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Abstract. This paper presents a simplified lagrangian multiplier based algorithm to solve the fixed
head hydrothermal scheduling problem. In fixed head hydrothermal scheduling problem, water
discharge rate is modeled as quadratic function of hydropower generation and fuel cost is modeled
as quadratic function of thermal power generation. The power output of each hydro unit varies
with the rate of water discharged through the turbines. It is assumed that hydro plants alone are not
sufficient to supply all the load demands during the scheduling horizon. In hydro scheduling, the
specified total volume of water should be optimally discharged throughout the scheduling period.
A novel mathematical approach has been developed to determine the optimal hydro and thermal
power generation so as to minimize the fuel cost of thermal units. The performance of the
proposed method is demonstrated with three test systems. The test results reveal that the developed
method provides optimal solution which satisfies the various system constraints of fixed head
hydrothermal scheduling problem.
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1. Introduction

The hydrothermal scheduling plays an important role in the operation planning of an
interconnected power plant. The short-term hydrothermal scheduling problem is one of the
most important daily activities for a utility company. Short-term hydrothermal scheduling
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involves the hour-by-hour scheduling of all generating units on a system to achieve
minimum generation cost. The objective of fixed head hydrothermal scheduling is to
minimize the fuel cost of thermal generating units by determining the optimal hydro and
thermal generation schedule subject to satisfying water availability constraint and load
demand in each interval of the scheduling horizon. The head of the reservoir is assumed to
be constant for the hydro plants having reservoirs with large capacity. The hydraulic
constraint imposed in the problem formulation is that the total volume of water discharged
in the scheduling horizon must be exactly equal to the defined volume. The operational
cost of hydroelectric units is insignificant because the source of hydro power is the natural
water resources.

Numerous mathematical methods for the optimal resource allocation problems have been
developed in the literature [6, 7]. Different mathematical methods for hydrothermal
scheduling problem have been reported in the literature. In [12] , an iterative technique
based on computing LU factors of the Jacobian with partial pivoting for solving
hydrothermal scheduling problem has been developed. A Lagrangian multiplier method
for optimal scheduling of fixed head hydro and thermal plants is reported in [5]. This
method linearizes the coordination equation and solves for the water availability constraint
separately from unit generations. Dynamic programming approach [10] has been
implemented for the solution of hydrothermal scheduling problem. The disadvantages of
dynamic programming method are computational and dimensional requirements grow
drastically with increase in system size and planning horizon. Lagrangian relaxation
techniques have been proposed in the literature to solve hydrothermal coordination
problem [11, 4]. A Lagrangian relaxation technique solves the dual problem of the original
hydrothermal coordination problem. However the perturbation procedures are required to
obtain primal feasible solution. These perturbation procedures may deteriorate the
optimality of the solution obtained.

Recently, as an alternative to the conventional mathematical approaches, the heuristic
optimization techniques such as simulated annealing [1], genetic algorithm [9], artificial
immune algorithm [2] have been used to solve fixed head hydrothermal scheduling
problem. Heuristic methods use stochastic techniques and include randomness in moving
from one solution to the next solution. Due to the random search nature of the algorithm,
these methods provide feasible optimal solution for the optimization problems. Neural
network based approach has been developed for scheduling thermal plants in coordination
with fixed head hydro units [3]. This method provides near-optimal solution for hydro
thermal scheduling problem. An integrated technique of predator-prey optimization and
Powell’s method for optimal operation of hydrothermal system has been reported in [8].
In this hybrid method, predator-prey optimization is used as a base level search in the
global search space and Powell’s method as a local search technique.

In this paper, a new deterministic method based on Lagrangian multiplier and Newton
method is developed for the solution of short-term fixed head hydrothermal scheduling
problem. The scheduling period is divided into a number of subintervals each having a
constant load demand. The proposed approach has been validated by applying it to three
test systems.

2. Problem Formulation

The basic problem is to find the real power generation of committed hydro and thermal
generating units in the system as a function of time over a finite time period from 1 to T.
The goal is to minimize the total fuel cost required for the thermal generation in the
scheduling period.
T NT
Minimize o= Y > t, Fy (Pry) (1)
k=li=1
whereFix(Prix) is cost function of each thermal generating unit in interval k, which is
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expressed by Fy (Pryy ) = a;Pf +b;Pryy +¢;
T- number of periods for dividing the scheduling time horizon
NT- number of thermal generators
ty - time in interval k
Prix - power generation level of ith thermal generating unit in interval k
a;, by and ¢; are the fuel cost coefficients of ith thermal generating unit

Subject to
1) Power balance constraint
NT NH
Cp = P+ Py —Ppy =0  fork=1,2,..,T ()

i=1 i=1
wherePy; - power generation level of ith hydro generating unit in interval k
Ppx - Total generation demand in interval k.
NH - number of hydro generators

(i1) Water availability constraint
T
W, = D Qi Py ) = Vi -Sifori= 1,2, ..., NH 3)
k=1

whereqj is the discharge rate of hydro unit i during the kth interval, which is expressed

by dik (Prix) = &Pty + BiPrx + ;.

V; is the pre-specified volume of water available for hydro unit i during the scheduling
period. S; is the total spillage discharge of ith hydro unit during the scheduling period and
the spillage discharge is not used for power generation. a;,f3;,and 3; are the discharge

coefficients of ith hydro unit with

min max
Pri" <Pric <Prj )
min max
Phi < Phix < Py ®)
where P1i™" , Pii*™* are the minimum and maximum generation limits of ith thermal unit

and P", Pi™ are the minimum and maximum generation limits of ith hydro unit.

3. ProposedMethodology

The lagrangian equation for hydrothermal scheduling is
T NH
LAY =0= D MCy + D 7 (W; = (V; -8)) (6)
k=1 i=1
wherelis the Lagrangian multiplier for power balance constraint in kth interval and v; is
the lagrangian multiplier for hydro unit i. Substituting eqns. (1),(2) and (3) in eqn (6)
gives

T NT

T NT NH
LP.4y) = D> 6 Fu Pri) = DM O Prigc + D Pre — Ppy)
k=li=1 k=1 i=1 i=1
(7
NH T
+ 2 1O Qi Py ) — (Vi -Sp))
i=1 k=1
The minimum value is obtained by partially differentiating the Equation (7) with respect to
Prik, Phik, Ak.Yi and equating to zero
oL
OP ik
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" OFiy Pri) _, _0Cy

ie k =0 )
OPrik OP ik
Equation (9) gives
ti (2a;Pry +by) =4y (10)
oL
ie =0 (11
OP ik
0
M +yi—— (W, =(V;-S,)=0
therefore kT OPrix (Wi =(Vi -5)) (12)
Equation (12) gives
ti¥i[20; Py +Bi1= Ay (13)
: oL _ 0 14
ie o (14)
therefore Cy=0 (15)
Equation (15) gives
NT NH
D Py + Y P =Py, (16)
i=1 i=1
. oL 0 a7
ie =
;i
therefore W, —(V;-5;)=0 (18)
Equation (18) gives
T
>ty o3Pk +BiPrix +8i1=V; -S; (19)

k=1
From the Equation (10), we get

pp i, L b

2ai kZ_ai_Zai
PTik :)\,kAi—BifOri: 1, 2, ,NT, k= 1,2, ,T (20)
where A; =L; B; _ b
aj ?_ai

From the Equation (13), we get
McBivi M B

Pyix =
' 2oy 2047 204

PHikz%Ci—Difori:1,2,...,NH,k: 1,2,...,T (21)

1

where C; =L; D; = Pi
2(Xi 2(Xi

Substituting Equations (20) and (21) in Equation (16) gives
NT NH( ) o
D (A =B+ Y | LDy =Py fork=1,2,..., T

i=1 i=1 i

NT NH
Ppy +ZBi + ZDi
= i=l i=l fork=1,2,...,T (22)

N NH
DA+ L

i=1 i=1 Vi

therefore A =
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SubstitutingEquation (22) in Equation (21) gives

NT NH
Ppx +ZBi + ZDi

_Si i=1 i=1 N
P = NT NH D

1
Vi G, (23)
! ZAI +Zil
i=1 i=1 Vi
fori=1,2,...,NH, fork=1,2,...,T
Substituting (23) in (19), we get
NT NH 2
. _ Py + Y B+ D;
Dty 71 T . =L |-D,
k=l i ZA +z
(24)
Ppy + ZB + ZD
+Bi 71 NT Nchll _Di +6i):Vi_Si
XA
i=1 i=1 Vi
fori=1,2,...,NH
By expanding the Equation (24)
NT N 2 NT NH
o | Pok + ) .Bi+>.D; P + ) B+ > D;
e (.| i i-1 io1 p2 _ 2CiD; i-1 io1
2t (@ 2|7 NT NH +0i Vi NT N -

k=1 Yi zAiJrzil i ZAi +Zin

i i=1 Vi i=1 i=1 Vi (25)

Ppy +ZB +ZD

+ ;‘ = — [=BiD; +8)=V; -S;
! ZAi +Z—‘
i=1 i=1 Vi

fori=1,2,...,NH
Simplifying the Equation (25)

0C2 & 2
ZI:PDk +ZB +ZD

Ylkl i=1

S T N

Vi Yi k=1

[ZA +Z }[24( D7 —B.D; +5;)—(V, - S)] 0

fori=1,2,...,NH
The Equation (26) is solved by Newton’s method.The solution of these equations gives the

values of vy, v2, ... , Yo . The detailed procedure for solving the simultaneous equations
with two variables y; and vy, by Newton’s method is given below:
Let f(y1,72) =0, and g(y1,v2) =0 27)

Take y?andyg be the initial approximate solution for the above equation. The actual
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solution is given by (y? +h) and (y g + m) ,where h is an incremental value of y; and m is
an incremental value of v, .

Therefore, f(y)+h, yJ+m)=0 (28)
g0! +h, y3 +m)=0 (29)
Expanding equations (28) and (29) by Taylor series,
0 0
£, ¥9) +h——[f (], ¥DI+m——[f (), ¥9)]=0 (30)
oy ov2
0 0
s(1, v +h——[g (), ¥+ m——[g (7, v9)]=0 31)
oy Y2
Equations (30) and (31) can be written as
fo +h(fy)o + m(fy)o =0 (32)
8o +h(gy1)o +m(gy2)0 =0 (33)
Equations (32) and (33) are solved for h and m using determinants,
. _Dyl _DY2
ie h= and m = (34)
where D = (t,00  (£2)0]. = fo  (£2)o. - (ty1)0  fo
(8y1)0  (8y2)0]|’ g (82)o|” T |(gy1)o o

By using the incremental values, the new values of y; and vy, are obtained by
new

Y =97 +h; y5% =5 +m (35)

W

Now y?ew and yge are taken as initial values and above process is repeated till the

convergence criterion is satisfied.

The computational procedure for implementing the proposed method for the solution of
fixed head hydrothermal scheduling problemis given in the following steps:

Step 1: Calculate the initial generation of thermal, hydro plants and initial Axfrom the
following equations

Pﬁk:——ﬂﬁ;— for i=1,2,...,NT,k=1,2,..,T
NT + NH

PMk:—f@L— for i=1,2,..,NH,k=1,2,..,T
NT + NH

7\’1( :2aiPTik "rbi for i=1,2,...,NT,k:1,2,...,T
Step 2: Determine the initial values of y? using Equation (13)
Ak

M fori=1,2, .., NH
204 Py +B;

ie y? =

Step 3: Substitute the values of y? in Equation (26).

Step 4: Calculate the incremental values of yjusingEquation (34).

Step 5: Calculate thenewy;values using Equation(35).

Step 6: Substitute the new y;values in Equation(26) and then go to Step 4. This iterative
procedureis continued till the difference between two consecutive iterations

is less than specified tolerance.

Step 7: Calculate Avaluesfrom the Equation (22)bysubstitutingtheoptimal values of y;.
Step 8: Determine the optimal generation schedule of thermal and hydro plants using
eqns. (20) & (21).

4. Numerical Examples and Results
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A mathematical approach developed in this paper has been implemented on three fixed
head hydrothermal scheduling problems. The program is developed using MATLAB 7.
The system data and results obtained through the proposed approach are given below

Table 1 Optimal generation schedule for Example 1

Interval k | Demand | Water discharge | Hydro generation | Thermal generation
Ppy Jik Pk Pk
1 455 101.9329 234.2742 220.7258
2 425 101.0896 231.8794 193.1206
3 415 100.8105 231.0812 183.9188
4 407 100.5879 230.4426 176.5574
5 400 100.3937 229.8838 170.1162
6 420 100.9500 231.4803 188.5197
7 487 102.8422 236.8285 250.1715
8 604 106.2529 246.1679 357.8321
9 665 108.0848 251.0372 413.9628
10 675 108.3886 251.8354 423.1646
11 695 108.9992 253.4319 441.5681
12 705 109.3059 254.2301 450.7699
13 580 105.5423 244.2522 335.7478
14 605 106.2827 246.2477 358.7523
15 616 106.6104 247.1258 368.8742
16 653 107.7215 250.0793 402.9207
17 721 109.7988 255.5073 465.4927
18 740 110.3874 257.0240 482.9760
19 700 109.1524 253.8310 446.1690
20 678 108.4799 252.0749 425.9251
21 630 107.0292 248.2433 381.7567
22 585 105.6899 244.6513 340.3487
23 540 104.3705 241.0592 298.9408
24 503 103.3007 238.1057 264.8943
Problem- 1

24
Minimize F(Pr;)= 20.001991 PTzlk +9.606 Py, +373.7 dollars
k=1
Subject to satisfying power demand in each interval and total water discharge during the
entire scheduling horizon should be equal to the given water availability.
Total volume of water available for discharge (24 hours) V =2559.6 M cubic ft

Water discharge qy (Pg1y ) = 0.0007749 Pﬁlk -0.009079 Pygq +61.53 M cubic ft. per

hour ;Total spillage S=25.596 M cubic ft/24 hours

The optimal generation schedule obtained through the proposed method is given in
Table 1. The solution converged in fifth iteration. The optimal value of y = 29.61852312
and total amount of water utilized for hydro power generation exactly satisfied water
availability constraint. The total fuel cost of thermal power generation is $ 92097.74.

Problem- 2

24
Minimize ~ F(Pr;)= Y 0.01Pf}, +3.0 Pryy +15 dollars
k=1
Subject to satisfying power demand in each interval and total water discharge during the
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entire scheduling horizon should be equal to the given water availability constraints.
Total volume of water available for Hydro plant 1 (24 hours) V; = 25 M cubic ft
Total volume of water available for Hydro plant 1 (24 hours) V, =35 M cubic ft

Table 2 Optimal generation schedule for Example 2

Interval | Demand | Water discharge | Hydro generation | Thermal generation
k Ppx Prik
ik Qak Phik Phak
1 30 0.7714 | 0.9543 | 18.4792 | 9.1003 2.4205
2 33 0.8105 | 1.0279 | 19.7041 | 10.2892 3.0067
3 35 0.8367 | 1.0772 | 20.5207 | 11.0817 3.3976
4 38 0.8760 | 1.1513 | 21.7456 | 12.2706 3.9838
5 40 0.9023 | 1.2009 | 22.5622 | 13.0631 4.3746
6 45 0.9684 | 1.3253 | 24.6038 | 15.0446 5.3517
7 50 1.0349 | 1.4505 | 26.6453 | 17.0260 6.3287
8 59 1.1556 | 1.6780 | 30.3201 | 20.5925 8.0874
9 61 1.1826 | 1.7288 | 31.1367 | 21.3851 8.4782
10 58 1.1421 | 1.6526 | 29.9118 | 20.1962 7.8920
11 56 1.1152 | 1.6019 | 29.0951 | 19.4037 7.5012
12 57 1.1286 | 1.6272 | 29.5034 | 19.7999 7.6966
13 60 1.1691 | 1.7034 | 30.7284 | 20.9888 8.2828
14 61 1.1826 | 1.7288 | 31.1367 | 21.3851 8.4782
15 65 1.2368 | 1.8310 | 32.7699 | 22.9702 9.2599
16 68 1.2776 | 1.9079 | 33.9948 | 24.1591 9.8461
17 71 1.3186 | 1.9851 | 35.2197 | 25.3479 10.4324
18 62 1.1961 | 1.7543 | 31.5450 | 21.7814 8.6737
19 55 1.1018 | 1.5766 | 28.6868 | 19.0074 7.3058
20 50 1.0349 | 1.4505 | 26.6453 | 17.0260 6.3287
21 43 0.9419 | 1.2754 | 23.7872 | 14.2520 4.9609
22 33 0.8105 | 1.0279 | 19.7041 | 10.2892 3.0067
23 31 0.7845 | 0.9788 | 18.8875 | 9.4966 2.6159
24 30 0.7714 | 0.9543 | 18.4792 | 9.1003 2.4205

Water discharge equations
q1k (P ) = 0.00005 ank +0.03 Py +0.2 M cubic ft. per hour

q2k (P ) =0.0001 Pguk +0.06 Py +0.4 M cubic ft. per hour

Total spillage
S1=0.25 M cubic ft/24 hours, S,=0.35 M cubic ft/24 hours

The optimal generation schedule of hydro and thermal plants obtained through the
proposed method is given in Table 2. The solution converged at fifth iteration. The
optimal values of y; = 95.717727 and y, = 49.311017. The total fuel cost of thermal
power generation is $ 821.32.
Problem- 3
Minimize F{(Pt()+ F,(Pr;) where

24

F(Pr;) = ».0.0025 Pfy +3.2 Py +25dollars
k=1

24
Ey(Py) = >_0.0008 Pfy +3.4 Py +30dollars
k=1
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Subject to satisfying power demand in each interval and total water discharge during the

entire scheduling horizon should be equal to the given water availability constraints.

Total volume of water available for Hydro plant 1 (24 hours) V; =2500 M cubic ft
Total volume of water available for Hydro plant 1 (24 hours) V, =2100 M cubic ft

Table 3 Optimal generation schedule for Example 3

Interval | Demand Water discharge Hydro Thermal generation
k Ppi generation

O1k Ok PHik PHak Pk Prox

400 64.8580 | 21.3191 | 182.0811 | 32.6776 | 75.2100 | 110.0313

300 57.6834 | 9.5683 | 163.2297 | 13.9900 | 60.0679 | 62.7123

250 54.1537 | 3.7873 | 153.8040 | 4.6462 52.4969 | 39.0529

250 54.1537 3.7873 | 153.8040 | 4.6462 52.4969 | 39.0529

250 54.1537 3.7873 | 153.8040 | 4.6462 52.4969 | 39.0529

300 57.6834 | 9.5683 | 163.2297 | 13.9900 | 60.0679 | 62.7123

450 68.5029 | 27.2888 | 191.5068 | 42.0214 | 82.7810 | 133.6907

900 103.0338 | 83.8446 | 276.3381 | 126.1156 | 150.9203 | 346.6260

1230 | 130.3323 | 128.5549 | 338.5477 | 187.7847 | 200.8891 | 502.7785

1250 132.0405 | 131.3527 | 342.3180 | 191.5222 | 203.9175 | 512.2423

1350 140.6736 | 145.4921 | 361.1694 | 210.2098 | 219.0596 | 559.5612

1400 | 145.0477 | 152.6562 | 370.5951 | 219.5536 | 226.6306 | 583.2207

1200 127.7816 | 124.3772 | 332.8923 | 182.1784 | 196.3465 | 488.5828

1250 132.0405 | 131.3527 | 342.3180 | 191.5222 | 203.9175 | 512.2423

1250 132.0405 | 131.3527 | 342.3180 | 191.5222 | 203.9175 | 512.2423

1270 | 133.7549 | 134.1604 | 346.0883 | 195.2597 | 206.9459 | 521.7061

1350 140.6736 | 145.4921 | 361.1694 | 210.2098 | 219.0596 | 559.5612

1470 151.2359 | 162.7914 | 383.7911 | 232.6349 | 237.2301 | 616.3439

1330 | 138.9347 | 142.6441 | 357.3991 | 206.4723 | 216.0312 | 550.0974

1250 132.0405 | 131.3527 | 342.3180 | 191.5222 | 203.9175 | 512.2423

1170 125.2446 | 120.2221 | 327.2369 | 176.5721 | 191.8039 | 474.3871

1050 | 115.2350 | 103.8280 | 304.6152 | 154.1470 | 173.6334 | 417.6044

DO D[N D | = [ = [ = | = | = [ [t | it | et [
SN2 S0 | Qg | |S|o|=|a]e|e Q||| s Wi -

900 103.0338 | 83.8446 | 276.3381 | 126.1156 | 150.9203 | 346.6260

600 79.6677 | 45.5750 | 219.7839 | 70.0528 | 105.4941 | 204.6692

[\
EN

Water discharge equations
q1x (Pr1) =0.000216 P}znk +0.306 Py +1.98 M cubic ft. per hour

q2k (Prok ) = 0.00036 PéZk +0.612 Py +0.936 M cubic ft. per hour

Total spillage

S1=25 M cubic /24 hours, S,= 21 M cubic ft/24 hours
The optimal generation schedule of example 3 is given in Table 3. The solution
converged at fifth iteration. The optimal values of y; =9.2967 and vy, = 5.6269. The total
fuel cost of thermal power generation is $ 47985.76.

5. Conclusion

A novel mathematical approach for the solution of fixed head hydrothermal scheduling
problem is presented in this paper. The proposed method is implemented with test systems.
The practical constraints of fixed head hydrothermal scheduling such as water availability
constraints, waterspillage,power balance constraint in each interval and generation limits
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of hydro and thermal units are taken into account in the problem formulation. Numerical
results show that the proposed method has the ability to determine the global optimal
solution and the method requires lesser number of iterations for the convergence.
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