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Abstract.In this paper, we study the Casimir effect of a scalar field with Dirichlet boundary
condition in some certain topologies. By numerical analysis we show that Casimir energy is a
shape-dependent quantity. We also obtain the phase transition in different topologies in which
the Casimir force changes from attractive to repulsive or vice versa.
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1. Introduction

The Casimir effect, discovered more than 60 years ago in the seminal paper by
Casimir (1948), it is one of the most direct manifestations of the existence of zero
point vacuum oscillations. This effect is a manifestation of the non-trivial properties
of the vacuum state in quantum field theory, and it is a macroscopic quantum effect.
The Casimir effect, in its simplest form, is the attraction between two electrically
neutral, infinitely large, parallel conducting planes placed in a vacuum. In fact, both
parallel planes are mutually attracted to each other by the simple presence of the
vacuum [1, 2]. For many years the Casimir effect was little more than a theoretical
curiosity, but starting from the 1970’s it has rapidly received increasing attention
and in the last few years has become highly admired [2]. In the old days of classical
mechanics the idea of a vacuum was simple. The vacuum was what remained if
you emptied a container of all its particles and lowered the temperature down to
absolute zero. The arrival of quantum mechanics, however, completely changed our
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notion of a vacuum. All fields in particular electromagnetic fields have fluctuations.
The vacuum is not really empty. It is filled with virtual particles, which are in a
continuous state of fluctuation. Virtual particle-antiparticle pair can be created
from vacuum and annihilated back to vacuum. These virtual particles exist for a
time dictated by Heisenberg Uncertainty relation: ∆E ·∆t ≈ ℏ.
Photons (quanta of electromagnetic waves) are the dominant virtual particles in
vacuum fluctuations but other particles produced as well. As a matter of fact
vacuum is not simply nothing at all, but is best pictured as a superposition of
many different states of electromagnetic field. Thus the creation and subsequent
absorption of a photon by the vacuum implies vacuum fluctuates. In the ideal
situation, at zero temperature for instance, there are no real photons between the
plates. So it is only the vacuum, i.e., the ground state of quantum electrodynamics
(QED) which causes the plates to attract each other. In other words at any given
moment their actual value varies around a constant, mean value. Even a perfect
vacuum at absolute zero has fluctuating fields known as vacuum fluctuations, the
mean energy of which corresponds to half the energy of a photon. Remarkably the
attractive force is independent of the coupling of electromagnetic (EM) field to
matter (viz., the electronic charge) and is proportional to the velocity of light, c
and Planck’s constant, h.
As it is known the origin of the Casimir effect is essential geometrical and since

the space between two plates is different from the space outside, the vacuum fluc-
tuations are also different in the two regions. On the other hand fluctuations exert
different forces on the plates from inside and outside, resulting in a net pressure,
Casimir force and particle statistics. Particles other than photon also contribute a
small effect but only the photon force is measurable. It is worth to mention that all
bosons such as photons produce an attractive Casimir force while fermions make a
repulsive contribution [1]. When one studies the Casimir effect, the zero point en-
ergy of the confined system should be calculated, and regularized. There are many
methods of regularization such as frequency cutoff regularization, Greens function
method, zeta function regularization, dimensional regularization, and point-splitting
method, etc. The zero point energy after regularization is divergent, and thus it
needs renormalization, which, briefly, aims at shifting the divergent part of the
ground state energy from the ground state energy to the classical energy. Histor-
ically, it was Casimir who first subtracted from the infinite vacuum energy of the
quantized electromagnetic field in the presence of ideal-metal planes the infinite
vacuum energy of the same field in free Minkowski space. Both infinite energies
were regularized, and after subtraction, the regularization was removed, leaving a
finite energy per unit area, which depends on the separation distance a between the
planes. This operation is applied to the operators of all physical observables, de-
fined in free Minkowski space and written in a symmetrical form with respect to the
creation and annihilation operators. Actually regularization is a method to change
an infinite quantity into a finite one. A regularization parameter is introduced such
that, in the appropriate limit, the original expression is restored. Of course, this
procedure is not unique and beyond this formal definition, regularizations some-
times have a direct physical meaning. For instance, since ideal conductors do not
exist in nature, one has in all real applications some natural frequency, usually of
the order of the plasma frequency, beyond which the reflectivity rapidly decreases.
However, this decrease might not provide a regularization for some systems. In a
frequency cutoff regularization, one introduces some cutoff function in the mode
expansion which makes the corresponding sum/integral converge. In a zeta function
regularization, one temporarily changes the power of frequency in the mode sum
energy [3–5, 7, 10]. We use numerical methods to compute the related equations
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(for example see the related computations of [6]).
The main aim of this paper is to compute the Casimir energy for different topolo-

gies and more interestingly we find the phase transition in which the Casimir force
change its sign. To our knowledge this peculiar effect in our cases has not been
reported. This paper is organized as follows: In section 2 we recall the Casimir
energy in a rectangle. Section 3 is devoted to the calculation of the Casimir energy
in 3 dimensional configurations. We show that within a specific choice of the free
parameters of he theory the phase transition takes place. Finally the paper ends
with a brief conclusion.

2. The Scalar Casimir Effect in a Rectangle

The Casimir energy and force may change sign depending on the geometry of the
configuration and the type of boundary conditions. A dramatic example of this
situation, which has given rise to many discussions in the literature for several
decades, is the case of a rectangular box with sides a, b, and c. Lukosz (1971)
noticed that the electromagnetic Casimir energy inside an ideal-metal box may
change sign depending on side lengths a, b, and c. A detailed investigation of the
Casimir energy for fields of different spins, where it may again be either positive
or negative, inside a rectangular box as a function of the box dimensions was per-
formed by Mamayev and Trunov (1979a, 1979b). In particular, analytical results
for two- and three-dimensional boxes were obtained by repeated application of the
AbelPlana formula. Ambjorn and Wolfram (1983) used the Epstein zeta function
to calculate the Casimir energy for a scalar and an electromagnetic field in hy-
percuboidal regions in n-dimensional spacetime. The problem of isolation of the
divergent terms in the vacuum energy and their interpretation received the most
attention. In recent years, this problem has been reformulated in terms of a rect-
angular box divided into two sections by an ideal-metal movable partition (piston)
(Cavalcanti 2004, Hertzberg et al. 2005). In this article for regularization of Epstein
zeta function is used. In the beginning we must calculate the cavity modes. We start
with a scalar field φ(x⃗, t) obeying the KleinGordon equation in four-dimensional
spacetime (

□+
m2c2

ℏ2

)
φ(x⃗, t) = 0. (1)

Here m is the mass of the field and the four-dimensional d’Alembert operator is
defined by

□ ≡ 1

c2
∂2

∂t2
−∇2. (2)

Note that this scalar field in four-dimensional space-time is dimensionless. By ap-
plying the Dirichlet boundary condition on each of the walls,

φ(x⃗ = 0) = φ(x = a1) = φ(y = a2) = φ(z = a3) = 0, (3)

the solutions are obtained as

φ
(±)
nℓp (x⃗, t) = A e∓iωnℓpt sin(kn x) sin(kℓ y) sin(kp z), (4)
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where

kn =
nπ

a1
, kℓ =

ℓ π

a2
, kp =

p π

a3
, n, ℓ, p = 1, 2, 3, . . .

ωnℓp =

[
m2c4

ℏ2
+ c2

(
k2
n + k2

ℓ + k2
p

)] 1

2

. (5)

In this case, the scalar product of the two (in general complex) solutions of eqn
(1), f and g, is

(f, g) = i

∫ a

0

∫ b

0

∫ c

0
dx1 dx2 dx3

(
f∗ ∂g

∂x0
− ∂f∗

∂x0
g

)
(6)

where x0 = x0 = ct. Therefore, the solutions of the Klein-Gordon equation can be
written as follows

φ
(±)
nℓp (x⃗, t) =

√
4c

a1a2a3 ωnℓp
e∓iωnℓpt sin(kn x) sin(kℓ y) sin(kp z). (7)

The energy of the ground state in this case is as follows

E0(a1, a2, a3,m) =
ℏ
2

∞∑
n,ℓ,p=1

(8)

=
ℏ
2

∞∑
n,ℓ,p=1

{
m2c4

ℏ2
+ c2π2

[(
n

a1

)2

+

(
ℓ

a2

)2

+

(
p

a3

)2
]} 1

2

For a rectangular, one can show that

φ
(±)
nℓp (t, x, y) =

√
2

abωnℓ
e∓iωnℓt sin(kn x) sin(kℓ y) (9)

in which the zero-point energy becomes

E0(a, b) =
π

2

∞∑
n,ℓ=1

[(n
a

)2
+

(
ℓ

b

)2
] 1

2

, (10)

where

kn =
nπ

a1
, kℓ =

ℓ π

a2
, ω2

n,ℓ = k2n + k2ℓ , n, ℓ = 1, 2, 3, . . . . (11)

Note that n and ℓ cannot be equal to zero because in that case the solution (10)
vanishes. The Epstein zeta function and its analytic continuation are very conve-
nient tools for the investigation of the analytic properties of multiple summations.
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The Epstein zeta function can be defined as (Erd‘elyi et al. 1981)

Zp

(
1

a1
,
1

a2
, . . . ,

1

ap
; s

)
=

∞∑
n1,...,np=−∞

[(
n1

a1

)2

+ · · ·+
(
np

ap

)2
]−s/2 (

1− δn1
· · · δnp

)
.

(12)
Note that the inclusion of the negative product of δ-symbols is equivalent to the
condition that the term with all ni = 0 is omitted. The series in eqn (12) is
convergent when Re[s] > p. Equation (10) can be expressed in terms of the Epstein
and Riemann zeta functions in the following way:

E
(s)
0 (a, b) =

π

8

{
Z2

(
1

a
,
1

b
; s− 1

)
+ 2

(
1

a
+

1

b

)
ζR(s− 1)

}
, (13)

In the limiting case s → 0 (i.e. when the regularization is removed), the quantity
(13) is divergent. By using the reflection relations for the Riemann zeta function
and for the Epstein zeta function as follows,{
a1 · · · ap Γ( s2)π

−s/2 Zp(a1, a2, . . . , ap; s) = Γ(p−s
2 )π(s−p)/2 Zp

(
1
a1
, 1
a2
, . . . , 1

ap
; p− s

)
Γ( s2) ζR(s) = π(2s−1)/2 Γ(1−s

2 ) ζR(1− s)

(14)
we finally obtain the finite Casimir energy for a rectangle (After removing the
regularization),

E0(a, b) = − ab

32π
Z2(a, b; 3) +

π

48

(
1

a
+

1

b

)
. (15)

where Z2 is defined by

Z2(a, b; 3) =
2π

3

2

Γ
(
3
2

) ∞∑
ℓ=1

S

(
πbℓ,

1

a
; 3

)
+ 2

ζR(3)

a3

=
2π2

32ab2
+

16π

a2b

∞∑
n,ℓ=1

K1

(
2πnℓ

b

a

)
+ 2

ζR(3)

a3

=
2π2

32ab2
+ 2

ζR(3)

a3
− 32π2

a2b
G

(
b

a

)
(16)

in which

G(z) ≡ −z

∫ ∞

1
du

√
u2 − 1

∞∑
n=1

n2

e−2πnℓuz − 1

= − 1

2π

∞∑
n=1

∞∑
ℓ=1

n

ℓ
K1(2πnℓz). (17)

S(η, κ, q) ≡ π−q/2 Γ
(q
2

) ∞∑
k=1

[(η
π

)2
+

(k
κ

)2
]−q/2

= κ

(
η√
π

)1−q
[
Γ

(
q − 1

2

)
+ 4

∞∑
n=1

(ηκn)
(q−1)

2 K (q−1)

2

(2ηκn)

]
. (18)
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Where S(η, κ, q) is auxiliary function. The substitution of eqn (16) into eqn (15)
the Casimir energy is found to be

E(a, b) =
π

48a
− b

16πa2
ζR(3) +

π

a
G

(
b

a

)
. (19)

And consequently the Casimir force becomes:

Fa(a, b) = −∂E(a, b)

∂a
=

π

48a2
− b

8πa3
ζR(3) +

π

a2
G

(
b

a

)
+

πb

a3
G

′
(
b

a

)
(20)

Fb(a, b) = −∂E(a, b)

∂b
=

1

16πa2
ζR(3)−

π

a2
G

′
(
b

a

)
. (21)

The important fact is that this energy is symmetric with respect to the interchange
of a and b. This symmetry is, however, implicit. Numerical computations using the
full equation (19) show that the Casimir energy E is positive if

0.34278 <
b

a
< 2.73687.

The 3D plot of the casimir energy for a rectangle and its contour plot is showed in
figure (1).

3. A Massless Scalar Field in a 2-Torus

In the previous sections, we have considered Dirichlet boundary conditions imposed
on scalar field of rectangle. Similar results can be obtained for different types of
boundary conditions. As a simple case, let us begin with a massless scalar field in a
rectangle whose opposite sides are identified with each other (we have the topology
of a 2-torus, which can be symbolically written as S1 × S1). In this case In this
case kn = 2πn

a and κℓ =
2πℓ
b , the vacuum energy is given by

E0(a, b) = π

∞∑
n,ℓ=−∞

[(n
a

)2
+

(ℓ
b

)2
] 1

2

(22)

Noting that the term with n = ℓ = 0 does not contribute to the Casimir energy,
one can write

E
(s)
0 (a, b) = π

∞∑
n,ℓ=−∞

(1− δn0
δℓ0)

[(n
a

)2
+

(ℓ
b

)2
]− (s−1)

2

= πZ2

(
1

a
,
1

b
; s− 1

)
(23)

After regularization and making use of the Z2, one obtains

E(a, b) = − π

24b
− ζR(3)b

2πa2
+

4π

a
G

(
2b

a

)
+

π

12a
(24)

The 3D plot of the casimir energy for a 2-torus and its contour plot is showed in
figure (2).
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4. A Massless Scalar Field in a Hybrid

It is of some interest to consider a hybrid situation, for example an identification
condition on one pair of sides of a rectangle, and a Dirichlet boundary condition
on the other (we have the topology of S1 × I , where I is a Euclidean interval).
The vacuum energy of a massless scalar field takes the form

E0(a, b) = π

∞∑
n=−∞

∞∑
ℓ=1

[(n
a

)2
+

( ℓ

2b

)2
] 1

2

=
π

2

∞∑
n=−∞

∞∑
ℓ=−∞

(1− δℓ0)

[(n
a

)2
+

( ℓ

2b

)2
] 1

2

=
π

2

∞∑
n,ℓ=−∞

(1− δn0
δℓ0)

[(n
a

)2
+

( ℓ

2b

)2
] 1

2

− π

a

∞∑
n=1

n (25)

Then the regularized vacuum energy in the hybrid configuration is

E
(s)
0 (a, b) =

π

2

[
Z2

(
1

a
,
1

2b
; s− 1

)
− 2

a
ζR(s− 1)

]
(26)

After application of the reflection relation (14), the following finite result is obtained

E(a, b) = − ab

4π
Z2(a, 2b, ; 3) +

π

12a
(27)

which can be written as

E(a, b) = − π

24b
− ζR(3)b

2πa2
+

4π

a
G

(
2b

a

)
+

π

12a
(28)

The 3D plot of the casimir energy for a hybrid and its contour plot is showed in
figure (3). As a result, we collect the Casimir energy range for a scalar field with
different topologies in table.(1).

Figure 1. Left: The Casimir energy for a scalar field in a rectangular, Right: The contour plot of the
Casimir energy
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Figure 2. Left: The Casimir energy for a scalar field in a 2-torus, Right: The contour plot of the Casimir
energy

Figure 3. Left: The Casimir energy for a scalar field in a hybrid, Right: The contour plot of the Casimir
energy

Table(1): The Casimir energy range for a scalar field with different topologies

5. Conclusion

An attractive force between two uncharged parallel conducting plates, which is
known as Casimir force, showed that finite differences between different configura-
tions of infinite energy have physical interpretation. The advent of divergence in
expectation value of the energy-momentum tensor and consequently in zero-point
energy leads to fundamental problems in modern physics. In non-gravitational
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physics, regarding this fact that only changes in energy from one state to another
are measurable, any resulted infinite vacuum energy in QFT may be renormalized
-or rescaled- by subtracting infinite energy from quantum vacuum energy.
There are few instances wherein the Casimir effect can give rise to repulsive forces
between uncharged objects. Theoretically, one can explain the repulsive forces, in
fact, this has sparked interest in applications of the Casimir effect toward the de-
velopment of levitating devices. However, such a repulsive force has been detected
recently [9]. Casimir repulsion can in fact occur for sufficiently anisotropic electri-
cal bodies [8]. By numerical analysis, in this study we study the phase transition
of the Casimir energy. Our results show that not only the Casimir energy depends
on a topology, but ia a given topology by changing the parameters one my receive
a phase transition of repulsive and attractive Casimir force.
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