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1. Introduction

Integral equations with time delay utilized in physical and biological modeling pro-
cesses. Delays occurs in biological, chemical, transportation, electronic, communi-
cation, manufacturing and power systems. In [2, 10, 11], delay integral equations
(DIEs) and delay integro-differential equations (DIDEs) are solved by different
methods. In [6, 7], the approximate solutions of optimal control of time delay sys-
tems are derived by Block pulse functions. Nowadays, basis functions were used to
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derive solutions of integral equations and differential equations that can be seen in
[1, 4, 5, 9].
In this paper we use Block pulse functions for numerical solving of two types of
integral equations with constant time delay τ > 0,
1) Volterra integral equations with time delay :

g(t) = f(t) +

∫ t

0
k(t, s)g(s− τ)ds t ∈ [0, T ], τ ∈ (0, t)

This Volterra integral equation is the modelling of human population that the
g(t) is the number of population in time t and all children born during the time
interval 0 < τ < t who survive to time t. Also f(t) is the survival function, which
is the function of the number of people that survive to age t.
2) Fredholm integral equations with time delay :

g(t) = f(t) +

∫ b

a
k(t, s)g(s− τ)ds t ∈ [a, b], τ ∈ (a, b)

This integral equation is similar to Lotka integral equation for periodicity in the
surge of birthrates. The study of population dynamics includes determination of
the surge in the birthrate g(t) at any time t to allow for future necwssary planning.
The dependence of the birthrate g(t) on previous birthrate g(t− τ), for woman in
the childbearing age range a < τ < b is given by Lotka integral equation. k(s, t) is
the probility that a female lives to age τ and she will give birth to a female in the
interval ∆τ . f(t) is a term added to allow for girls already born before the oldest
childbearing woman (of age τ = b) was born.
This article is organized as follows. In section 2, we explain block pulse functions

and integration operational matrix and functions containing time delay f(t − τ).
Section 3 is devoted to solving Volterra integral equations with time delay. In
Section 4, we solve Fredholm integral equations with time delay. Section 5 is devoted
to error estimation and rate of convergence and in section 6, we achieve numerical
examples to show the accuracy of the method and the culmination of paper in
section 7 is the conclusion.

2. Preliminaries

The aim of this section is to interprate notations and definition of the block pulse
functions that have expressed entirely in [8].

2.1 Definition

We define the m-set of BPFs as,

ϕ
(m)
i (t) =

{
1 (i− 1)h ⩽ t < ih,
0 otherwise.

(1)

with t ∈ [0, T ), i = 1, 2, ...,m and h = T
m .

The primary properties of BPFs are disjointness and orthogonality that can
be expressed as follows
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ϕ
(m)
i (t)ϕ

(m)
j (t) = δijϕ

(m)
i (t), (2)

∫ T

0
ϕ
(m)
i (t)ϕ

(m)
j (t)dt = hδij , i, j = 1, 2, ...,m. (3)

where i, j = 1, 2, ...,m and δij is Kronecker delta.

also If m → ∞, then the BPFs set is complete; i.e. for every f ∈ L2([0, T )),
Parseval’s identity holds, ∫ T

0
f2(t)dt =

∞∑
i=1

f2i ∥ϕ
(m)
i (t)∥2, (4)

where

fi =
1

h

∫ T

0
f(t)ϕ

(m)
i (t)dt. (5)

By considering first m terms of BPFs, we can write them brevity as m-vector form

Φ(t) =
(
ϕ1(t), ϕ2(t), . . . , ϕm(t)

)T
, t ∈ [0, T ).

2.2 Functions Approximation

A real bounded function f(t), which f(t) ∈ L2[0, T ), can be expanded into a
block pulse series as

f(t) ≃ f̂m(t) =
m∑
i=1

fiϕ
(m)
i (t), (6)

where fi is the block pulse coefficient with respect to the ith BPF ϕ
(m)
i (t). In the

vector form we have,

f(t) ≃ f̂m(t) = F TΦ(t) = ΦT (t)F, (7)

where

F =
(
f1, f2, . . . , fm

)T
.

Let k(s, t) ∈ L2
(
[0, T1)× [0, T2)

)
. It can be expanded as

k(s, t) = ΨT (s)KΦ(t) = ΦT (t)KTΨ(s), (8)

where Ψ(s) and Φ(t) are m1 and m2 dimensional BPFs vectors respectively, and
K =

(
kij

)
, i = 1, 2, ...,m1, j = 1, 2, ...,m2 is the m1 × m2 block pulse coefficient
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matrix with

kij =
1

h1h2

∫ T1

0

∫ T2

0
k(s, t)Ψ

(m1)
i (s)Φ

(m2)
j (t)dtds,

where h1 =
T1

m1
, h2 =

T2

m2
. For convenience, we put m1 = m2 = m.

2.3 Integration operational matrix

Computing
∫ t
0 ϕ

(m)
i (s)ds follows

∫ t

0
ϕ
(m)
i (s)ds =

0 0 ⩽ t < (i− 1)h,
t− (i− 1)h (i− 1)h ⩽ t < ih,
h ih ⩽ t < T.

(9)

From [3], We will have:

∫ t

0
Φ(s)ds ≃ PΦ(t), (10)

where operational matrix of integration is given by

P =
h

2


1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...
...
...
. . .

...
0 0 0 . . . 1


m×m

. (11)

So, the integral of every function f(t) can be approximated as follows

∫ t

0
f(s)ds ≃

∫ t

0
F TΦ(s)ds ≃ F TPΦ(t). (12)

2.4 Functions Containing Time Delay f(t − τ )

In order to approximate a function containing time delay, we consider a block
pulse function containing time delay τ = (q+λ)h with a nonnegative integer q and
0 ⩽ λ < 1 that can be expressed as

ϕ
(m)
i (t−τ) =


ϕ
(m)
i+q (t) + ϕ

(m)
λ (t− (i+ q)h)− ϕ

(m)
λ (t− (i+ q − 1)h) for i < m− q

ϕ
(m)
i+q (t)− ϕ

(m)
λ (t− (i+ q − 1)h) for i = m− q

0 for i > m− q.
(13)

or in a vector form :

ϕ
(m)
i (t− τ) = ∆T

i H
qΦ(t)−∆T

i H
qΦλ(t) + ∆T

i H
q+1Φλ(t), (14)
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To avoid the expression Φλ(t) in the above equation, we expand the function

ϕ
(m)
i (t− τ) into its block pulse series :

ϕ
(m)
i (t− τ) =

(
ci1, ci2, . . . , cim

)
Φ(t),

where the block pulse coefficients cij (i, j = 1, 2, · · · ,m) are :

cij =
1

h

∫ T

0
ϕ
(m)
i (t− τ)ϕ

(m)
j (t)dt,

=
1

h

∫ jh

(j−1)h
ϕ
(m)
i (t− τ)dt,

=
1

h
∆T

i H
q
( ∫ jh

(j−1)h
Φ(t)dt−

∫ jh

(j−1)h
Φλ(t)dt+H

∫ jh

(j−1)h
Φλ(t)dt

)
,

= ∆T
i

(
(1− λ)Hq + λHq+1

)
∆j . (15)

Noticing that the expression ∆T
i

(
(1 − λ)Hq + λHq+1

)
∆j is just the single entry

positioned in the ith row and jth column of the matrix (1−λ)Hq+λHq+1, we can
expand the whole block pulse function vector containing time delay τ = (q + λ)h
into its block pulse series in a vector form :

Φ(t− τ) =
(
(1− λ)Hq + λHq+1

)
Φ(t). (16)

In the above equation, the matrix (1 − λ)Hq + λHq+1 is usually called the block
pulse operational matrix for time delay, or simply the delay operational matrix.
Expressing concretely, it is :

(q + 1)th-column
↓

(1− λ)Hq + λHq+1 =



0 · · · 0 1− λ λ 0 · · · 0
0 · · · 0 0 1− λ λ · · · 0
... · · ·

...
...

...
...
. . .

...
0 · · · 0 0 0 0 · · · λ
0 · · · 0 0 0 0 · · · 1− λ
0 · · · 0 0 0 0 · · · 0
... · · ·

...
...

...
... · · ·

...
0 · · · 0 0 0 0 · · · 0


m×m

.
(17)

Therefore, the block pulse series of a function containing time delay τ = (q + λ)h
can easily be obtained as :

f(t− τ) ≃ F TΦ(t− τ) = F T
(
(1− λ)Hq + λHq+1

)
Φ(t). (18)

3. Solving Volterra Integral Equations with Time Delay

We consider following Volterra integral equation with constant time delay τ > 0,

g(t) = f(t) +

∫ t

0
k(t, s)g(s− τ)ds, t ∈ [0, T ], τ ∈ (0, T ), (19)
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where the function g ∈ L2[0, T ] is the unknown function, while the functions f ∈
L2[0, T ] and k(t, s) ∈ L2

(
[0, T ]× [0, T ]

)
are the known functions.

We approximate g(t), f(t), k(t, s) by relations (7), (8) as follows :

g(t) ≃ GTΦ(t) = ΦT (t)G,

f(t) ≃ F TΦ(t) = ΦT (t)F,

k(t, s) ≃ ΦT (t)KΨ(s) = ΨT (s)KTΦ(t),

We approximate g(s− τ) by ralation (18) as follows,

g(s− τ) ≃ GTΨ(s− τ) ≃ GT
(
(1− λ)Hq + λHq+1

)
Ψ(s),

and by letting A = (1− λ)Hq + λHq+1,we can write,

g(s− τ) ≃ GTAΨ(s).

With substituting above approximation in equation (19), we have

GTΦ(t) ≃ F TΦ(t) +

∫ t

0
GTAΨ(s)ΨT (s)KTΦ(t)ds,

≃ F TΦ(t) +GTA
( ∫ t

0
Ψ(s)ΨT (s)ds

)
KTΦ(t). (20)

Let Ki be the ith row of the constant matrix KT , Ri be the ith row of the integra-
tion operational matrix P , and DKi

be a diagonal matrix with Ki as its diagonal
entries. By the previous relations and assuming m1 = m2, we will have,

( ∫ t

0
Ψ(s)ΨT (s)ds

)
KTΦ(t) =

( ∫ t

0
Φ(s)ΦT (s)ds

)
KTΦ(t)

=


R1Φ(t) 0 · · · 0

0 R2Φ(t) · · · 0
...

...
. . .

...
0 0 · · · RmΦ(t)



K1

K2
...

Km

Φ(t)

=


R1Φ(t)K1Φ(t)
R2Φ(t)K2Φ(t)

...
RmΦ(t)KmΦ(t)

 =


R1Φ(t)Φ

T (t)KT
1

R2Φ(t)Φ
T (t)KT

2
...

RmΦ(t)ΦT (t)KT
m



=


R1DK1

R2DK2

...
RmDKm

Φ(t) = BΦ(t), (21)
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where

B =
h

2


k11 2k21 · · · 2km1

0 k22 · · · 2km2
...

...
. . .

...
0 0 · · · kmm


m×m

. (22)

With substituting relation (21) in (20), we have

GTΦ(t) ≃ F TΦ(t) +GTABΦ(t),

Then,

GT (I −AB) ≃ F T , (23)

So, by setting M = I −AB and replacing ≃ by =, we will have,

MTG = F. (24)

Which is a linear system of equations with lower triangular coefficients matrix that
gives the approximate block pulse coefficient of the unknown function g(t).

4. Solving Fredholm Integral Equations with Time Delay

We consider following Fredholm integral equation with constant time delay τ > 0,

g(t) = f(t) +

∫ b

a
k(t, s)g(s− τ)ds, t ∈ [a, b], τ ∈ (0, b− a), (25)

Our problem is to determine block pulse coefficients of g(t) in the interval t ∈ [a, b]
from the known functions f(t) and k(t, s). usually we set a = 0 to facilities the use
of block pulse functions. In case a ̸= 0 we set s = t−a

b−aT where T = mh.
Approximating functions g(t), f(t) and k(t, s) by BPFs by relations (7), (8), (18)
gives,

g(t) ≃ GTΦ(t) = ΦT (t)G,

f(t) ≃ F TΦ(t) = ΦT (t)F,

k(t, s) ≃ ΦT (t)KΨ(s) = ΨT (s)KTΦ(t),

g(s− τ) ≃ GTΨ(s− τ) ≃ GT
(
(1− λ)Hq + λHq+1

)
Ψ(s) = GTAΨ(s),

where vectors F , G and matrix K are BPFs coefficients of f(t), g(t) and
k(t, s),respectively.
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With substituting above approximation in equation (25), we have

GTΦ(t) ≃ F TΦ(t) +

∫ mh

0
GTAΨ(s)ΨT (s)KTΦ(t)ds

≃ F TΦ(t) +GTA
( ∫ mh

0
Ψ(s)ΨT (s)ds

)
KTΦ(t), (26)

by the relation
∫mh
0 Ψ(s)ΨT (s)ds = hI , we have

GTΦ(t) ≃ F TΦ(t) +GTAhIKTΦ(t),

or

GT (I − hAKT ) ≃ F T , (27)

So, by assuming M = I − hAKT and replacing ≃ by =, we can write,

MTG = F. (28)

Therefore we will have a liner system of equations that gives the approximate Block
pulse coefficients of the unknown function g(t).

5. Error Estimation and Rate of Convergence

In this section, we will show that the rate of convergence presented method for
solving integral equations with time delay is O(h) and because of it we can obtain
good degree of accuracy.

Theorem 5.1 Suppose that f(t) is an arbitrary real bounded function, which is

square integrable in the interval [0, 1), and e(t) = f(t)− f̂m(t), t ∈ I = [0, 1), which

f̂m(t) =
∑m

i=1 fiϕ
(m)
i (t) is the block pulse series of f(t). Then,

∥e(t)∥ ⩽ h

2
√
3
sup
t∈I

|f ′(t)|. (29)

Proof Let,

ei(t) =

{
f(t)− fi t ∈ Di,
0 t ∈ I −Di.

(30)

where Di = {t : (i− 1)h ⩽ t < ih, h = 1
m} and i = 1, 2, ...,m.

We have,

ei(t) = f(t)− 1

h

∫ ih

(i−1)h
f(s)ds =

1

h

∫ ih

(i−1)h

(
f(t)− f(s)

)
ds,
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now by mean value theorem, we get,

ei(t) =
f ′(ηi)

h

∫ ih

(i−1)h
(t−s)ds = f ′(ηi)

(
t+(−i+1

2
)h
)
, t, ηi ∈ Di, i = 1, 2, ...,m.

then,

∥ei(t)∥2 =
∫ ih

(i−1)h
|ei(t)|2dt =

(
f ′(ηi)

)2 ∫ ih

(i−1)h

(
t+ (−i+ 1

2
)h
)2
dt

=
h3

12

(
f ′(ηi)

)2
, ηi ∈ Di, i = 1, 2, ...,m. (31)

Consequently

∥e(t)∥2 =
∫ 1

0
|e(t)|2dt =

∫ 1

0

( m∑
i=1

ei(t)
)2
dt

=

∫ 1

0

[ m∑
i=1

e2i (t) + 2
∑
i<j

ei(t)ej(t)
]
dt =

m∑
i=1

∫ 1

0
e2i (t)dt =

m∑
i=1

∥ei(t)∥2

=
h3

12

m∑
i=1

(
f ′(ηi)

)2 ⩽ h2

12
sup
t∈I

|f ′(t)|2, (32)

or,

∥e(t)∥ ⩽ h

2
√
3
sup
t∈I

|f ′(t)|.

hence, ∥e(t)∥ = O(h). ■

Theorem 5.2 Suppose that f(s, t) ∈ L2
(
[0, 1) × [0, 1)

)
and e(s, t) = f(s, t) −

f̂m(s, t), (s, t) ∈ D = [0, 1)× [0, 1), which f̂m(s, t) =
∑m

i=1

∑m
j=1 fijψ

(m)
i (s)ϕ

(m)
j (t)

is the block pulse series of f(s, t). Then,

∥e(s, t)∥ ⩽ h

2
√
3

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

) 1

2

. (33)

Proof Let,

eij(s, t) =

{
f(s, t)− fij (s, t) ∈ Dij ,
0 (s, t) ∈ D −Dij .

(34)

where Dij = {(s, t) : (i − 1)h ⩽ s < ih, (j − 1)h ⩽ t < jh, h = 1
m} and

i, j = 1, 2, ...,m.
For i, j = 1, 2, ...,m, we have,

eij(s, t) = f(s, t)− 1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h
f(x, y)dydx =

1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h

(
f(s, t)−f(x, y)

)
dydx,
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now by mean value theorem, we get,

eij(s, t) =
1

h2

∫ ih

(i−1)h

∫ jh

(j−1)h

(
(s− x)f ′s(ηi, ηj) + (t− y)f ′t(ηi, ηj)

)
dydx

= f ′s(ηi, ηj)
(
s+ (−i+ 1

2
)h
)
+ f ′t(ηi, ηj)

(
t+ (−j + 1

2
)h
)
, (s, t), (ηi, ηj) ∈ Dij .

then,

∥eij(s, t)∥2 =
∫ ih

(i−1)h

∫ jh

(j−1)h
|eij(s, t)|2dtds

=
h4

12

(
f ′2s (ηi, ηj) + f ′2t (ηi, ηj)

)
, (ηi, ηj) ∈ Dij , i, j = 1, 2, ...,m.

(35)

Consequently

∥e(s, t)∥2 =
∫ 1

0

∫ 1

0
|e(s, t)|2dtds =

∫ 1

0

∫ 1

0

( m∑
i=1

m∑
j=1

eij(s, t)
)2
dtds

=

m∑
i=1

m∑
j=1

∫ 1

0

∫ 1

0
e2ij(s, t)dtds =

m∑
i=1

m∑
j=1

∥eij(s, t)∥2

=
h4

12

m∑
i=1

m∑
j=1

(
f ′2s (ηi, ηj) + f ′2t (ηi, ηj)

)
⩽ h2

12

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

)
,

(36)

or,

∥e(s, t)∥ ⩽ h

2
√
3

(
sup

(x,y)∈D
|f ′s(x, y)|2 + sup

(x,y)∈D
|f ′t(x, y)|2

) 1

2

.

hence, ∥e(s, t)∥ = O(h). ■

6. Numerical Examples

To illustrate the theoretical results stated in Sections 3, 4 we consider below exam-
ples. The computations associated with the examples were performed using Matlab
7. Let Gi denote the Block pulse coefficient of exact solution of the given examples,
and let gi be the Block pulse coefficient of computed solutions by the presented
method. The error is defined as

∥E∥∞ = max1⩽i⩽m|Gi − gi|

Example 6.1 Consider the following Volterra integral equation with (constant) time
delay τ > 0,

g(t) = − t4

12
+ τ

t3

3
+
(
1− τ2

2

)
t2 +

∫ t

0
(t− s)g(s− τ)ds s, t ∈ [0, T ], τ ∈ (0, T ) (37)
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With the exact solution g(t) = t2 , for 0 ⩽ t ⩽ T . The numerical results are
shown in Table 1.

Table 1: Results for Example 6.1 with m = 32

T=0.1 T=0.5 T=1
τ ∥E∥∞ τ ∥E∥∞ τ ∥E∥∞

0.001 2.25253702323E − 10 0.005 1.43236475159E − 7 0.01 2.41781324660E − 7
0.004 7.89018951737E − 10 0.020 5.05392178898E − 7 0.04 8.89548092253E − 7
0.007 1.05137312606E − 8 0.035 6.77549461664E − 6 0.07 1.18904409627E − 5
0.010 3.23552150853E − 8 0.050 2.07573266779E − 5 0.10 3.59412759183E − 5
0.013 7.10063631885E − 8 0.065 4.54085551807E − 5 0.13 7.78747910139E − 5
0.016 1.31142679048E − 7 0.080 8.36313265580E − 5 0.16 1.42228093536E − 6
0.019 2.17278255504E − 7 0.095 1.38209253211E − 8 0.19 2.33265255085E − 6
0.022 3.33766241622E − 7 0.110 2.11814666396E − 8 0.22 3.55022878247E − 6
0.025 4.84799248938E − 7 0.125 3.07014865478E − 8 0.25 5.11348138626E − 6

Example 6.2 Consider the following Fredholm integral equation with (constant)
time delay τ > 0,

g(t) = t
(
Tcos(T−τ)−sin(T−τ)−sin(τ)

)
+sin(t)+

∫ T

0
(ts)g(s−τ)ds s, t ∈ [0, T ], τ ∈ (0, T )

(38)

With the exact solution g(t) = sin(t) , for 0 ⩽ t ⩽ T . The numerical results are
shown in Table 2.

Table 2: Results for Example 6.2 with m = 32

T=0.1 T=0.5 T=1
τ ∥E∥∞ τ ∥E∥∞ τ ∥E∥∞

0.001 2.58568237865E − 8 0.005 1.79098655889E − 7 0.01 4.75634508642E − 6
0.004 2.06631349057E − 8 0.020 1.43564755172E − 7 0.04 3.78276743845E − 6
0.007 3.90494418458E − 9 0.035 3.29688101492E − 6 0.07 1.18920567226E − 6
0.010 3.31892173962E − 8 0.050 2.09017956946E − 5 0.10 4.14221930711E − 6
0.013 9.93901366404E − 8 0.065 6.38269549703E − 5 0.13 1.32377076222E − 5
0.016 2.03467811041E − 7 0.080 1.31020801974E − 6 0.16 2.70420910648E − 5
0.019 3.54191473459E − 7 0.095 2.27981003931E − 6 0.19 4.64284955478E − 5
0.022 5.60329447516E − 7 0.110 3.60161712474E − 6 0.22 7.22073765667E − 5
0.025 8.30649143506E − 7 0.125 5.32974941630E − 6 0.25 1.05134960953E − 4

7. Conclusion

Using Block pulse functions as basis functions to solve the Volterra and Fredholm
integral equations with constant time delay is very simple and effective in com-
parison with other methods. Its applicability and accuracy is checked on some
examples. In these examples the norm infinity of error is given only for 10 specific
values of τ . The benefits of this method are low cost of setting up the equations
without applying any projection method such as Galerkin, collocation, etc.
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