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Abstract.The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton
interaction in spatial environment in the context of phytoplankton bloom. In the absence
of diffusion the stability of the given system in terms of co-existence and hopf bifurcation
has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal
domain by assuming self diffusion in both population. It has been obtained that in the pres-
ence of diffusion given system becomes unstable (Turing instability) under certain conditions.
Moreover, by applying the normal form theory and the center manifold reduction for par-
tial differential equations (PDEs), the explicit algorithm determining the direction of Hopf
bifurcations and the stability of bifurcating periodic solutions is derived. Finally, numerical
simulations supporting the theoretical analysis are also included.
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1. Introduction

A remarkable feature associated with many phytoplankton population is the oc-
currence of rapid and massive bloom formation. Such events are characterized by
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a dramatic sharp rise in algae population numbers of up to several orders of mag-
nitude [1] followed by a sudden collapse whereby the phytoplankton population
returns to its original low level as if nothing had ever occurred.
These harmful algal blooms are due to increased production of poisoning chem-

icals by some phytoplankton species. In the last decades of the past century, a
global increase of toxin-producing phytoplankton (TPP) has been observed. Red
tides have a negative impact on the zooplankton and then on the species feeding
on it, affecting the large fish in the ocean and ultimately affecting, the human food
chain. Mathematical models for the understanding of the occurrence of red tides
have been proposed, based on the idea that they are caused by toxin-producing
phytoplankton (TPP) [2–5]
Observational evidence for the patchiness of phytoplankton is abundant and is

relatively easy to obtain [6]. Information on zooplankton distribution, vital for
theoretical modeling of the dynamics, is however scarcer and difficult to obtain.
Many authors have included the spatial variation of phytoplankton population in
bloom models [7, 8].
Recently, spatial movements of planktonic systems in the presence of toxin-

producing phytoplankton have been found to generate and maintain inhomoge-
neous biomass distribution of competing phytoplankton as well as grazer zooplank-
ton [9].
To explain the periodicity of bloom, Mukopadhyay and Bhattacharyya [10] have

considered a plankton interaction model which exploits spatial variation of plank-
ton with self and cross diffusion induced by toxin producing phytoplankton popula-
tion. Tian et. al. [11] have also shown in their study that cross diffusion of plankton
populations lead to the formation of spatial patterns and hence induces diffusive in-
stability. Recently interaction of toxin producing phytoplankton-zooplankton have
been studied with and without delay for obtaining possible mechanism of control-
ling bloom of plankton. Instabilities and patterns in zooplankton-phytoplankton
with self diffusion has been discussed in Upadhyay et. al. [20]. In the present pa-
per we have considered the interaction of toxin producing phytoplankton(TPP)-
zooplankton with spatial heterogeneity and self diffusion and the main aim is to
obtain the effect of spatial heterogeneity on the stability of TPP and zooplank-
ton. The organisation of this paper is as follows: In the next section we develop
mathematical model followed by its stability analysis in section 3. The bifurcation
analysis of the given model system with and without diffusion stating its dynamic
flow is given in section 4 and 5. The stability and bifurcation properties are provided
in section 6. The justification of our analytical findings are provided numerically
followed by conclusion in final sections.

2. The Mathematical Model

The mathematical model representing the TPP-zooplankton interaction is governed
by the system of ordinary differential equation,

dp
dt = rp(1− p/k)− c p

a+pz + d1∇2p t > 0, x ∈ Ω
dz
dt = c1

p
a+pz − δ2z − η p

a+pz + d2∇2z t > 0, x ∈ Ω

∂np = ∂nz = 0 t > 0, x ∈ ∂Ω

p(0, x) = p0 ⩾ 0, z(0, x) = z0 ⩾ 0 x ∈ Ω

(1)

where p(t,x) and z(t,x) denote the population densities of prey(toxin producing
phytoplankton) and predator(zooplankton) species at time t and space x, respec-
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tively; the positive constants d1 and d2 represent the diffusion rates of prey and
predator species, respectively; r > 0 denotes the intrinsic growth rate of prey
species, k > 0 denotes the carrying capacity of prey species, c > 0, c1 > 0 be the
capturing rate and conversion rate of the predator population; δ > 0 denotes the
death rate of predator species, a > 0 is the half saturation constant and η > 0 be
the rate of toxication by the TPP population, ∇2 denotes the Laplacian operator

3. Stability Properties of Equilibria

All solutions of (1) are nonnegative and bounded for all t > 0 [20] when d1 = 0,
d2 = 0. If r > δ1 and c1 − η > δ2 system (1) has a unique interior equilibrium

E∗(p, z), where p = γδ2
c1−η−δ2

and z =
r(1− p

K
)(γ+p)

c . In fact, under the Neumann

boundary conditions, we know that E∗ is still the steady-state solutions of system
(1). From the point of view of ecology, the properties of positive constant steady-
state solution are important and interesting. Therefore, in the following, we shall
focus on the stability of E∗(p, z) and the existence of Hopf bifurcation. Using
transformation u = p− p∗ and v = z − z∗, system (1) can be rewritten as,{

du
dt = a10u+ a01v + d1

∂2u
∂x2 + f(u, v, d1)

dv
dt = b10u+ b01v + d2

∂2v
∂x2 + g(u, v, d2)

(2)

Where

f(u, v, d1) = a20u
2 + a11uv + a02v

2 + a30u
3 + a21u

2v + ..............

g(u, v, d2) = b20u
2 + a11uv ++b30u

3 + a21u
2v + ........h.o.d. (3)

a10 = r − 2rp∗

K − cγz2

(γ+p∗)2 ,

a01 = − cp∗

γ+p∗ ,a20 = −2r
K − 2cγz∗

(γ+p∗)3 ,a11 = − cγ
(γ+p∗)2 ,

a02 = 0,a30 = − 6cγz∗

(γ+p∗)4 ,a21 = 2cγ
(γ+p)3 ,a03 = 0,b10 = (c1−η)γz∗

(γ+p∗)2 ,b01 = (c1−η)p∗

γ+p∗ −
δ2,b20 = −2(c1−η)γz∗

(γ+p)3 ,

b11 =
(c1−η)γ
(γ+p∗)2 ,b30 =

6(c1−η)γz∗

(γ+p∗)4 ,b21 = − 2(c1−η)
(γ+p∗)3 ,b03 = 0

4. Stability Without Diffusion

Theorem. In the absence of diffusion (k=0), choosing η the rate of toxin liberation
as the bifurcation parameter;
(i)System remained asymptotically stable if T0 < 0 and D0 > 0 which is equivalent

to η > η0, r > Max( δ22 , 1) and where η∗ = c1 −
δ2(1−r)+

2r(δ2+γ)

K

2r−δ2
.

(ii) A hopf-bifurcation occurs as η passes through a critical value η0.
Proof The Jacobian matrix of the system (2) at (u∗, v∗) is

J =

(
a10 a01
b10 b01

)
The characteristic equation is given by,

λ2 − Tλ+D = 0 (4)

where T = a10 + b01, D = a10b01 − a01b10
It is well known that the stability of trivial solution of (2) depends on the locations
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of roots of (4), when all roots of (4) have negative real parts, the trivial solution
of (2) is stable; otherwise, it is unstable.
Thus if T < 0 and D > 0, then E∗ is locally asymptotically stable.
Next we analyze the Hopf bifurcation occurring at E∗ by choosing η as the bifur-
cation parameter.
For the occurrence of hopf bifurcation at η = η0, Jacobian J has a pair of imaginary
eigenvalues, say λ = ±ι

√
D and let λ(η) = σ(η) + ιω(η) be the root of (4), then

σ(η) = T
2 , ω(η) =

√
4D−T
2

and, |∂σ(η)∂η |η=η0
= −2rδ2γ

K(c1−η−δ2)2
+

δ2(1− rγ2

K
)

(c1−η)2 ̸= 0

By the Hopf Bifurcation Theorem , we know that system (1) undergoes a Hopf
bifurcation at E∗ when η = η0.

5. Diffusion-Driven Instability of the Equilibrium Solution

In this part, we will derive conditions for the diffusion-driven instability with
respect to the equilibrium solution E∗, the spatially homogenous solution of the
(1).
It is well known that the operator −∆ϕ = λϕ, x ∈ Ω, with the above no-flux
boundary condition has eigenvalues and eigenfunctions as follows:

µ0 = 0, ϕ0(x) =
√

1
π , µk = k2, ϕk(x) =

√
2
π cos(kx), k=1,2,3,....

From the standard linear operator theory, it is known that if all the eigenvalues
of the operator L have negative real parts, then E∗ = (u1, u2) is asymptotically
stable, and if some eigenvalues have positive real parts, the E∗ = (u1, u2) is
unstable.

We consider the following characteristic equation of the operator L:

L

(
ϕ
ψ

)
= µ

(
ϕ
ψ

)
Let (ϕ(x), ψ(x))T be the eigenfunction of L corresponding to eigenvalue µ and

let(
ϕ
ψ

)
= Σ∞

k=0

(
ak
bk

)
cos(kx)

where ak and bk are coefficients, we obtain that

−k2DΣ∞
k=0

(
ak
bk

)
cos(kx) + JΣ∞

k=0

(
ak
bk

)
cos(kx) = µΣ∞

k=0

(
ak
bk

)
cos(kx)

(J − k2D)Σ∞
k=0

(
ak
bk

)
= µΣ∞

k=0

(
ak
bk

)
(k = 0.1.2., ..., )

Denote

Jk = J − k2D =

[(
a10 a01
b10 b01

)
−

(
d1µk 0
0 d2µk

)]
= 0

It follows from this, that the eigenvalues of L are given by the eigenvalues of Jk for
k=0,1,2,.. The characteristic equation of Jk is

µ2 − µTk +Dk = 0, k = 0, 1, 2, .... (5)

where
Tk = (d1 + d2)k

2 − (a10 + b01)
Dk = d1d2k

4 − (d1b01 + d2a10)k
2 + (a10b01 − a01b10)
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Theorem. (i)The positive equilibrium E∗ is locally asymptotically stable in the
presence of diffusion if and only if Tk < 0 and Dk > 0 i.e. (5) do not possess a
positive root for any k ⩾ 0
(ii) Diffusion instability (Turing instability) occurs if the following inequality holds,
4d1d2(a10b01 − a01b10) < (d1b01 + d2a10)

2.
Proof. From the definition of Tk(T0 < 0) we have Tk < 0 for all k > 0 satisfying
k < a10+b01

d1+d2
where η > η∗.

Thus the diffusion driven instability only occurs if Dk(k
2) = d1d2k

4 − (d1b01 +
d2a10)k

2 + (a10b01 − a01b10) < 0 i.e. (5) has at least one positive root. Since Dk is
quadratic in k2 and the graph of Dk = 0 is a parabola. The minimum of Dk(k

2) is
occur at k2 = k2min, where

k2min = d1b01+d2a10

2d1d2
> 0

Consequently, the condition for diffusive instability is Dk(k
2) < 0,

i.e. 4d1d2(a10b01 − a01b10) < (d1b01 + d2a10)
2.

6. Properties of Bifurcating Solutions

The PDE (2.1) possesses any periodic solution of corresponding ODE as a spatially
homogeneous periodic solution, including the ones from Hopf bifurcation. We can
also perform a Hopf bifurcation analysis of PDE 2.1 at the same bifurcation point of
ODE and bifurcating spatially homogeneous periodic solutions exist near η = η0. So
we shall applying the normal form theory and center manifold theorem introduced
by Hassard et al [12]. to study the direction of Hopf bifurcations. To determine the
stability of bifurcated periodic solutions, we need to know the restriction of the
system to its center manifold at µ = µ0. Denote by L the operator(
u
v

)
= L

(
u
v

)
with domain
{(u, v) ∈ H2(Ω)×H2(Ω)|∂uw, ∂vw = 0, x ∈ Ω}
, where the H2(Ω) is the standard Sobolev space and

L∗ =

(
a10 + d1∆ b10

a01 b01 + d2∆

)
.

In fact, we can choose

q =

(
1

(ιω0−a10)
a01

)
=

(
a0
b0

)
, q∗ = D∗

(
(−ω0−ιa10)

a01

ι

)
=

(
a∗
b∗

)
, D∗ = a01

2πω0

For all α ∈ DL∗ , β ∈ DL, it is not difficult to verify that
< L∗α, β >=< α,Lβ >, Lq = ιω0q
L∗q∗ = −ιω0q

∗, < q∗, q >= 1, < q∗, q̄ >= 0.
where < α, β >=

∫
Ω ᾱ

Tβdx denotes the inner product in L2(Ω)× L2(Ω).
Noticing that
(u, v) = zq + z̄q̄ +W, z =< q∗, (u1, u2)

T >
Then

{
u = z + z̄ +W1

v = z( (ιω0−a10)
a01

) + z̄( (−ιω0−a10)
a01

) +W2

(6)
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System in (z,W ) coordinates becomes ,{
dz
dz = ιω0z+ < q∗, f̃ >
dW
dt = LW + [f̃− < q∗, f̃ > q− < q̄∗, f̃ > q̄]

(7)

where f̃ = (f, g) defined in (3).
Then, straightforward but tedious calculations show that

< q∗, f̃ >= a01

2ω0
[( (ω0−ιa10)

a01
)f + ιg]

< q̄∗, f̃ >= a01

2ω0
[( (ω0+ιa10)

a01
)f − ιg]

< q∗, f̃ > q = a01

2ω0
[( (ω0−ιa10)

a01
)f + ιg, (ιω0−a10)

a01
(( (ω0−ιa10)

a01
)f + ιg)]

< q̄∗, f̃ > q̄ = a01

2ω0
[ ((ω0+ιa10)

a01
)f − ιg), (( (ω0+ιa10)

a01
)f − ιg) (−ιω0−a10)

a01
]

Noticing that

H =
H20

2
z2 +H11zz̄ +

H02

2
z̄2 + ...... (8)

W =
W20

2
z2 +W11zz̄ +

W02

2
z̄2 + ..... (9)

On the center manifold, we have
(2ιω − L)W20 = H20

(−L)W11 = H11

W02 = W̄20

and

< q∗, f̃ > q+ < q̄∗, f̃ > q̄ = (f, g)

H(z, z̄,W ) =< q∗, f̃ > q+ < q̄∗, f̃ > q̄ − (f, g) = 0

This implies that

W20=W02=W11=0
Therefore

dz

dt
= ιωz +

g20
2
z2 + g11zz̄ +

g02
2
z̄2 +

g21
2
z2z̄ +O(|z|4) (10)

where

g20 = 2D∗[ā∗0(a20 + b0a11 + b20a02) + b̄∗0(b20 + b0b11)],

g11 = D∗[ā∗0(2a20 + 2Re(b0)a11 + 2a02b0b̄0) + b̄∗0(2b20 + 2Re(b0)b11)],

g02 = 2D∗[ā∗0(a20 + a11b̄0 + a02b̄20 + 2a21̄b0) + b̄∗0(b20 + b̄0b11 + 2b̄0b21)],

g21 = 2D∗[ā∗0(3a30 + a21b̄0 + 2a21b0) + b̄∗0(3b30 + 2(2b0 + b̄0)b21)]

According to [12], we can obtain
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Figure 1. Left: the positive equilibrium is asymptotically stable and right: positive equilibrium is unstable,
and there exists a stable limit cycle

Figure 2. Numerical simulations of the stable equilibrium solution of system (2.1). The solution appears
to converge to a homogeneous steady state.

Figure 3. Numerical simulations of an unstable homogeneous equilibrium solution driven by diffusion.
Left: component p(unstable); right: component z (unstable).
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Figure 4. Numerical simulations of inhomogeneous stable periodic solution of given system with diffusion.
Left: orbitally stable periodic solution (component p); right: orbitally stable periodic solution (component
z).

c1(0) =
ι{g20g11 − 2|g11|2 − |g02|2

3 }
2ω0

+
g21
2

µ2 = −Re{c1(0)}
Re{λ′(η)}

,

β2 = 2Re{c1(0)},

7. Numerical Simulation

In this section, we gives the numerical validation of results derived analytically in
above sections to observe the effects of diffusion on the given plankton system. We
considered the following model system,{

dp
dt = 3p(1− p/105)− 0.7 p

5+pz + d1∆
2p

dz
dt = 0.6 p

5+pz − 0.364z − 0.2 p
5+pz + d2∆

2z
(11)

which has an interior equilibrium point E∗(52.80, 84.40) in the absence of diffusion.
From the sign of T(trace)=-0.0976 and D(det)=0.0314, it is clear that (4) has
eigen values with negative real parts which ensure the local asymptotic stability
of E∗ when η > η0 = 0.1871. When η = η0 = 0.1871 and K=108, it can be
calculated that the jacobian has pair of imaginary eigen values and system enters
into hopf bifurcation with the existence of limit cycles (see fig1). For PDE, taking
d1 = 1× 10−3, d2 = 1× 10−3, K=105, η = 0.2071, it is found that the homogenous
equilibrium solution which are also spatially homogeneous are stable, which is
shown numerically in fig 2.
Again taking d1 = 1×100, d2 = 1×100, K=113, η = 0.2071 > η0, it is found that

the homogenous equilibrium solution which are the spatially homogeneous become
unstable which is shown numerically in fig 3.
Choosing another set of parameters d1 = 1 × 10−3, d2 = 1 × 10−5, K=108,

η = 0.1871, it is obtained that Hopf bifurcation occurs atη = η0 , the direction of
the bifurcation is supercritical, and the bifurcating periodic solutions are locally
asymptotically stable. This is shown in fig 4., where the initial condition is taken
at (52 + sinx, 84 + cosx).
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8. Discussion and Conclusion

In this paper the TPP-zooplankton interaction in spatiotemporal domain were
studied where both populations are subject to self diffusion. We have first anal-
ysed the given system by taking diffusion coefficients d1 = 0, d2 = 0. It is observed
that under certain conditions the positive equilibrium E∗ remained asymptotically
stable and a hopf bifurcation occurs when η, the rate of toxication passes through
its critical value η = η0. In the presence of diffusion, it is found that the spa-
tially homogeneous solution remained stable under certain conditions and Turing
instability arises when some of these conditions are violated. Further using normal
form the direction of spatially homogeneous periodic solution are derived and their
stability is discussed.
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