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Abstract. In this study, we modify an iterative non-optimal without memory method in
[4] [Mirzaee. F and Hamzeh. A, A sixth order method for solving nonlinear equations, Inter-
national Journal of Mathematical Modelling & Computations. 4 (2014) 55- 60.], in such a
way that is optimal. Therefore, we obtain convergence order eight with the same functional
evaluations. To justify our proposed method, some numerical examples are given.
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1. Introduction

Based on Kung and Traub’s conjecture [2] every multi-point iterative without mem-
ory method may obtain optimal convergence order 2n using at most n+1 functional
evaluations. For recent works see [1, 3]. Recently, Mirzaee and Hamzeh [4] intro-
duced a three steps without memory method, in which they have asserted it has
convergence order six.
Hence, this method is not optimal, since it uses four functional evaluations and
has convergence order six. They should have obtained convergence order eight.
Motivated by this fact, we modify the third step of their work in such away that
our modified method gets the convergence order eight with the same number of
functional evaluations. To show efficiency and accuracy of the modified method,
we will test some numerical examples.
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2. New Eighth order Method

Consider the following iterative method [4]



yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)

f ′(xn)

f(yn)− f(xn)

2f(yn)− f(xn)
,

xn+1 = zn − f(zn)f(xn)(2f(yn)− f(xn))

f ′(xn)[4f(yn)f(xn)− 2f(yn)2 − f(xn)2]
,

(1)

with the following error equation

en+1 = c2c3(−c22 + c3)e
6
n +O(e7n). (2)

Since this method uses four function evaluations per iteration and has of conver-
gence order six, hence it is not optimal. To optimize this method, it suffices to
modify it, so that we have convergence order eight. To this end, we use weight
functions to approximate f ′(zn) in the denominator of the third step:

f ′(zn) ≃
f ′(xn)

h(vn)× g(sn, tn)
. (3)

Therefore, we have a new eighth order method as follows

yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)

f ′(xn)

f(yn)− f(xn)

2f(yn)− f(xn)
,

xn+1 = zn − h(vn)g(sn, tn)
f(zn)

f ′(xn)
.

(4)

In the following theorem, we provide some necessary conditions that method (4)
is optimal. Let f : D → R be sufficiently differentiable function with a simple root
α ∈ D, D ⊂ R be an open set, x0 be close enough to α, then the method (4) is at
least of eighth-order, and satisfies the error equation

en+1 = c2
(
c22 − c3

)
(32c42 − 6c22c3 + c23 + c2c4)e

8
n +O(e9n), (5)

where vn = f(yn)
f(xn)

, sn = f(zn)
f(yn)

, tn = f(zn)
f(xn)

, and h(vn), g(sn, tn) are two real valued

weight functions that satisfy the conditions

h(0) = 1, h′(0) = 2, h′′(0) = 10, h′′′(0) = 72, (6)

g(0, 0) = 1, gs(0, 0) =
∂g(s, t)

∂s
= 1, gt(0, 0) =

∂g(s, t)

∂t
= 2, (7)

and en = xn − α and cj =
f (j)(α)
j!f ′(α) , j = 1, 2, · · · .

Proof We use the Mathematica to establish the desired conditions.

f[e ] = f1a ∗
(
e +

∑5
k=2 ck ∗ ek

)
;

ey = e− Series[f[e]/f ′[e], {e, 0, 8}]; (∗ey = y − α∗)
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ez = e− f[ey]−f[e]
2f[ey]−f[e] ∗

f[e]
f′[e] ; (∗ez = z− α∗)

v := f[ey]
f[e] ; s :=

f[ez]
f[ey] ; t :=

f[ez]
f[e] ;

h[v] := h0 + h1v + 1
2h2v

2 + 1
6h3v

3; (∗h0 = h(0), h1 = h′(0), h2 = h′′(0),h3 = h′′′(0)∗)
g[s, t] := g0 + g1s + g2t; (∗g0 = g(0, 0), g1 = gs(0, 0), g2 = gt(0, 0)∗)
ê = ez− (h[v] ∗ g[s, t]) f[ez]f′[e] ;

Coefficient[ê, e4]//FullSimplify
Out[a] : −(−1 + g0h0)c2(c

2
2 − c3).

g0 = 1; h0 = 1;
Coefficient[ê, e5]//FullSimplify
Out[b] : −(−2 + h1)c22(c

2
2).

h1 = 2;
Coefficient[ê, e6]//FullSimplify
Out[c] : −c2(c

2
2 − c3)

(
(−6 + g1 + h2)c22 − (−1 + g1)c3

)
.

g1 = 1; h2 = 10;
Coefficient[ê, e7]//FullSimplify
Out[d] : −c22(c

2
2 − c3)

(
(−14 + g2 + h3)c22 − (−2 + g2)c3

)
.

g2 = 2; h3 = 72;
Coefficient[ê, e8]//FullSimplify
Out[e] : c2

(
c22 − c3

)
(32c42 − 6c22c3 + c23 + c2c4).

Therefore, we have

en+1 = c2
(
c22 − c3

)
(32c42 − 6c22c3 + c23 + c2c4)e

8
n +O(e9n).

■

To construct new methods with suitable weight functions, we consider the fol-
lowing weight functions

h1(v) = 1 + 2v + 5v2 + 12v3,

h2(v) =
1

1− 2v − v2
,

g1(s, t) = 1 + s+ 2t,

g2(s, t) =
1 + s

1− 2t
.

3. Numerical Results

Now we show the convergence behavior of the developed method in action. For
this purpose, some test problems are chosen along with their initial approximations
and the exact zeros in Tables 1-4. The errors |xn − α| denote approximations to
the sought zeros, and a(−b) stands for a × 10−b. Moreover, COC indicates the
computational order of convergence [5] and is computed by

COC =
log |f(xn)/f(xn−1)|
log |f(xn−1)/f(xn−2)|

. (8)

In what follows, we have reported the numerical results for ten mentioned test
problems. As it can be seen, our new method (4) supports their theoretical aspects.
As it can be observed in Tables 1-4, our modified method (4) works in action.
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f1(x) = ex
3−x − cos(x2 − 1) + x3 + 1, x0 = −1.65, α = −1,

f2(x) = (x− 2)(x6 + x3 + 1)e−x2

, x0 = 1.8, α = 2,
f3(x) = ex sinx+ log(x4 − 3x+ 1), x0 = 0.3, α = 0,

f4(x) = ex
2−3x sinx+ log(x2 + 1), x0 = 0.35, α = 0,

f5(x) =
1
2(e

x−2 − 1), x0 = 2.5, α = 2,
f6(x) = (x− 2)(x10 + x+ 2)e−5x, x0 = 2.2, α = 2.

Table 1. Numerical results with g1, h1

|x1 − α| |x2 − α| |x3 − α| COC
f1(x) 3.8427(−5) 5.2146(−36) 3.9925(−283) 8.0000
f2(x) 1.3575(−5) 2.3039(−37) 1.5865(−291) 8.0000
f3(x) 2.8856(−1) 5.0778(−3) 2.5111(−16) 8.2405
f4(x) 3.8654(−4) 5.7019(−25) 1.2735(−191) 8.0002
f5(x) 6.2271(−5) 1.6941(−35) 5.0842(−280) 8.0000
f6(x) 5.4001(−6) 2.3101(−44) 2.5931(−351) 8.0000

Table 2. Numerical results with g2, h1

|x1 − α| |x2 − α| |x3 − α| COC
f1(x) 3.7609(−5) 4.3899(−36) 1.5119(−283) 8.0000
f2(x) 1.2481(−5) 1.1766(−37) 7.3400(−294) 8.0000
f3(x) 2.6742(−1) 3.6032(−3) 1.6158(−17) 8.2652
f4(x) 4.7740(−4) 3.0895(−24) 9.4607(−186) 8.0003
f5(x) 6.1902(−5) 1.6154(−35) 3.4743(−280) 8.0000
f6(x) 5.7265(−6) 3.6941(−44) 1.1861(−349) 8.0000

Table 3. Numerical results with g1, h2

|x1 − α| |x2 − α| |x3 − α| COC
f1(x) 3.8024(−5) 3.37206(−36) 1.2894(−284) 8.0000
f2(x) 1.0910(−5) 6.61109(−39) 1.2017(−304) 8.0000
f3(x) 2.9784(−1) 2.4786(−4) 5.0336(−28) 8.0788
f4(x) 3.8229(−4) 4.4570(−26) 1.5179(−201) 8.0002
f5(x) 9.9658(−7) 5.6304(−52) 5.8452(−414) 8.0000
f6(x) 2.0020(−6) 8.2463(−48) 6.8356(−379) 8.0000

4. Conclusion

We have obtained an improvement of a sixth-order iterative method. Theorem (2)
shows that the order of convergence of the present method is eight. Per iteration
the present method requires four evaluations of the function and there is no need
for its derivatives and therefore has the efficiency index equal to 1.682. Numerical
tests demonstrate that the present method is preferable to the classical Ostrowskis
method in high precision computations.
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Table 4. Numerical results with g2, h2

|x1 − α| |x2 − α| |x3 − α| COC
f1(x) 3.7205(−5) 2.8334(−36) 3.2048(−285) 8.0000
f2(x) 9.8143(−6) 2.8346(−39) 1.3728(−307) 8.0000
f3(x) 3.3039(−1) 3.5427(−4) 8.7725(−27) 8.0347
f4(x) 4.7323(−4) 2.4580(−25) 1.2988(−195) 8.0002
f5(x) 6.1656(−7) 1.2086(−53) 2.6345(−427) 8.0000
f6(x) 2.3295(−6) 2.7716(−47) 1.1131(−374) 8.0000
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