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Abstract.In this paper, a method for finding an approximate solution of a class of two-
dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem
is transformed to a nonlinear two-dimensional Volterra integral equation of the second-kind.
The properties of the bivariate shifted Legendre functions are presented. The operational
matrices of integration together with the product operational matrix are utilized to reduce the
solution of the second-kind equation to the solution of a system of linear algebraic equations.
Finally, a system of nonlinear algebraic equations is obtained to give an approximate solution
of the main problem. Also, numerical examples are included to demonstrate the validity and
applicability of the method.
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1. Introduction

In this paper, we present a numerical method for the solution of nonlinear two-
dimensional Volterra integral equation (2D-VIE) of the first-kind in the form∫ t

0

∫ x

0
k(x, t, y, z)up(y, z)dydz = f(x, t), (x, t) ∈ Ω := [0, l]× [0, T ], (1)
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where p is a positive integer number and f and K are smooth functions. Also, we
require that

f(x, 0) = 0, for all x ∈ [0, l], (2)

f(0, t) = 0, for all t ∈ [0, T ], (3)

k(x, t, x, t) ̸= 0, for all (x, t) ∈ Ω. (4)

Integral equations of the first-kind are inherently ill-posed problems, meaning
that the solution is generally unstable, and small changes to the problem can
make very large changes to the answers obtained [8, 13]. This ill-posedness makes
numerical solutions very difficult, a small error may leads to an unbounded error.
To overcome the ill-posedness, we transform equation (1) with conditions (2)-(4)
to a nonlinear 2D-VIE of the second-kind.
By differentiating (1) with respect to t and x, we get the following nonlinear

2D-VIE of the second-kind

up(x, t) =
∫ t
0

∫ x
0 k1(x, t, y, z)u

p(y, z)dydz +
∫ x
0 k2(x, t, y)u

p(y, t)dy

+
∫ t
0 k3(x, t, z)u

p(x, z)dz + F (x, t),

(5)

where

k1(x, t, y, z) = − ∂2

∂x∂t
k(x, t, y, z)/k(x, t, x, t),

k2(x, t, y) = − ∂

∂x
k(x, t, y, t)/k(x, t, x, t),

k3(x, t, z) = − ∂

∂t
k(x, t, x, z)/k(x, t, x, t),

F (x, t) =
∂2f

∂x∂t
/k(x, t, x, t).

Since (2) and (3) hold, integrating (5) in x and t yields equation (1). Thus (1) and
(5) are equivalent.
There are many works on developing and analyzing numerical methods for solving

2D-VIEs of the second-kind (see for example [2, 3, 6, 9–11, 17, 18]). But little work
has been done to solve the first-kind cases. The numerical solution of equations of
the type (1) have been considered in [4, 5, 15]. Maleknejad et. al [14] considered
the numerical solution of equation (1) using 2D block-pulse functions.
In this work, we extend the method introduced in [16] to solve equation (1) with

conditions (2)-(4). The bivariate shifted Legendre orthogonal functions are used to
solve the considered problem. The main characteristic of this technique is that it
reduces the main problem to those of solving two systems of algebraic equations
thus greatly simplifies the problem. In [16] a similar method have been applied to
solve a class of 2D nonlinear Volterra integral equations of the second-kind.
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The paper is organized as follows: In Section 2, we discuss how to approximate
functions in terms of the bivariate shifted Legendre orthogonal functions and also,
the operational matrices of integration and the product operational matrix are
introduced. In Section 3, we give an approximate solution for problem (1)–(4)
using the bivariate shifted Legendre functions. Numerical examples are given in
Section 4 to illustrate the accuracy of our method and conclusions are presented
in Section 5.

2. Basic Concepts

2.1 Definition and Function Approximation

The bivariate shifted Legendre functions are defined on Ω as

ψmn(x, t) = Lm(
2

l
x− 1)Ln(

2

T
t− 1), m, n = 0, 1, 2, . . . ,

and are orthogonal with respect to the weight function ω(x, t) = 1 such that∫ T

0

∫ l

0
ω(x, t)ψmn(x, t)ψij(x, t)dxdt =

{ l
(2m+1)

T
(2n+1) , i = m and j = n,

0, otherwise.

Here, Lm and Ln are the well-known Legendre polynomials of order m and n
respectively, which are defined on the interval [−1, 1] and can be determined with
the aid of the following recursive formula [1]

L0(x) = 1,
L1(x) = x,
Lm+1(x) =

2m+1
m+1 xLm(x)− m

m+1Lm−1(x), m = 1, 2, 3, · · · .

We note that {ψmn(x, t)}∞m,n=0 are total orthogonal basis for the space L2(Ω)
[12]. The inner product in this space is defined by

⟨f(x, t), g(x, t)⟩ =
∫ T

0

∫ l

0
f(x, t)g(x, t)dxdt, (6)

and the norm is as follows:

∥f(x, t)∥2 = ⟨f(x, t), f(x, t)⟩
1

2 = (

∫ T

0

∫ l

0
|f(x, t)|2dxdt)

1

2

.

For every f(x, t) ∈ L2(Ω) we have

f(x, t) =

∞∑
m=0

∞∑
n=0

cmnψmn(x, t), (7)

where

cmn =
⟨f(x, t), ψmn(x, t)⟩

∥ψmn(x, t)∥22
.
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Let ΠM,N (Ω) be the space of all polynomials of degree less than or equal to M
in variable x and degree less than or equal to N in variable t. Then the functions
{ψmn(x, t)}, m = 0, 1, . . . ,M , n = 0, 1, . . . , N, form an orthogonal basis for the
space ΠM,N (Ω).
If the infinite series in equation (7) is truncated, then it can be written as

f(x, t) ≃ fM,N (x, t) =

M∑
m=0

N∑
n=0

cmnψmn(x, t) = CTψ(x, t),

where C and ψ(x, t) are (M + 1)(N + 1)× 1 vectors, respectively given by

C = [c00, c01, . . . , c0N , c10, . . . , c1N , . . . , cM0, . . . , cMN ]T , (8)

ψ(x, t) = [ψ00(x, t), ψ01(x, t), . . . , ψ0N (x, t), ψ10(x, t), . . . , ψ1N (x, t), . . .
, ψM0(x, t), . . . , ψMN (x, t)]T .

(9)

The function fM,N (x, t) is the orthogonal projection of f(x, t) onto the polynomial
space ΠM,N (Ω) with respect to the inner product (6) and is the best approximation
to f(x, t) (see [12]).
Similarly, any functions k1 in L

2(Ω×Ω), k2 in L
2(Ω×[0, l]) and k3 in L

2(Ω×[0, T ])
can be expanded in terms of the bivariate shifted Legendre functions respectively
as

k1(x, t, y, z) ≃ ψT (x, t)K1ψ(y, z),

k2(x, t, y) ≃ ψT (x, t)K2ψ(y, t),

k3(x, t, z) ≃ ψT (x, t)K3ψ(x, z),

where K1, K2 and K3 are block matrices of the form

Kq = [K(i,m)
q ]Mi,m=0, q = 1, 2, 3,

in which

K(i,m)
q = [kqijmn]

N
j,n=0, i,m = 0, 1, . . . ,M, q = 1, 2, 3,

and Legendre coefficients kqijmn, q = 1, 2, 3 are given by

k1ijmn =
⟨⟨k1(x, t, y, z), ψmn(y, z)⟩, ψij(x, t)⟩

∥ψij(x, t)∥22∥ψmn(y, z)∥22
, i,m = 0, 1, . . . ,M, j, n = 0, 1, . . . , N,

k2ijmn =
⟨⟨k2(x, t, y), ψmn(y, t)⟩, ψij(x, t)⟩

∥ψij(x, t)∥22∥ψmn(y, t)∥22
, i,m = 0, 1, . . . ,M, j, n = 0, 1, . . . , N,

k3ijmn =
⟨⟨k3(x, t, z), ψmn(x, z)⟩, ψij(x, t)⟩

∥ψij(x, t)∥22∥ψmn(x, z)∥22
, i,m = 0, 1, . . . ,M, j, n = 0, 1, . . . , N.
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2.2 Operational Matrices

The integration of the vector ψ(x, t) defined by (9) can be approximately obtained
as:

∫ t

0

∫ x

0
ψ(x′, t′)dx′dt′ ≃ Q1ψ(x, t), (10)

∫ x

0
ψ(x′, t)dx′ ≃ Q2ψ(x, t), (11)

∫ t

0
ψ(x, t′)dt′ ≃ Q3ψ(x, t), (12)

where x ∈ [0, l], t ∈ [0, T ] andQ1,Q2 andQ3 are the (M+1)(N+1)×(M+1)(N+1)
operational matrices of integration which have been introduced in [16], respectively
as

Q1 = P1 ⊗ P2,

Q2 =
l

2


I I O · · · O O O
−I
3 O I

3 · · · O O O
...

...
...
. . .

...
...

...
O O O · · · −I

2M−1 O I
2M−1

O O O · · · O −I
2M+1 O

 ,

Q3 =


P2 O O · · · O
O P2 O · · · O
O O P2 · · · O
...

...
...

. . .
...

O O O · · · P2

 ,

such that, I and O are the identity and zero matrix of order N + 1, respectively
and P1 and P2 are the operational matrices of 1D shifted Legendre polynomials,
respectively defined on [0, l] and [0, T ] as follows [7]:

P1 =
l

2


1 1 0 · · · 0 0 0
−1
3 0 1

3 · · · 0 0 0
...

...
...
. . .

...
...

...
0 0 0 · · · −1

2M−1 0 1
2M−1

0 0 0 · · · 0 −1
2M+1 0

 ,
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P2 =
T

2


1 1 0 · · · 0 0 0
−1
3 0 1

3 · · · 0 0 0
...

...
...
. . .

...
...

...
0 0 0 · · · −1

2N−1 0 1
2N−1

0 0 0 · · · 0 −1
2N+1 0

 .

The following property of the product of two vectors ψ(x, t) and ψT (x, t) will
also be used:

ψ(x, t)ψT (x, t)C ≃ C̃ψ(x, t), (13)

where C is defined by (8) and C̃ is an (M + 1)(N + 1) × (M + 1)(N + 1) matrix
as follows [16]

C̃ = [C(i,j)]i,j=0,1,...,M , (14)

such that in equation (14), C(i,j), i, j = 0, 1, . . . ,M are given by

C(i,j) =
2j + 1

l

M∑
m=0

ωi,j,mAm,

in which ωi,k,m is defined as

ωi,k,m =

∫ l

0
Li(

2

l
x− 1)Lk(

2

l
x− 1)Lm(

2

l
x− 1)dx,

and Am, m = 0, 1, . . . ,M are (N + 1)× (N + 1) matrices as

[Am]kh =
2h+ 1

T

N∑
n=0

ω′
k,h,nfmn, k, h = 0, 1, . . . , N,

where

ω′
j,h,n =

∫ T

0
Lj(

2

T
t− 1)Lh(

2

T
t− 1)Ln(

2

T
t− 1)dt.

Finally, for an (M + 1)(N + 1) × (M + 1)(N + 1) matrix K = [K(i,j)], i, j =
0, 1, . . . ,M , in which

K(i,j) = [kimjn]
N
m,n=0, i, j = 0, 1, . . . ,M,

we have

ψT (x, t)Kψ(x, t) ≃ K̂ψ(x, t), (15)

where K̂ is a 1× (M + 1)(N + 1) vector as

K̂ = [Koo, . . . ,K0N ,K10, . . . ,K1N , . . . ,KM0, . . . ,KMN ],
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in which Kmn, m = 0, 1, . . . ,M , n = 0, 1, . . . , N have been introduced in [16] as

Kmn =
(2m+ 1)(2n+ 1)

lT

M∑
i=0

N∑
j=0

M∑
r=0

N∑
s=0

ωi,r,mω
′
j,s,nkijrs, m = 0, 1, . . . ,M, n = 0, 1, . . . , N.

3. Method of Solution

In this section, we present a numerical method to find an approximate solution to
problem (1)–(4), which corresponds with equation (5). We assume that the known
functions in equation (1) satisfy the conditions that this equation has a unique
solution. Using the way mentioned in the previous section, the functions up(x, t),
F (x, t), k1(x, t, y, z), k2(x, t, y) and k3(x, t, z) can be approximated by the bivariate
shifted Legendre functions as:

up(x, t) ≃ CTψ(x, t) = ψT (x, t)C, (16)

F (x, t) ≃ F Tψ(x, t), (17)

k1(x, t, y, z) ≃ ψT (x, t)K1ψ(y, z), (18)

k2(x, t, y) ≃ ψT (x, t)K2ψ(y, t), (19)

k3(x, t, z) ≃ ψT (x, t)K3ψ(x, z). (20)

Substituting equations (16)-(20) into equation (5) yields:

CTψ(x, t) = ψT (x, t)K1

∫ t

0

∫ x

0
ψ(y, z)ψT (y, z)Cdydz+ψT (x, t)K2

∫ x

0
ψ(y, t)ψT (y, t)Cdy

+ψT (x, t)K3

∫ t

0
ψ(x, z)ψT (x, z)Cdz + F Tψ(x, t).

Using equations (10)–(13), we obtain

CTψ(x, t) = ψT (x, t)K1C̃Q1ψ(x, t)+ψ
T (x, t)K2C̃Q2ψ(x, t)+ψ

T (x, t)K3C̃Q3ψ(x, t)+F
Tψ(x, t).

We assume that

Λ1 = K1C̃Q1,

Λ2 = K2C̃Q2,

Λ3 = K3C̃Q3.
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Then, by applying (15) we have

CT = Λ̂1 + Λ̂2 + Λ̂3 + F T

which corresponds with a system of linear algebraic equations in terms of the
unknown elements of the vector C and can be solved easily using direct methods.
The unknown function u(x, t) can be approximated in terms of the bivariate

shifted Legendre functions as

u(x, t) ≃ ATψ(x, t), (21)

such that, the entries of the vector A are unknown. Using equation (13) and (21)
it is easily obtained that

up(x, t) ≃ AT Ãp−1ψ(x, t). (22)

Finally, using equations (16) and (22), we get

AT Ãp−1 = CT . (23)

Equation (23) forms a system of (M +1)(N +1) nonlinear equations which can be
solved for the elements of A using numerical methods such as Newton’s iterative
method.

4. Numerical Examples

In this section, we give some computational results of numerical experiments using
the method presented in Section 4. In order to demonstrate the error of the method,
we introduce the notation:

eM,N (x, t) = |u(x, t)− uM,N (x, t)|, (x, t) ∈ Ω,

where u(x, t) is the exact solution and uM,N (x, t) is the computed result with M
and N .
To solve the examples, we consider M = N and the Newton’s iterative method

is used to solve the nonlinear system. The initial guess in Newton’s method for
these examples is considered to be A(0) = C, but the number of iterations can be
reduced by choosing a more closed A(0) to the exact solution.

Example 1. As the first example, consider the following nonlinear 2D-VIE∫ t

0

∫ x

0

6

1 + y + z
u3(y, z)dydz = xt(2t2+3t(2+x)+2(3+3x+x2)), (x, t) ∈ [0, 1]×[0, 1].

The exact solution is u(x, t) = x+ t+1. We apply the numerical method presented
in this paper with M = 1 and obtain the linear system in terms of the unknown
coefficients of the function u3(x, t) as:

c00 − 9 = 0
c01 − 31

5 = 0
c10 − 31

5 = 0
c11 − 3 = 0,
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and get

c00 = 9, c01 =
31

5
, c10 =

31

5
, c11 = 3.

Substituting obtained values for cij , i, j = 0, 1 into the equation

AT Ã2 = CT ,

the following nonlinear system in terms of the unknown coefficients of the function
u(x, t) yields:

a00
3 + 2

3a01a10a11 + a00a01
2 + a00a10

2 + 1
3a00a11

2 − 9 = 0

3a00
2a01 +

1
3a01

3 + 2a00a10a11 + a01a10
2 + 1

3a01a11
2 − 31

5 = 0

3a00
2a10 + a01

2a10 + 2a00a01a11 +
1
3a10

3 + 1
3a10a11

2 − 31
5 = 0

6a00a01a10 + 3a00
2a11 + a01

2a11 + a10
2a11 +

1
9a11

3 − 3 = 0.

Solving this system of nonlinear equations using Newton’s iterative method with
initial guess A(0) = C, eight iterations and precision 10−6, we obtain

a00 = 1.998890, a01 = 0.503593, a10 = 0.503593, a11 = −0.003328,

therefore, we have

u1,1(x, t) = 0.988376 + 1.013842(x+ t)− 0.013312xt,

and

e1,1(x, t) = |0.011624− 0.013842(x+ t) + 0.013312xt| ⩽ 0.052620.

Also, with M = 2 we get

a00 = 2, a01 = 0.5, a10 = 0.5, a02 = a11 = a12 = a20 = a21 = a22 = 0,

so

u2,2(x, t) = x+ t+ 1,

which is the exact solution.

Example 2. Consider the following nonlinear 2D integral equation [14]∫ t

0

∫ x

0
2ex+tu3(y, z)dydz =

1

9
(ex+t − ex+7t − e4x+t + e4x+7t), (x, t) ∈ [0, 1]× [0, 1],

which has the exact solution u(x, t) = ex+2t. Numerical results are given in Table 1
and Figure 1. Table 1 shows the error eM,M (x, t) with M = 2, 4, 8 at some selected
grid points using the presented method together with the results obtained by the
method of [14] using 2D block-pulse functions (2D-BPFs) with m = 64.
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Table 1. Numerical results for Example 2.

(x, t) = (2−i, 2−i) Method of [14] Present Method Present Method Present Method
with m = 64 with M = 2 with M = 4 with M = 8

i = 1 1.0× 10−1 1.9× 10−1 2.9× 10−3 2.6× 10−6

i = 2 4.6× 10−2 1.4× 10−1 6.2× 10−4 4.6× 10−6

i = 3 2.9× 10−2 6.6× 10−2 3.5× 10−3 6.3× 10−7

i = 4 2.3× 10−2 2.1× 10−1 2.1× 10−3 1.2× 10−5

i = 5 2.0× 10−2 2.8× 10−1 3.1× 10−5 3.8× 10−6

i = 6 3.1× 10−2 3.3× 10−1 1.4× 10−3 9.0× 10−6

Figure 1. Plot of the eM,M (x, t) for Example 2; left: M = 8, right: M = 12.

Example 3. Consider a 2D integral equation of the form [14]∫ t

0

∫ x

0
u2(y, z)dydz =

1

45
xt(9x4 + 10x2t2 + 9t4), (x, t) ∈ [0, 1]× [0, 1].

The exact solution is u(x, t) = x2+ t2. Figure 2 shows the numerical result for this
example with M = 1. With M = 2, we find the exact solution of this equation.

Figure 2. Plot of the e1,1(x, t) for Example 3.

Example 4. Consider the following linear 2D Volterra integral equation of the
first-kind [14, 15]∫ t

0

∫ x

0
(sin(t+ y) + sin(x+ z) + 3)u(y, z)dydz = f(x, t), (x, t) ∈ [0, 3]× [0, 3],
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where f(x, t) is selected so that the exact solution is u(x, t) = cos(x+ t). Table 2
presents the numerical results with M = 2, 4 using the presented method together
with the results obtained in [15] and [14], respectively using Euler’s method and
2D-BPFs method.

Table 2. Numerical results for Example 4.

(x, t) Euler’s Method [15] 2D-BPFs Method[14] Present Method Present Method
with h = 0.05 with m = 32 with M = 2 with M = 4

(1, 1) 4.06× 10−2 6.08× 10−2 3.70× 10−2 4.96× 10−6

(1, 2) 1.23× 10−2 4.00× 10−3 6.70× 10−2 5.98× 10−6

(2, 1) 1.23× 10−2 4.00× 10−3 6.70× 10−2 5.98× 10−6

(2, 2) 4.06× 10−2 4.74× 10−2 4.86× 10−2 1.22× 10−5

5. Conclusions

In the present method, problem (1)–(4) has been transformed to a nonlinear 2D-
VIE of the second-kind. The bivariate shifted Legendre functions operational ma-
trices Q1, Q2 and Q3, together with the product operational matrix C̃ and product
vector K̂ have been used to solve this problem. This approach transformed the non-
linear 2D-VIE of the second-kind to a linear system of algebraic equations with
unknown coefficients which can be easily solved by direct methods. Finally, a sys-
tem of nonlinear algebraic equations with unknown coefficients of the solution of
the main problem has been obtained which can be solved using the Newton’s itera-
tive method. Applicability and accuracy of the method have been checked on some
examples. Examples 2 and 4 show that the present method gives more accurate
results than the methods presented in [14, 15] even when we use a small number
of basis functions.
The method can be applied to the first-kind integral equations of the form∫ t

0

∫ x

0
k(x, t, y, z)G(u(y, z))dydz = f(x, t),

where G is a polynomial function of the solution. Also, we believe that it will not
difficult to extend this approach to nonlinear integral equations of different forms.
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