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Abstract. In this paper, using a generalized Dunkl translation operator, we obtain a gener-
alization of Titchmarsh’s Theorem for the Dunkl transform for functions satisfying the(ψ, p)-

Lipschitz Dunkl condition in the space Lp,α = Lp(R, |x|2α+1dx), where α > − 1
2
.
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1. Introduction and preliminaries

Dunkl operators are differential-difference operators introduced in 1989, by Dunkl
[2]. On the real line, these operators, which are denoted by Dα, depend on a real
parameter α > −1

2 .
In [1], we proved an analog of Titchmarsh’s theorem for the Dunkl transform in the
space L2,α. In this paper we prove a generalization of this theorem in the space Lp,α,
where 1 < p ⩽ 2. For this purpose, we use a generalized Dunkl translation operator.

Lp,α = Lp(R, |x|2α+1dx); 1 < p ⩽ 2, is the Banach space of measurable functions
f(t) on R with finite norm
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∥f∥p,α =

(∫ ∞

−∞
|f(x)|p|x|2α+1dx

)1/p

.

The Dunkl operator is a differential-difference operator Dα

Dα =
df(x)

dx
+ (α+

1

2
)
f(x)− f(−x)

x
, α > −1

2
,

where f ∈ Lp,α.

Let jα(t) is a normalized Bessel function of the first kind

jα(t) =
2αΓ(α+ 1)Jα(t)

tα
,

where Jα(t) is a Bessel function of the first kind. The function jα(t) is infinitely
differentiable and even.

The Dunkl kernel defined by

eα(x) = jα(x) + icαjα+1(x),

where cα = (2α+ 2)−1.

Using the correlation

j′α(x) = −xjα+1(x)

2(α+ 1)
.

We have

eα(x) = jα(x)− ij′α(x). (1)

The Dunkl transform is defined by

f̂(λ) =

∫ ∞

−∞
f(x)eα(λx)|x|2α+1dx, λ ∈ R.

The inverse Dunkl transform is defined by the formula

f(x) = (2α+1Γ(α+ 1))−2

∫ ∞

−∞
f̂(λ)eα(−λx)|λ|2α+1dλ.

Plancherel’s theorem and the Marcinkiewics interpolation theorem (see [3]) we
get for f ∈ Lp,α with 1 < p ⩽ 2 and q such that 1

p +
1
q = 1,
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∥f̂∥q,α ⩽ C∥f∥p,α, (2)

where C is a positive constant.
K. Trimèche has introduced in [4] the generalized Dunkl translation operator τh,

h ∈ R, we have

(̂τhf)(x) = eα(xh)f̂(x). (3)

The function jα(x) is defined also by

jα(z) = Γ(α+ 1)
∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+ α+ 1)
, z ∈ C. (4)

Moreover, from (4) we see that

lim
z−→0

jα(z)− 1

z2
̸= 0

by consequence, there exist c > 0 and η > 0 satisfying

|z| ⩽ η =⇒ |jα(z)− 1| ⩾ c|z|2. (5)

2. Main Result

In this section we give the main result of this paper. We need first to define (ψ, p)-
Lipschitz Dunkl class.

Definition 2.1 A function f ∈ Lp,α is said to be in the (ψ, p)-Lipschitz Dunkl
class, denoted by Lip(ψ, p), if

∥τhf(x) + τ−hf(x)− 2f(x)∥p,α = O(ψ(h)) as h −→ 0,

where ψ(t) is a continuous increasing function on [0,∞), ψ(0) = 0 and ψ(ts) =
ψ(t)ψ(s) for all t, s ∈ [0,∞).

Theorem 2.2 Let f(x) belong to Lip(ψ, p). Then

∫
|λ|⩾r

|f̂(λ)|q|λ|2α+1dλ = O(ψ(r−q)) as r −→ +∞.

Proof Let f ∈ Lip(ψ, p). Then we have

∥τhf(x) + τ−hf(x)− 2f(x)∥p,α = O(ψ(h)) as h −→ 0
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From formulas (1) and (2), we have the Dunkl transform of

τhf(x) + τ−hf(x)− 2f(x) is 2(jα(λh)− 1)f̂(λ).

By (2), we obtain

(∫ ∞

−∞
2q|jα(λh)− 1|q|f̂(λ)|q|λ|2α+1dλ

)1/q

⩽ C∥τhf(x) + τ−hf(x)− 2f(x)∥p,α

From (5), we have

∫
η

2h
⩽|λ|⩽ η

h

|1− jα(λh)|q|f̂(λ)|q|λ|2α+1dλ ⩾ cqη2q

22q

∫
η

2h
⩽|λ|⩽ η

h

|f̂(λ)|q|λ|2α+1dλ

There exists then a positives constants C1 and K1 such that

∫
η

2h
⩽|λ|⩽ η

h

|f̂(λ)|q|λ|2α+1dλ ⩽ C1

∫ ∞

−∞
|1− jα(λh)|q|f̂(λ)|q|λ|2α+1dλ

⩽ K1ψ
q(h) = K1ψ(h

q).

Then

∫
r⩽|λ|⩽2r

|f̂(λ)|q|λ|2α+1dλ ⩽ Kψ(r−q),

where K = K1ψ(η
q2−q).

Of course

∫
|λ|⩾r

|f̂(λ)|q|λ|2α+1dλ =

(∫
r⩽|λ|⩽2r

+

∫
2r⩽|λ|⩽4r

+

∫
4r⩽|λ|⩽8r

+......

)
|f̂(λ)|q|λ|2α+1dλ

⩽ Kψ(r−q) +Kψ((2r)−q) +Kψ((4r)−q) + .......

⩽ Kψ(r−q) +Kψ(2−q)ψ(r−q) +Kψ((2−q)2)ψ(r−q) + ......

⩽ Kψ(r−q)(1 + ψ(2−q) + ψ((2−q)2) + .....).

We have ψ(2−q) < 1, then

∫
|λ|⩾r

|f̂(λ)|q|λ|2α+1dλ ⩽ C2ψ(r
−q),

where C2 = K(1− ψ(2−q))−1.

Finally, we get
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∫
|λ|⩾r

|f̂(λ)|q|λ|2α+1dλ = O(ψ(r−q)) as r −→ ∞.

Thus, the proof is finished. ■

3. Conclusion

In this work we have succeded to generalise the theorem in [1] for the Dunkl
transform in the space Lp,α. We proved that f(x) belong to Lip(ψ, p). Then

∫
|λ|⩾r

|f̂(λ)|q|λ|2α+1dλ = O(ψ(r−q)) as r −→ +∞.
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