
so | pu | is a coneigenvalue of A. (We say | 4 | is a coneigenvalue associated with the
coneigenvector x.) [ |
4. Condiagonalizable

Like ordinary similarity, consimilarity is an equivalence relation on M, (C).

DEFINITION 4.1 A matriz A € M, (C) is said to be condiagonalizable if there exists
a nonsingular S € M, (C) such that S~1AS is diagonal.



256 M. Ghasemi Kamalvand/ IJM?C, 03 - 03 (2013) 253-258.

THEOREM 4.2 Let A € M,(C), Then A is condiagonalizable if and only if there
is a set of n linearly independent vectors, each of which is a coneigenvector of A.

Proof If A has n linearly independent coneigenvectors
{2 23 M)

sincez® i =1,2,...,nisa coneigenvector of A, then exist a coninvariant subspace
L;, where z® e L;, and AL; C L;. Since dimL; = 1, can suppose that L; =
span{z™}, this means that Az() = p;z() for some y; € C. Form a nonsingular
matrix S with 20, 2@ ... 2™ as columns and calculate

STLAS = STHAzMW Az@) . Azx™] = S7 pyaW ppa® 2™

=5 2Wz® 2 = 571SM = M

where

Conversely, suppose that there is a nonsingular matrix S such that S™1AS = M is
diagonal. Then AS = SM. This means that A times the ith column of S (i.e., the
ith column of AS) is the ith diagonal entry of M times the ith column of S (i.e.,
the ith column of SM), or AS; = 11;S;, where S; is the ith column of S and p; is
the ith diagonal entry of M, let L; = span{S;}, then AL; C L; and dimL; = 1.
This result that ith column of S is an coneigenvector of A. Since S is nonsingular,
there are n linearly independent coneigenvector. [ |

LEMMA 4.3 Suppose that {2 ... 20} is a coneigenvectors set of matrix
A€ M,(C), if | pa || p2 |, pe | are coneigenvalues of A associated with
2 2@ 2R no two of which are the same, then {x(M,x® .. z®)} is q
linearly independent set.

Proof The proof is essentially by contradiction. Suppose that

{x(l),x@), e x(k)}
is actually a linearly dependent set. Then there is a nontrivial linear combination
which produces the 0 vector, and in fact there is such a linear combination with
the fewext nonzero coefficients. Suppose that such a minimal linear dependence
relation is

oz + aoz® + 4oz =0, r<k (1)

We have r > 1 because all (9 % 0. We may assume for convenience (renumber if
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necessary) that it involves the first r vectors. We also have

Alarz® + a02®@ + .+ apz®) = a7z + agAz®@ + ..+ @ Az

=armzW + aguer® + ..+ @ =0 (2)

another dependence relation.Now multiply the relation (1) by a;-u, and the relation
(2) by o, and subtract the first relation from the second relation to produce

(a1rpr — archlul)x(l) + ot (1@l — O‘rmﬂrfﬁx(r_l) —0

a third dependence relation, which has fewer nonzero coefficients than the relation
(1). This last relation is nontrivial since for i, 1<i<r—1

aitrpir — apipy = 0 = aq || @ || pr [=| ar || @0 | pi |= ] pr =] i |-

This contradicts the minireality assumption for the dependence relation (1) and
completes the proof. [ |

THEOREM 4.4 If A € M,(C) has n coneigenvectors, where coneigenvalues associ-
ated with them are distinct, then A is condiagonalizable.

Proof Suppose that {z(1), 23 ... 2} is a coneigenvectors set of matrix A. This
is a linearly independent set by lemma (4.3), and therefore A is condiagonalizable
by theorem (4.2). [ |

5. Coneigenvalue and conjugate-normal matrix

For a conjugate-normal matrix A, matrix

A= (fjlg‘) (3)

is normal. Conjugate-normality means that

AA* = A*A,
and normality means that
AA* = A A.

A particular example of conjugate-normal matrices are symmetric matrices.

THEOREM 5.1 Let {p1,..., un} be the coneigenvalues set of an n x n matriz A.
Then

)‘(A) = {HL sy My =1y -ey _:U’n}’

where A(A) be the spectrum of A.

Proof The assertion desired follows from two observations. First, we have A2 =
AR & A, which implies that any eigenvalue of A is a square root of an eigenvalue
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of Ap. Second, the characteristic polynomial ¢(\) of A is given by.

©(\) = det(May, — A) = det(N°I, — Ar) = det(N°I, — AR).
Thus, if X is an eigenvalue of A, then —\ also is an eigenvalue of A, and both of
them have the same multiplicity. [ |

Flowing theorem was proved in [[2], theorem(4.1.4)].

THEOREM 5.2 Let A € M,(C) be given. Then A is Hermitian if and only if A is
normal and all the eigenvalues of A are real.

THEOREM 5.3 Suppose that matriz A € M, (C) is conjugate-normal and all the
coneigenvalues of A are real, then A is symmetric.

Proof since A is a conjugate-normal matrix, then Ais normal. Now if all coneigen-
values of the matrix A are real, then all eigenvalues of A are real (by theorem (5.1)),
so A is a hermitian matrix by theorem (5.2), i.e. A* = A, this equality implies that

(58 -(32)
(#%)=(50) ©

so AT = A, this equality means that A is symmetric.

or

6. Conclusion

Properties of coneigenvalues and coneigenvectors of a matrix, which are considered
in this paper, compared with the previous definition of the coneigenvalues (pre-
sented at the [2]), are more similar to the general eigenvalues and eigenvectors of
a matrix.

References

[1] Fassbender H. and Ikramov Kh. D., Some observations on the Youla form and conjugate-normal
matrices. - Linear Algebra Appl., 422 (2007) 29-38.

[2] Horn R.A. and Johnson C.R., Matriz Analysis. Cambridge University Press, Cambridge, 1985.

[3] Tkramov Kh. D., Conjugate-Normal Matrices and Matriz Equations in A , and AT, Dokl. Akad.
Nauk 412 (2007) 305-307 [Dokl. Math., 75 (2007) 55-57].

[4] Ikramov Kh. D., On the coneigenvalues and singular values of a compler square matriz, Journal of
Mathematical Sciences, 141 (6) (2007) 1633-1638.

[6] Ikramov Kh.D., On the reduction of complex matrices to condensed forms by unitary congruences.
- Mat. zametki, 82 (2007) 550-559.



