
International Journal of

Mathematical Modelling & Computations
Vol. 02, No. 03, 2012, 239- 246

Application of the Sinc Approximation to the Solution of Bratu’s

Problem

J. Rashidinia a,b,∗ , N. Taher c

aDepartment of Mathematics, Central Tehran Branch, Islamic Azad University, Iran;
b Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran ;

cDepartment of Mathematics, Islamic Azad University, South Tehran

Branch,Tehran,Iran.

Received: 11 February 2012; Accepted: 25 May 2012.

Abstract. In this work, we study the performance of the sinc-Collocation method for solv-
ing Bratu’s problem. For different choices of step size, we consider the maximum absolute
errors in the solutions at sinc grid points and tabulated in tables. The comparison of the
obtained results verified that this method converges to the exact solution rapidly and with
O(exp (−c

√
n)) accuracy where c is independent of n.
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1. Introduction

The classical Liouville-Bratu-Gelfand problem is concerned with positive solutions
of the equation: {

∆u(x) + λeu(x) = 0, x ∈ Ω
u(x) = 0, x ∈ ∂Ω,

(1)

where parameter λ denotes the reaction term, x is a spatial variable, Ω and ∂Ω
denote the spatial domain and its boundary, respectively. Equation (1) contains the
exponent term eu and thus has very strong nonlinearity. It comes from the theory
of combustion, and is used as a model for the thermal reaction process such as that
when a combustible medium is placed in a vessel whose walls are maintained at a
fixed temperature [1–3, 6, 13, 14]. Also the Liouville-Bratu-Gelfand equation (1)
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represents the steady state of diffusion and transfer of heat conduction [10]. There
exists steady-state heat transfer for small λ. As λ is greater than a critical value,
the reaction will lead to explosion so that equation (1) has no solutions. We state
the critical λ as λc. Equation (1) has one or two solutions when λ = λc and λ < λc

respectively, where the critical value λc satisfies the equation 1 = 1
4

√
2λc sinh(

θ
4).

It was evaluated in [3] that the critical value λc is given by λ = 3.513830719.
It is hard to solve the Liouville-Bratu-Gelfand problem in a general domain Ω. The
classical Gelfand problem is with radially symmetric domain, i.e. u = u(r). In this
case, one has{

u′′(x) + N−1
r u′(x) + λeu(x) = 0, r ∈ (0, 1], N = 1, 2, 3, . . .

u(0) = u(1) = 0.

where N = 1, 2, and 3 correspond to the infinite slab, infinite circular cylinder, and
sphere, respectively. When N = 1, problem (1) is equivalent to the problem:{

u′′(x) + λeu(x) = 0, 0 ⩽ x ⩽ 1,
u(0) = u(1) = 0.

(2)

where λ is a physical parameter. The Bratu’s problem in one-dimensional planar
coordinates (2) has analytical solution in the following form:

u(x) = −2 log[
cosh[0.5(x− 0.5)θ]

cosh( θ4)
)]

where θ is the solution of θ =
√
2λ cosh( θ4).

Many authors trying to solve problem (2) by analytical and numerical methods, B-
spline method has been used in [4], the finite difference methods have been used by
[3, 14], Adomian decomposition methods have been proposed by [5, 11, 20], Laplace
transform decomposition method has been applied by [19] and homotopy analy-
sis method has been developed in [12], weighted residual method in [1], differential
transformation method in [7]and also variational methods in [8, 9], multigrid-based
methods in [15] and variational iteration method(VIM)has been used in [2] and re-
cently in our work [16] we applied sinc-Galerkin method.
In this paper, we applied sinc-Collocation method for numerical solution of Bratu’s
problem (2). The sinc-Collocation methods were developed and analyzed thor-
oughly by Professor Stenger in [17, 18]. The method converges to the exact solution
rapidly and with O(exp (−c

√
n)) accuracy where c is independent of n. The main

advantage of the sinc methods is that it is particularly suited for solving all types
of differential and integral equations, linear or nonlinear, homogeneous or inhomo-
geneous coefficients; for such problems the resulting system of algebraic equations
can always be written down explicitly, and is relatively small in size. Furthermore,
the computer programs based on sinc methods are usually considerably shorter
than the corresponding ones based on classical methods of approximation.

2. Function Preliminaries

The goal of this section is to recall notations, definitions and theorems of the sinc
function, state some known results, and derive useful formulas that are important
for this paper. These are thoroughly discussed by Professor Stenger in [18].
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The sinc function is defined on the whole real line by

S(k, h)(x) = sinc(x) =

{
sin(πx)

πx , x ̸= 0
1, x = 0.

(3)

For h > 0, the translated sinc function with evenly spaced nodes are given as

S(k, h)(x) = sinc

(
x− kh

h

)
, k = 0,±1,±2, . . . (4)

If f is defined on the real line, then for h > 0 the series

C(f, h)(x) =

∞∑
k=−∞

f(kh)sinc(
x− hk

h
), (5)

Is called the Whittaker cardinal expansion of f whenever this series converges.
To construct approximations on the interval (0, 1), which are used in this paper,
consider the conformal maps

ϕ(z) = ln(
z

1− z
). (6)

The map ϕ carries the eye-shaped region

DE =

{
z = x+ iy :

∣∣∣∣arg( z

1− z
)

∣∣∣∣ < d ⩽ π

2

}
,

onto the infinite strip

Dd =
{
ς = ξ + iη : |η| < d ⩽ π

2

}
.

The composition

Sj(x) = S(j, h) ◦ ϕ(x) = sinc

(
ϕ(x)− jh

h

)
, (7)

define the basis element for problem (2) on the interval (0, 1). The ”mesh size” h
is the mesh size in Dd for the uniform grids {kh},−∞ < k < ∞. The sinc points
zk ∈ (0, 1) in DE will be denoted by xk because they are real. The inverse image
of uniform grids are

xk = ϕ−1(kh) =
ekh

1 + ekh
, (8)

where

h =

√
πd

αM
, 0 ⩽ α ⩽ 1 (9)

and

N ≡
[∣∣∣∣αβM + 1

∣∣∣∣] (10)
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where [x] is the integer part of x.

Lemma 2.1 ([18]) Let ϕ be the conformal one-to-one mapping of the simply con-
nected domain DE onto Dd, given by (6). Then

δ
(0)
jk = [S(j, h) ◦ ϕ(x)]|x=xk

=

{
1, if j = k,
0, if j ̸= k,

(11)

δ
(1)
jk = h

d

dϕ
[S(j, h) ◦ ϕ(x)]|x=xk

=

{
0, if j = k,

(−1)k−j

k−j , if j ̸= k,
(12)

δ
(2)
jk = h2

d

dϕ
[S(j, h) ◦ ϕ(x)]|x=xk

=

{
−π2

3 , if j = k,
−2(−1)k−j

(k−j)2 , if j ̸= k.
(13)

3. The sinc-collocation method

The interpolation formula on the interval (0, 1) takes the form

f(x) ≈
N∑

j=−M

fj S(j, h) ◦ ϕ(x). (14)

The n-th derivative of the function f at points xj can be approximated using a
finite number of terms as

f (n)(x) ≈
N∑

j=−M

fj
dn

dxn
[S(j, h) ◦ ϕ(x)]. (15)

Setting

di

dϕi
[S(k, h) ◦ ϕ(x)] = S

(i)
k (x), 0 ⩽ i ⩽ 2,

and noting that

d

dx
[S(k, h) ◦ ϕ(x)] = S

(1)
k (x)ϕ′(x),

d2

dx2
[S(k, h) ◦ ϕ(x)] = S

(2)
k (x)[ϕ′(x)]2 + S

(1)
k (x)[ϕ′′(x)],

and

δ
(n)
kj = hn

dn

dϕn
[S(k, h) ◦ ϕ(x)]x=xj

.
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We assume that u(x), the solution of (2) is approximated by the finite expansion
of sinc basis functions

um(x) =

N∑
k=−M

ck S(k, h) ◦ ϕ(x), m = M +N + 1. (16)

If we replace each terms of (2) with its corresponding approximation given by the
right-hand side of (15) and (14) we have

N∑
k=−M

d2

dx2
[S(k, h) ◦ ϕ(x)]ck + λe

∑N
k=−M ck[S(k,h)◦ϕ(x)] = 0. (17)

By substituting x = xj = ϕ−1(jh) in (17) and applying the Collocation to it, the
discrete sinc-Collocation system for the determination of the unknown coefficients
is given by

N∑
k=−M

[
1

h2
δ
(2)
jk [ϕ′(xj)]

2 − 1

h
δ
(1)
jk ϕ′′(xj)]ck + λecj = 0, j = −M, . . . , N. (18)

To obtain a matrix representation of the equations in (18), denote the m×m(m =
M +N + 1) Toeplitz matrices

I(i) ≡ [δ
(i)
jk ], i = 0, 1, 2

whose jk-th entry is given by (11), (12), and (13).
Let D(g(xj)) denote the m×m diagonal matrix with

D(g(x))ij =

{
g(xi), if i = j,
0, if j ̸= k.

(19)

Let C1 be the m-vector with k-th component given by ck and let C2 be the m-
vector with j-th component given by ecj . Then the non-linear system in (18) takes
the matrix form

ΛC1 + λC2 = 0, (20)

where

Λ =
1

h2
I(2)D((ϕ′)2)− 1

h
I(1)D(ϕ′′).

Now we have a non-linear system of m equations of the m unknown coefficients.
The system (20) may be easily solved by a variety of methods in the approximate
sinc-Collocation solution um(x) of u(x).

4. Numerical results

In order to illustrate the performance of the sinc-Collocation method in solving
Bratu’s problem (2) and justify the accuracy and efficiency of the method, we
consider problem (2) with various λ.
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Table 1. Observed maximum absolute errors.

M λ = 1 λ = 2 λ = 3.51 λ = −2 λ = −π2

10 3.02× 10−4 8.60× 10−4 3.43× 10−2 4.20× 10−4 1.52× 10−3

25 6.46× 10−6 1.84× 10−5 9.83× 10−4 8.90× 10−6 3.21× 10−5

50 7.30× 10−8 2.07× 10−7 1.12× 10−5 9.99× 10−8 3.61× 10−7

75 2.24× 10−9 6.40× 10−9 3.45× 10−7 3.10× 10−9 1.11× 10−8

100 1.18× 10−10 3.36× 10−10 1.81× 10−8 1.8× 10−10 5.8× 10−10

130 5.36× 10−12 1.52× 10−11 8.23× 10−10 7.3× 10−12 2.6× 10−11

Table 2. Numerical errors for λ = 1.

x Our method Method in[16] Decomposition in[12]

0.1 2.77× 10−4 2.76× 10−4 2.68× 10−3

0.2 2.88× 10−4 2.92× 10−4 1.52× 10−4

0.4 3.01× 10−4 3.02× 10−4 2.20× 10−3

0.5 3.03× 10−4 3.08× 10−4 3.01× 10−3

0.6 3.01× 10−4 3.02× 10−4 2.20× 10−3

0.7 2.98× 10−4 2.96× 10−4 1.52× 10−3

0.8 2.88× 10−4 2.92× 10−4 2.02× 10−3

0.9 2.77× 10−4 2.76× 10−4 2.68× 10−3

Table 3. Numerical errors for λ = 2.

x Our method Method in[16] Decomposition in[12] Laplas in[13]

0.1 6.88× 10−4 6.85× 10−4 1.52× 10−2 2.13× 10−3

0.2 7.58× 10−4 7.73× 10−4 1.47× 10−2 4.21× 10−3

0.3 8.21× 10−4 8.18× 10−4 5.89× 10−3 6.19× 10−3

0.4 8.49× 10−4 8.54× 10−4 3.25× 10−3 8.00× 10−3

0.5 8.60× 10−4 8.77× 10−4 6.98× 10−3 9.60× 10−3

0.6 8.49× 10−4 8.54× 10−4 3.25× 10−3 1.09× 10−3

0.7 8.21× 10−4 8.18× 10−4 5.89× 10−3 1.19× 10−3

0.8 7.58× 10−4 7.73× 10−4 1.47× 10−2 1.24× 10−3

0.9 6.88× 10−4 6.85× 10−4 1.52× 10−2 1.09× 10−3

All experiments were performed in Mathematica 7.0.
In all tables, the maximum absolute errors over the set of sinc grid points

S = {x−M , x−M+1, . . . , xN};

xk =
ekh

ekh + 1
, , k = −M, . . . , N

is taken as

∥ EC(h) ∥= max
−M⩽k⩽N

|uexact solution(xk)− um,sinc-Collocation(xk)| ,

In our presented method, we take d = π
2 , α = β = 1 and by using (9) we can obtain

h.
In Table 1, we applied our method for N = 10, 25, 50, 75, 100 and 130 with various
λ = 1, 2, 3.51,−2 and λ = −π2. The maximum absolute errors in solutions of
problem (2) are compared with sinc-Galerkin, Decomposition, Laplas and B-spline
methods for N = 10 and tabulated in tables 2, 3, 4, 5 and 6 which show that our
results have more accuracy.
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Table 4. Numerical errors for λ = 3.51.

x Our method Method in[16] B-spline in[4]

0.1 1.13× 10−2 1.14× 10−2 3.84× 10−2

0.2 2.00× 10−2 2.04× 10−2 7.48× 10−2

0.3 2.76× 10−2 2.80× 10−2 1.06× 10−1

0.4 3.25× 10−2 3.31× 10−2 1.27× 10−1

0.5 3.43× 10−2 3.50× 10−2 1.35× 10−1

0.6 3.25× 10−2 3.31× 10−2 1.27× 10−1

0.7 2.76× 10−2 2.80× 10−2 1.06× 10−1

0.8 2.00× 10−2 2.04× 10−2 7.48× 10−2

0.9 1.13× 10−2 1.14× 10−2 3.84× 10−2

Table 5. Numerical errors for λ = −2.

x Our method Method in[16]

0.1 3.88× 10−4 3.86× 10−4

0.2 3.66× 10−4 3.71× 10−4

0.3 3.53× 10−4 3.51× 10−4

0.4 3.44× 10−4 3.45× 10−4

0.5 3.41× 10−4 3.46× 10−4

0.6 3.44× 10−4 3.45× 10−4

0.7 3.53× 10−4 3.51× 10−4

0.8 3.66× 10−4 3.71× 10−4

0.9 3.88× 10−4 3.86× 10−4

Table 6. Numerical errors for λ = −π2.

x Our method Method in[16]

0.1 1.22× 10−3 1.22× 10−3

0.2 1.04× 10−3 1.05× 10−3

0.3 9.27× 10−4 9.22× 10−4

0.4 8.61× 10−4 8.62× 10−4

0.5 8.41× 10−4 8.50× 10−4

0.6 8.61× 10−4 8.62× 10−4

0.7 9.27× 10−4 9.22× 10−4

0.8 1.04× 10−3 1.05× 10−3

0.9 1.22× 10−3 1.22× 10−3

5. Conclusion

The sinc-collocation method has been considered for the numerical solution of
Bratu’s problem which is a second-order nonlinear boundary-value problem. The
numerical results verified that the present method is an applicable technique and
approximates the solution very well. The new approach converges to the exact
solution rapidly and with O(exp (−c

√
n)) accuracy.
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