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Abstract. In this paper we use the Triangular and Trapezoidal Fuzzy Numbers as tools for assessing student 
Mathematical Modelling (MM) skills. Fuzzy Numbers play a fundamental role in fuzzy mathematics analogous to 
the role played by the ordinary numbers in classical mathematics, On the other hand, MM appears today as a 
dynamic tool for teaching and learning mathematics, because it connects mathematics with our everyday life giving 
the possibility to students to understand its usefulness in practice thus increasing their interest about mathematics. 
Therefore, the subject of the present paper appears to be of great interest. Our results are illustrated by three 
examples, through which the effectiveness of our new fuzzy assessment approach is validated compared to already 
established by the present authors in earlier works assessment methods of the classical (calculation of the means, 
GPA index) and the fuzzy logic (Trapezoidal Model). 
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1. Introduction 
 
The systems’ modelling is a basic principle in engineering, in natural and in social sciences. 
When we face a problem concerning a system’s operation (e.g. maximizing the productivity 
of an organization, minimizing the functional costs of a company, etc) a model is required to 
describe and represent the system’s multiple views. The model is a simplified representation 
of the basic characteristics of the real system including only its entities and features under 
concern. The construction of a model usually involves a preliminary deep abstracting process 
on identifying the system’s dominant variables and the relationships governing them. The 
resulting structure of this action is known as the assumed real system. The model, being a 
further abstraction of the assumed real system, identifies and simplifies the relationships 
among these variables in a form amenable to analysis.  
There are several types of models in use according to the form of the corresponding problem 
([25], Section 1.3.1). The representation of a system’s operation through the use of a 
mathematical model is achieved by a set of mathematical expressions (equalities, inequalities, 
etc) and functions properly related to each other. The solutions provided by a mathematical 
model are more general and accurate than those provided by the other types of models. 
However, in cases where a system’s operation is too complicated to be described in 
mathematical terms (e.g. biological systems), or the corresponding mathematical relations are 
too difficult to deal with for providing the problem’s solution, a simulation model can be 
used, which is usually constructed with the help of computers. 
 

 
Figure 1:  The circle of modelling 

 
Until the middle of 1970’s Mathematical Modelling (MM) was mainly a tool in hands of 
scientists and engineers for solving the real world problems related to their disciplines 
(physics, industry, constructions, economics, etc). One of the first who described the process 
of MM in such a way that it could be used for teaching mathematics was Pollak [14]. He 
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represented the interaction between mathematics and the real world with the scheme shown in 
Figure 1, which is known as the circle of modelling. 
The most important feature of Pollak’s scheme is the direction of the arrows, representing a 
looping between the other (real) world (including all the other sciences and the human 
activities of everyday life) and the “universe” of mathematics: Starting from a real problem of 
the other world we transfer to the other part of the scheme, where we use or develop suitable 
mathematics for its solution. Then we return to the other world interpreting and testing on the 
real situation the mathematical results obtained. If these results are not giving a satisfactory 
solution to the real problem, then we repeat the same circle again one or more times.    
From the time that Pollak presented this scheme in ICME-3 (Karlsruhe, 1976) until nowadays 
much effort has been placed to analyze in detail the process of MM [1, 2, 3, 5, 8] ,  etc. A 
brief but comprehensive account of the variation of models used for the description of the 
MM process can be found in Haines & Crouch [9] including Voskoglou’s stochastic model 
[28] in which the MM circle is treated as a Markov chain process dependent upon the 
transition between the successive discrete stages of the MM process. The arrows in Figure 2 
below are shown the possible transitions between stages which are: 
 

 
Figure 2: The flow-diagram of Voskoglou’s Markov chain model for the MM process 

 
S1:  Analysis of the problem (understanding the statement and recognizing the restrictions and 
requirements of the real system. 
S2:  Mathematization (formulation of the problem and construction of the model). 
S3:  Solution of the model by proper mathematical manipulation  
S4:  Validation (control) of the model, which is usually achieved by reproducing, through the 
model, the behaviour of the real system under the conditions existing before the solution of 
the model and by comparing it to the existing, from the previous “history” of the 
corresponding real system, real data (in cases of systems having no past history, an extra 
simulation model can be used for the validation of the initial mathematical model). 
S5:  Interpretation of the final mathematical results and implementation of them   to the real 
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system, in order to give the “answer” to the real world problem. 
In concluding, MM appears today as a dynamic tool for teaching and learning mathematics, 
because it connects mathematics with our everyday life giving the possibility to students to 
understand its usefulness in practice and therefore increasing their interest about mathematics. 
In other words, according to the Polya’s [15] terminology, MM works as a best motivation for 
learning mathematics. Therefore, the assessment of student MM skills is a very important task 
that enables the instructor to obtain a concentrating view of his/her students’ progress on MM 
and thus to readapt his/her teaching methods and practices in order to succeed the best 
possible, under the circumstances, result. 
Our target in this paper is to use the Triangular (TFN) and the Trapezoidal (TpFN) Fuzzy 
Numbers (FNs) as a tool for assessing student MM skills. Notice that, there exist strong 
logical pro arguments for employing this approach.  In fact, roughly speaking a TFN (a, b, c), 
with a, b and c real numbers such that a< b < c, means “approximately equal to b” or, if you 
prefer, “the value of b lies in the real interval [a, c]”. Furthermore, a TpFN (a, b, c, d), with 
a, b, c and d real numbers such that a< b < c < d, actually means “approximately in the 
interval [b, c]”.  Obviously the above expressions constitute the basis for a fuzzy assessment.   
The rest of the paper is formulated as follows: In Section 2 we give a summary of our 
previous researches on using principles of Fuzzy Logic (FL) for the MM process. In Section 3 
we present the FNs and basic properties of them, while in Section 4 we discuss TFNs and 
TpFNs, which are two of the simplest forms of TFNs. In Section 5 we describe the use of 
TFNs/TpFNs for assessing MM skills and finally in our last Section 6 we state our 
conclusions and we discuss the perspectives of further research on the subject 

 
2. Fuzzy Logic in MM: A summary of our previous researches 
 
Models for the MM process like all those mentioned in the previous section are useful in 
understanding what is termed by Haines & Crouch [9] as the ideal behaviour, in which the 
modellers proceed effortlessly from a real world problem through a mathematical model to 
acceptable solutions and report on them. However, life in classroom (and probably amongst 
modellers in science, industry and elsewhere) is not like that. More recent researches [4, 6, 7], 
report that students in school take individual routes when tackling MM problems, associated 
with their individual learning styles and the level of their cognition, which utilizes in general 
concepts that are inherently graded and therefore fuzzy. On the other hand, from the teachers’ 
point of view there usually exists a degree of vagueness about their students’ way of thinking 
in each of the stages of the MM process, when tackling such kind of problems.  
All these gave us the impulsion to introduce principles of FL for treating in a more realistic 
way the process of MM in classroom. In fact, Voskoglou [29] represented the main stages of 
the MM process as fuzzy sets in a set of linguistic labels (grades) characterizing the students’ 
performance and he has used the concept of a system’s uncertainty, which emerges naturally 
within the broad framework of fuzzy sets theory, for obtaining a measure of students’ MM 
skills [29].  
Subbotin et al. [18] introduced the idea of applying the commonly used in FL Center of 
Gravity (COG) defuzzification technique (e.g. see [27]) for assessing students’ performance. 
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According to the COG technique the defuzzification of a fuzzy situation’s data is succeeded 
through the calculation of the coordinates of the COG of the level’s section contained 
between the graph of the membership function associated with this situation and the X- axis. 
Subbotin and Voskoglou, either collaborating or independently to each other, have adapted 
several times in the past the COG technique for assessing students’ skills in a variety of 
different (mainly mathematical) tasks [18, 19, 22, 31, 32, 33], etc, for testing the 
effectiveness of a CBR system [20], for assessing Bridge players’ performance [35], etc. For 
this, they represented the group under assessment as a fuzzy set on the set of the linguistic 
grades U = {A, B, C, D. F} characterizing its members’ performance, where A = excellent 
(85-100%), B = very good (75-84%), C = good (60-74%), D = fair (50-59%) and F = 
unsatisfactory (0-49%). We emphasize that the scores assigned to each of the above grades 
are indicative only, since they may slightly differ from case to case. For example, one in a 
more strict ranking could take A=90-100%, B=89-80%, C=79-70%, D=69-60% , F=59-0%, 
etc  
Recently two variations of the COG technique, initiated by Subbotin [21], have been 
developed treating better the ambiguous assessment cases, which are at the boundaries 
between two successive linguist grades (e.g. something like 84-85% being at the boundaries 
between A and B): The Triangular (TFAM) [23] and the Trapezoidal (TpFAM) [24] Fuzzy 
Assessment Models, which have been proved to be equivalent to each other, in the sense that 
they obtain exactly the same assessment results. Therefore, it is logical to focus here on one 
of the TFAM/TpFAM models, instead of the COG technique. 
According to the TpFAM [24], for example, the coordinates (Xc, Yc) of the COG of the 

resulting scheme  are calculated by the formulas: Xc  = 
5

1

(7 ) 2i
i

iy


 ,  Yc =

5
2

1

3

7 i
i

y

     (1),  

where x1=F, x2=D, x3=C, x4=B, x5=A and yi is the percentage of students who obtained the 
grade xi, for i=1, 2, 3, 4, 5. Further, between two groups, the group with the greater value for 
Xc demonstrates the better performance. Also, if the two groups have the same value for Xc 
then: a) If Xc


19, the group with the greater value of Yc demonstrates the better 

performance, b) If Xc <19, the group with the smaller value of Yc demonstrates the better 
performance.  
The TpFAM, as well as the TFAM and the COG technique, measures the quality 
performance of a group, since, as it turns out from the first of formulas (1), it assigns greater 
coefficients (weights) to the higher scores.  
Notice that an analogous method of the classical logic measuring the group’s quality 
performance is the very popular in USA and some other Western countries Grade Point 
Average (GPA) index. Using the same as above notation the GPA index is calculated by the 
formula GPA = 0y1 + y2 + 2y3 + 3y4 + 4y5     (2) ; e.g. see Section 4.1 of [24]. In the ideal case 
(y1 = y2 = y3 = y4 = 0, y5 = 1) equation (2) gives that GPA = 4, while in the worst case (y2 = y3 
= y4 = y5 = 0, y1 = 1) it gives that GPA = 0. Therefore, we have in general that 0   GPA   4. 
On comparing (2) with the first of formulas (1) one observes that the TpFAM is more 
sensitive to the higher scores than the GPA index, since it assigns greater coefficients to them.  



M. Voskoglou and I. Subbotin / , 06 -01 (2016) 83-103. 

 
3. Fuzzy Numbers 
 
3.1 Definitions 

A Fuzzy Number (FN) is a special form of fuzzy set [36] on the set R of real numbers. For 
those not familiar to the subject we recall that a fuzzy set A on the universal set U,  is a set of 
ordered pairs of the form Α = {(x, mΑ(x)): xU}, defined in terms of a membership function  
mΑ : U   [0,1] that assigns to each element of U a real value from the interval [0,1]. For 
general facts on fuzzy sets, which find nowadays applications to almost all sectors of human 
activities (e.g. see [10, 11, 17, 20, 22, 31, 32, 33], etc), we refer to the book of Klir & Folger 
[12]. 
FNs play a fundamental role in fuzzy mathematics, analogous to the role played by the 
ordinary numbers in classical mathematics. For general facts on FNs we refer to Chapter 3 of 
the book of Theodorou [26], which is written in Greek language, and also to the classical on 
the subject book of Kaufmann and Gupta [12]. For introducing the notion of a FN, it becomes 
necessary to give first the following three introductory definitions: 
Definition 1:  A fuzzy set A on U with membership function y = m(x) is said to be normal, if 
there exists x in U, such that m(x) = 1. 
Definition 2: Let A be a fuzzy set in U, and let x be a real number of the interval [0, 1]. Then 
the x-cut of A, denoted by Ax, is defined to be the set Ax = {yU: m(y)   x}. 
Definition 3: A fuzzy set A on R is said to be convex, if its x-cuts Ax are ordinary closed real 
intervals, for all x in [0, 1].  
For example, for the fuzzy set A whose membership function’s graph is represented in Figure 
3, we observe that A0.4 = [5, 8.5]   [11, 13] and therefore A is not a convex fuzzy set.  

 
 

Figure 3: Graph of a non convex fuzzy set 
 
We are ready now to give the definition of a FN: 
Definition 4: A FN is a normal and convex fuzzy set A on R with a piecewise continuous 
membership function. 
Figure 4 represents the graph of a FN expressing the fuzzy concept: “The real number x is 
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approximately equal to 5”. We observe that the membership function of this FN takes 
constantly the value 0 outside the interval [0, 10], while its graph in [0, 1] is a parabola.  
 

 
 

Figure 4: Graph of a fuzzy number 
 

Since the x-cuts Ax of a FN A are closed real intervals, we can write Ax = [ ,x x
l rA A ] for 

each x in [0, 1], where ,x x
l rA A  are real numbers depending on x. The following statement 

defines a partial order in the set of all FNs: 

Definition 5: Given the FNs A and B we write AB (or ) if, and only if, 
x x

l lA B and 
x x

r rA B  (or  ) for all x in [0, 1]. Two FNs for which the above relations hold are called 

comparable, otherwise they are called non comparable. 

3.2 Arithmetic operations on FNs 

The basic arithmetic operations on FNs are defined in general in two alternative ways, which 
are equivalent to each other:  
(i) With the help of their x-cuts and the Representation-Decomposition Theorem for fuzzy sets 
For this, we recall first that the Representation-Decomposition Theorem of Ralesscou-
Negoita ([16], Theorem 2.1, p.16) states that a fuzzy set A can be completely and uniquely 

expressed  by the family of its x-cuts in the form  A =
[0,1]

x

x

xA

 . 

Now, if A and B are given FNs, and “*” denotes an arithmetic operation (addition, 
subtraction, multiplication or division) between them, applying the above theorem for the 

fuzzy set A * B we find that A * B = 
[0,1]

( * )x

x

x A B

 . But the x-cuts of the FNs are ordinary 

closed real intervals, therefore, if we define that (A * B)x = Ax * Bx  (where, for reasons of 
simplicity, “*” in the second term of the last equation denotes the corresponding operation 
between closed real intervals), the fuzzy arithmetic is turned to the well known arithmetic of 
the closed real intervals (we recall that an arithmetic operation “*” between closed real 
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intervals is defined by the general rule [a, b] * [a1, b1] = {x * y: x, y  R, a  x   a1, b y   
b1} [12]). 
(ii) By applying the Zadeh’s extension principle ([13], Section 1.4, p.20), which provides the 
means for any function f  mapping the crisp set X to the crisp set Y to be generalized so that 
to map fuzzy subsets of X to fuzzy subsets of Y. 
In practice the above two general methods of the fuzzy arithmetic, requiring laborious 
calculations, are rarely used in applications, where the utilization of simpler forms of FNs is 
preferred.  
 
4. Triangular and Trapezoidal Fuzzy Numbers  
  
4.1 Definition and Basic Properties of Triangular Fuzzy Numbers (TFNs) 

The membership function’s graph of a TFN  (a, b, c), where a< b < c are given real numbers, 
is represented in Figure 5. We observe that the membership function y=m(x) of it takes 
constantly the value 0, if x is outside the interval [a, c], while its graph in the interval [a, c] is 
the union of two straight line segments forming a triangle with the X-axis.  
 

Y

B(b,1)

O

G
X

ΜA(α,0)

1

C(c,0)

N

 
 

Figure 5: Graph of the TFN (a, b, c) 
 
Therefore, the definition of a TFN is given as follows: 
Definition 6:  Let a, b and c be real numbers with a < b < c. Then the Triangular Fuzzy 
Number (TFN) A = (a, b, c) is a FN with membership function: 
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, [ , ]

( ) [ , ]

0,        

x a
x a b

b a
c x

y m x x b c
c b

x a or x c

 
 

    
  

   

 

In the above definition we obviously have that m(b)=1, while b need not be in the “middle” 
of a and c. 
The following two Propositions refer to basic properties of TFNs that we are going to use 
later in this paper:  
Proposition 1: The x-cuts Ax of a TFN A = (a, b, c), x [0, 1],  are calculated by the formula 

Ax = [ ,x x
l rA A ] = [a + x(b - a), c - x(c - b)] . 

Proof:  Since Ax = {yR: m(y   x}, Definition 6 gives for the case of 
x

lA that  

y a

b a




= x y = a + x(b – a). Similarly for the case of 
x

rA we have that 
c y

c b




= x 

 y = c - x(c - b). 
Proposition 2 (Defuzzification of a TFN): The coordinates (X, Y) of the COG of the graph of 

the TFN (a, b, c) are calculated by the formulas X = 
3

a b c 
, Y = 

1

3
.  

Proof: The graph of the TFN (a, b, c) is the triangle ABC of Figure 5, with A (a, 0),  
B (b, 1) and C (c, 0). Then, the COG, say G, of ABC is the intersection point of its medians 

AN and BM, where N (
2

b c
,
1

2
) and M (

2

a c
, 0). Therefore the equation of the straight 

line on which AN lies is  1

2 2

x a y
b c

a







 , or x + (2a - b- c)y = a  (3). In the same way one 

finds that the equation of the straight line on which BM lies is 2x + (a + c - 2b)y = a + c    
(4).  

Since D = 
2 2

3( ) 0
1 2

a c b
a c

a b c

 
  

  , the linear system of (3) and (4) has a unique 

solution with the respect to the variables x and y determining the coordinates of the triangle’s 
COG. 
The proof of the Proposition is completed by observing that  
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Dx = 
2 22

( )( ) ( )
2

a c a c b
a c ba bc a c a c b a c

a a b c

  
        

   

= ( )( )a c a c b   and Dy  = 
2

1

a c
a c

a


  . 

4.2 Arithmetic operations on TFNs 

It can be shown that the two general methods for defining arithmetic operations on FNs 
presented in Section 3 lead to the following simple rules for the addition and subtraction of 
TFNs: 
Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then 

 The sum A + B = (a+a1, b+b1, c+c1). 
 The difference A - B = A + (-B) = (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) is 

defined to be the opposite of B. 
Obviously A + (-A) = (a-c, 0, c-a)  O = (0, 0, 0), where the TFN O is defined by O(x) = 1, if 
x = 0 and O(x)=0, if x  0.  
In other words, the opposite of a TFN, as well as the sum and the difference of two TFNs are 
also TFNs. On the contrary, the product and the quotient of two TFNs, although they are FNs, 
they are not always TFNs. However, in the special case where a, b, c, a1, b1, c1 are in R+, it 
can be shown that the fuzzy operations of multiplication and division of TFNs can be 
approximately performed by the rules:  

 The product A . B = (aa1, bb1, cc1). 

 The quotient A :  B = A . B-1 =  (
1 1 1

, ,
a b c

a b c
), where B-1 =  (

1 1 1

1 1 1
, ,

a b c
) is defined 

to be the inverse of B. 
In other words, in R+ the inverse of a TFN, as well as the product and the division of two 
TFNs can be approximately considered to be TFNs too. 
Further, one can define the following two scalar operations: 

 k + A= (k+a,  k+b,  k+c), kR 
 kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if k<0. 

4.3 Definition and defuzzification of a Trapezoidal Fuzzy Number (TpFN) 

The membership function’s graph of the TpFN (a, b, c, d), where a< b < c < d are given real 
numbers, is represented in Figure 6 below:  
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Y

B(b,1)

O XA(α,0)

C(c,1)

F(b,0) E(c,0) D(d,0)

 
Figure 6: Graph of the TpFN (a, b, c, d) 

 
We observe that its membership function y=m(x) is constantly 0 outside the interval [a, d], 
while its graph in this interval [a, d] is the union of three straight line segments forming a 
trapezoid with the X-axis. Therefore, its analytic definition is given as follows: 
Definition 7: Let a < b < c< d be given real numbers. Then the TpFN (a, b, c, d) is the FN 
with membership function: 

, [ , ]

1, , [ , ]
( )

[ , ]

0,        

x a
x a b

b a

x x b c
y m x

d x
x c d

d c

x a and x d

 
 

  
 

   


    

 

Obviously the TFN (a, b, c) can be considered as a special case of the TpFN (a, b, c, d) with 
b=c.  
The following proposition provides a defuzzification of a given TpFN with the COG 
technique: 
Proposition 3: The coordinates (X, Y) of the COG of the graph of the TpFN (a, b, c, d) are 

calculated by the formulas X = 
2 2 2 2

3( )

c d a b dc ba

c d a b

    
  

, Y = 
2 2

3( )

c d a b

c d a b

  
  

. 

Proof: We divide the trapezoid forming the graph of the TpFN (a, b, c, d) in three parts, two 
triangles and one rectangle (Figure 6). The coordinates of the three vertices of the triangle 
ABE are (a, 0), (b, 1) and (b, 0) respectively, therefore, by Proposition 2, the COG of this 

triangle is the point C1 (
2 1

,
3 3

a b
). Similarly one finds that the COG of the triangle FCD is 
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the point C2 (
2 1

,
3 3

d c
). Also, it is easy to check that the COG of the rectangle BCFE is the 

point C3 (
1

,
2 2

b c
). Further, the areas of the two triangles are equal to S1 = 

2

b a
 and S2 = 

2

d c
respectively, while the area of the rectangle is equal to S3 = c- b.  

It is well known then (e.g. see [37]) that the coordinates of the COG of the trapezoid, being 
the resultant of the COGs Ci  (xi,  yi), for i=1, 2, 3, are calculated by the formulas X = 

3

1

1
i i

í

S x
S 
 ,  

Y = 
3

1

1
i i

í

S y
S 
  (5), where S = S1 + S2 + S3 = 

2

c d b a  
 is the area of the trapezoid. 

The proof of the Proposition is completed by replacing the above values of S, Si, xi and yi,  i = 
1, 2, 3, in formulas (5) and by performing the corresponding algebraic operations. 

4.4 Arithmetic operations on TpFNs 

It can be shown that the two general methods for performing the basic arithmetic operations 
between FNs (see Section 3) lead to the following simple rules for the addition and 
subtraction of TpFNs: 
Let A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) be two TFNs. Then 

 The sum A + B = (a1+b1, a2+b2, a3+b3, a4+b4). 
 The difference A - B = A + (-B) = (a1-b4, a2-b3, a3-b2, a4-b1) , where  
      –B = (-b4, -b3, -b2, -b1) is defined to be the opposite of B. 

In other words, the opposite of a TpFN, as well as the sum and the difference of two TpFNs 
are also TpFNs. 
On the contrary, the product and the quotient of two TFNs, although they are FNs, they are 
not always TpFNs, apart from some special cases, or in terms of suitable approximating 
formulas. 
Further, one can define the following two scalar operations: 

 k + A= (k+a1, k+a2, k+a3, k+a4), kR 
 kA = (ka1, ka2, ka3, ka4), if k>0 and kA = (ka4, ka3, ka2, ka1), if k<0. 

We close this section with the following definition, which will be used later in this paper for 
assessing MM skills with the help of TpFNs (TFNs): 
Definition 8: Let Ai, i = 1, 2, …, n  be TpFNs (TFNs), where n is a non negative integer, 
n  2. Then we define the mean value of the above TpFNs (TFNs) to be the TpFN (TFN)  

A= 
1

n
(A1 + A2 + …. + An). 

 
5. Assessing students’ model building skills 
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In this section we use the TFNs and TpFNs as a tool for assessing MM skills. This new fuzzy 
assessment approach is validated by comparing the results obtained with the corresponding 
results of other assessment methods of the traditional (mean values, GPA index) and of the 
fuzzy logic (TpFAM) already utilized by the present authors in earlier works. All these are 
materialized through the following three examples: 

5.1 Example  

Three MM problems (see Appendix) were given for solution to the students of two different 
Departments of the School of Management and Economics of the Graduate Technological 
Educational Institute (T. E. I.) of Western Greece at their common progress exam of the 
course “Mathematics for Economists I”. The students achieved the following scores (in a 
climax from 0 to 100):  
First Department (D1): 100(2 times), 99(3), 98(5), 95(8), 94(7), 93(1), 92 (6), 90(5), 89(3), 
88(7), 85(13), 82(6), 80(14), 79(8), 78(6), 76(3), 75(3), 74(3), 73(1), 72(5), 70(4), 68(2), 
63(2), 60(3), 59(5), 58(1), 57(2), 56(3), 55(4), 54(2), 53(1), 52(2), 51(2), 50(8), 48(7), 45(8), 
42(1), 40(3), 35(1). 
Second Department (D2) :  100(1), 99(2), 98(3), 97(4), 95(9), 92(4), 91(2), 90(3), 88(6), 
85(26), 82(18), 80(29), 78(11), 75(32), 70(17), 64(12), 60(16), 58(19), 56(3), 55(6), 50(17), 
45(9), 40(6).  
The assessment of the above data will be performed with the following methods: 
I) Mean values: Calculating the means of the above scores in the classical way one 

approximately finds that 
12314

170
 72.44 for D1 and 

18369

255
 72.04 for D2 respectively, 

showing that D1 demonstrated a slightly better mean performance than D2.  
II) GPA index:  Summarizing the student scores with respect to the grades A, B, C, D and F, 
one forms the following Table: 

Table 1: Students’ performance in terms of the linguistic grades 
 

Grade D1 D2 
A 60 60 
B 40 90 
C 20 45 
D 30 45 
F 20 15 

 Total  170 255 
      
From Table 1 one easily calculates the percentages of the students of D1 who obtained the 

grades F, D, C, B and A respectively, which are: y1 = y3 = 
2

17
,  y2 = 

3

17
, y4 = 

4

17
, y5 = 

6

17
. 

Replacing these values in formula (2) of Section 2 one finds that the GPA index for D1  is 
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GPA = 
30 2*20 3*40 4*60 430

170 170

  
  2.529 and similarly the same value for D2. This 

means that both Departments demonstrated the same quality performance, which can be 
characterized as more than satisfactory, since the value 2.529 found for the GPA index is 
greater than the half of its maximal possible value (4:2=2). 
III) Application of the TpFAM: Replacing the student percentages of D1 in the first of 
formulas (1) of Section 2 one finds that the x-coordinate of the COG of the TpFAM’s scheme   
for D1 is equal to  

Xc =  7(
2 2*3 3*2 4*4 5*6

17

   
) – 2 = 

386

17
  22.7. Working similarly one also finds the 

same value of Xc for D2. Therefore, in order to compare the two Departments’ performance 
one must also calculate the y-coordinates Yc of the corresponding COGs. For this, replacing 
the values of the yi, for i=1, 2, 3, 4, 5, in the second of formulas (1) one finds for D1 that  

Yc =  2 2 2 2 23 2 3 2 4 6 207
[( ) ( ) ( ) ( ) ( ) ]

7 17 17 17 17 17 2023
     . In the same way one finds for D2 the 

value  

Yc =
213

2023
. But Xc    22.7 >19, therefore, according to the comparison criterion for the 

TpFAM stated above, D2 demonstrated a slightly better quality performance than D1. 
Notice also that in case of the ideal performance (y5 = 1, y1 = y2 = y3 = y4 = 0) the first of 
formulas (1) -give that Xc = 33. Therefore, since the value of Xc   22.7 found for both 
Departments is greater than the half of its value corresponding to the ideal performance (33:2 
= 16.5), the quality performance of the two Departments can be characterized as more than 
satisfactory. 
Finally we observe that, although according to the GPA index the two Departments 
demonstrated the same quality performance, the application of the TpFAM have shown that 
D2 demonstrated a slightly better than D1 quality performance. This is due to the fact that, as 
we have seen above, the TpFAM is more sensitive than the GPA index to the higher scores.     
IV) Use of the TFNs: We assign to each linguistic grade a TFN (denoted, for simplicity, by 
the same letter) as follows: A= (85, 92.5, 100), B = (75, 79.5, 84), C = (60, 67, 74), D= (50, 
54.5, 59) and F = (0, 24.5, 49). Namely, the left entry of each TFN is equal to the lower 
bound of the student scores assigned to the corresponding grade, its middle entry is equal to 
the mean value of these scores and its right entry is equal to the upper bound of these scores. 
In this way a TFN corresponds to each student assessing his (her) individual performance. 
The replacement of the linguistic grades by TFNs for the individual student assessment has 
the advantage of determining numerically the scores assigned to each grade, which, as we 
have already seen, are not standard, since they may slightly differ from case to case.    
It is of worth to notice here that in an earlier work [34] an assessment of the student 
individual performance in problem solving was attempted by assigning to each student an 
ordered triple of linguistic grades characterizing his (her) performance in the three main 
steps of the problem solving process. In the same work it was shown that this approach is 
equivalent to the A. Jones method [11] of assessing a student’s knowledge in terms of his 
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(her) fuzzy deviation with respect to the teacher. The same approach can be also applied here 
for assessing the individual student MM skills. For example, the ordered triple (A, B, C) 
could be assigned to a student who demonstrated an excellent performance at the stage S2 of 
mathematization, a very good performance at the stage S3 of the solution of the model and a 
good performance at the stage S4 of validation (see the Voskoglou’s model for the MM 
processd presented in Section 1). However, in this way the overall performances of two 
different students are not always comparable. For example this happens with two students 
with profiles (A, B, C) and (B, B, B) respectively. Mathematically speaking, this approach 
defines a partial order only on the student individual performances; e.g. a student with 
profile (A, B, C) demonstrates a better performance than one with profile (B, B, D), etc. 
Further, this approach is laborious requiring an independent evaluation of the student 
performance at each stage of the MM process, which could not be practically possible, since 
the boundaries between these stages are not always clear. 
After this parenthesis, let us return to the TFNs. We observe that in Table 1 we actually have 
170 TFNs representing the individual performance of the students of D1 and 255 TFNs 
representing the individual performance of the students of D2. Therefore, it is logical to 
accept that the overall performance of each Department can be represented by the 
corresponding mean values of the above TFNs (see Definition 8). For simplifying our 
notation, let us denote the above means by the letter of the corresponding Department. Then, 
making the required straightforward calculations, one finds that  

D1 =  
1

170
. (60A+40B+20C+30D+20F)   (63.53, 71.74, 83.47) and 

D2 =  
1

255
. (60A+90B+45C+45D+15F)   (65.88, 72.63, 79.53).   

The above TFNs (mean values) give us the following information: 
(i) The overall performance of D1 is characterized numerically by a score lying in 

the interval [63.53, 83.47], i.e. from good (C) to very good (B). Similarly, the 
performance of D2 is characterized by a score lying in the interval [65.88, 
79.53]. 

(ii) The middle entries 71.74 and 72.63 of the two TFNs give a rough 
approximation (C=good) of the scores characterizing numerically the 
performance of D1 and D2 respectively. 

But, why we have characterized the values of the middle entries of the TFNs D1 and D2 as 
been rough approximations of the corresponding scores? We observe first that these values 
do not correspond to the mean performances of the two Departments. In fact, calculating the 
means of the student scores in the classical way we found above (case I) the values 72.44 and 
72.04 respectively, demonstrating a slightly better mean performance for D1. Let us now go 
back to the definition of the TFNs A, B, C, D and F. The middle entries of these TFNs were 
chosen to be equal to the means of the scores assigned to each of the corresponding linguistic 
grades. Therefore the middle entries of the TFNS D1 and D2 are actually equal to the mean 
values of these means, which justifies completely the characterization “rough” given to them.  
Thus, the question is how one can compare the overall performances of the two Departments. 
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If the TFNS D1 and D2 are comparable (see Definition 5), the answer to this question is easy. 
For example, if D1 < D2, then D2 demonstrates a better performance than D1. Therefore, it 
becomes necessary to check if the TFNs D1 and D2 obtained above are comparable or not.  
For this, by Proposition 1 one finds that the x-cuts of the two TFNs are  
D1

x = [63.53+8.21x, 83.47-11.73x] and D2
x = [65.88+6.75x, 79.53-6.9x] respectively for all x 

in [0, 1]. Further, we have that 63.53+8.21x   65.88+6.75x  1.46x  2.35  x  1.61, 
which is true for all x in [0, 1]. But,  83.47-11.73x  79.53-6.9x 
 3.94  4.83x 0.82  x, which does not hold for all x in [0, 1]. Therefore, according to 
Definition 5, the TFNs D1 and D2 are not comparable, which means that one can not 
immediately decide which of the two Departments demonstrates the better performance.  
A good way to overcome this difficulty is to defuzzify the TFNs D1 and D2. For this, we apply 
the COG defuzzification technique. In fact, by Proposition 2, the COGs of the triangles 
forming the graphs of the TFNs D1 and D2 have x-coordinates equal to  

X = 
63.53 71.74 83.47

3

 
 72.91 and X’ =

65.88 72.63 79.53

3

 
 72.68 respectively.  

Observe now that the GOGs of the graphs of D1 and D2 lie in a rectangle with sides of length 
100 units on the X-axis (student scores from 0 to 100) and one unit on the Y-axis (normal 
fuzzy sets). Therefore, the nearer the x-coordinate of the COG to 100, the better the 
corresponding Department’s performance, Thus, since X > X’, D1 demonstrates a better 
overall performance than D2. 

5.2 Example  

Six different mathematics teachers train a group of five students of the Upper Secondary 
Education, who won at the final stage of the National Mathematical Competition, in order to 
participate in the International Mathematical Olympiad. In a preparatory test (solving of MM 
problems) during their training the students received the following scores (from 0-100) by 
their teachers: S1 (Student 1): 43, 48, 49, 49, 50, 52, S2: 81, 83. 85, 88, 91, 95, S3: 76, 82, 89, 
95, 95, 98, S4: 86, 86, 87, 87, 87, 88 and S5: 35, 40, 44, 52, 59, 62. The students’ 
performance is characterized by the linguistic grades A, B, C, D and F introduced in Section 
2.  
In this example we shall apply the same methods for assessing the student performance with 
Example 5.1 and for the same purpose we shall also use the TpFNs: 
I) Mean values: Calculating the mean values of the above scores separately for each student, 
one finds approximately the following individual mean performances for them (in 
parentheses we give the corresponding qualitative characterizations): S1: 48.5 (F), S2: 87.17 
(A), S3: 89.17 (A), S4: 86.83 (A) and S5: 48.67(F). Also, calculating the mean value of the 
above individual means on finds that the student overall mean performance is approximately 
equal to 72.05, i.e. it can be characterized as very good (B). 
II) GPA index: Inspecting the n=5*6=30 in total student scores one finds that 14 of them are 
characterized as excellent (A), 4 as very good (B), 1 as good (C), 4 as fair (D) and 7 are 

characterized as unsatisfactory. Therefore the corresponding percentages are y1 = 
7

30
,  
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y2 = 
4

30
,  y3 = 

1

30
, y4 = 

4

30
 and y5 = 

14

30
. Replacing these values in formula (2) of Section 2 

one finds that GPA = 
74

30
 2.47, i.e. the GPA index is greater than the half of its maximal 

value (4:2=2). Therefore the student overall quality performance is characterized as more 
than satisfactory. 
III) Application of the TpFAM:  Replacing the values of the yi, for i = 1,  2, 3, 4, 5, in the first 
of formulas (1) of Section 2 one finds that the x-coordinate of the COG of the TpFAM’s 
scheme is equal to Xc = 22.27, which is greater than the half of its value in the case of the 
ideal performance (33:2 = 16.5; see case III of Example 5.1)). Therefore the student overall 
quality performance is characterized, according to the TpFAM this time, as more than 
satisfactory. 
IV) Use of the TFNs: We consider the TFNs A, B, C, D and F defined in case IV of Example 
5.1. Observing the 5*6 = 30 in total student scores one finds that in the present Example we 
have 14 TFNs equal to A, 4 equal to B, 1 equal to C, 4 equal to D and 7 TFNs equal to F 
characterizing the student performance. The mean value of the above TFNs (Definition 8)is 

equal to M = 
1

30
(14A + 4B + C + 4D + 7F)  (60.33, 68.98, 79.63). Therefore, the student 

overall performance lies in the interval [60.33, 79.63], i.e. it can be characterized from good 
(C) to very good (B). Further, a rough approximation of this performance is given by the 
score 68.98 (good)   
(V) Use of the TpFNs: We assign to each student Si a TpFN (denoted, for simplicity, with the 
same letter) as follows: S1 = (0, 43, 52, 59), S2 = (75, 81, 95, 100), S3 = (75, 76, 98, 100), S4 
= (85, 86, 88, 100) and S5 = (0, 35, 62, 74). 
Each of the above TpFNs characterizes the individual performance of the corresponding 
student in the form (a, b, c, d), where a is the lower bound of his/her performance with 
respect to the linguistic grades defined above, b and c are the lower and higher scores 
respectively assigned to the student by the teachers and d is the upper bound of his/her 
performance with respect to the linguistic grades. 
Next, for assessing the overall players’ performance in terms of the TpFNs, we calculate the 
mean value of the TpFNs Si , i =1, 2, 3, 4, 5 (Definition 8), which is equal to the TpFN  

S = 

5

1

1

5 i
i

S

 = (47, 64.2, 79, 86.6).  

The above TbFN S gives us the following information: 
(i) The students’ performance, according to the scores assigned to them by their 

teachers, was fluctuated from unsatisfactory (a1=47) to excellent (a4=86.6). 
(ii) The overall student mean performance is lying in the interval [a2, a3]=[64.2, 

79], i.e. it can be characterized from good (C) to very good (B). 

Example 5.3 

Reconsider Example 5.2 and assume that the same six teachers marked the papers of a 
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second group of five students examined on the same test. Assume further that the overall 
performance of the second group was assessed as in Example 5.2 using the TPFNs (case V) 
and that the mean value of the corresponding TpFNs was found to be equal to  
S΄ = (47.8, 65.3, 78.1, 85.9). 
We shall use the COG technique for comparing the two student group performances. For 
this, applying Proposition 3 one finds that the x-coordinate of the COC of the trapezoid 
constituting the graph of the TpFN S is equal to 

X = 

2 2 2 279 (86.6) (64.2) 47 79*86.6 47 *(64.2)
68.84

3(79 86.6 47 64.2)

    


   .  

In the same way one finds that the x-coordinate of the graph of S΄ is approximately equal to 
68.13. Therefore, using the same argument as that at the end of Example 5.1, one finds that 
the first group demonstrates a better overall performance. 
 
6.  Conclusions and discussion 
 
In the present paper we used the TFNs/TpFNs as a tool for student assessment. The main 
advantage of this approach is that in case of individual assessment it leads numerical results, 
which are more indicative than the qualitative results obtained in earlier works by applying 
alternative fuzzy assessment methods. On the contrary, in case of group assessment this 
approach initially leads to a linguistic characterization of the corresponding group’s overall 
performance, which is not always sufficient for comparing the performances of two different 
groups, as our fuzzy assessment methods applied in earlier works do. This is due to the fact 
that the inequality between TFNs/TpFNs defines on them a relation of partial order only. 
Therefore, in cases where our outputs are non comparable TFNs or TpFNs (in general) some 
extra calculations are needed in order to obtain the required comparison by defuzzifying 
these fuzzy outputs. This could be considered a disadvantage of this approach, although the 
extra calculations needed are very simple. 
Further, our new method of using the TFNs/TpFNs for the assessment of MM skills is of 
general character, which means that it could be utilized for assessing other human (or 
machine) activities too. This is one of the main targets of our future research on the subject. 
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Appendix: List of MM problems used in Example 5.1 
 
Problem 1:  A car dealer has a mean annual demand of 250 cars, while he receives 30 new 
cars per month. The annual cost of storing a car is 100 euros and each time he makes a new 
order he pays an extra amount of 2200 euros for general expenses (transportation, insurance 
etc). The first cars of a new order arrive at the time when the last car of the previous order has 
been sold. How many cars must he order for achieving the minimum total cost?  
Problem 2: The demand function P(Qd)=25-Qd

2  represents the different prices that 
consumers willing to pay for different quantities Qd of a good. On the other hand the supply 
function P(Qs)=2Qs+1 represents the prices at which different quantities Qs of the same good 
will be supplied. When the market’s equilibrium occurs at (Q0, P0), the producers who would 
supply at lower price than P0 gain. Find the total gain to producers’. 
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Problem 3: Among all cylindrical towers having a total surface of 180π m2, which one has 
the maximal volume?  


