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Abstract. In this paper it is shown that the use of uniform meshes leads to optimal conver-
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1. Introduction

The collocation method for Volterra integral equation was introduce and studied
in [4-8]. Other concept of integral equation are given and studied in. e.g. [1]. This
leads us to the idea of developing method for Fredholm-Volterra integral equation
with weakly kernels. In this paper we consider the problem of Fredholm Volterra-
Fredhom integral equation with weakly kernels. the structure of this paper is as
follows. In Section 2 we present the basic concepts of our work. In Section 3 we
show the Gronwall inequality and convergence of collocation methods is shown in
Section 4.

2. Basic Concept

This paper will be concerned with high-order collocation methods for the Fredholm-
Volterra integral equations (FVIEs)
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b t
Wﬁw®+/p@$WmMW%+Aﬂ@@MMw®M& tel0,7] (1)

where y(t) is the unknow function whose value is to be determined in the interval
0 <t <T < oo, the kernels k(t,s,y(s)) and k/(t,s,y(s)) are lipschits continuous
in their variable and p(t, s) and p/(¢, s) are unbounded in the region of integration
but integrable over [0, 7.

The following notation and methods were introduced in [2, 3] and will be used
throughout this paper. The collocation methods generate , as approximation to the
solution of (1) elements of the polynomial spline space

S (Zn,T) = {ue COIT)) uly,:=tn € Tm_1,0<n<N—1}, (2)

associated with a given partition

IIy:0=tg<t1 <--- <ty =T, N>1 (3)

of the interval [0,7]. Here, m,,—1 is the set of real polynomials of degree not
exceeding m — 1 and we have set og := [to, t1] and oy, := (ty, tni1],n=1,...,N—1,
Zn == {tn, : 1 < n < N — 1} (the set of interior grid points). The quantity h,
h := max{hy, := tp41 —tn : 0 < n < N — 1}, is often called the diameter of the
grid [[ . If hy, = h all 0 < n < N —1, then the grid [[ is called a uniform mesh.

The desired approximation to y is the element v € Sﬁg)_l(Z ~n,T') satisfying

b t
u(t) = g(t) —i—/ p(t, s)k(t, s,u(s))ds +/O p(t, )k (t,s,u(s))ds, te X(N) (4)

N-—1
where X(N) := |J X, with
n=0
XN = {tnj ::tn+0jhn20<01 < <Cm<1}7

\m 1
where {c;}72, are collocation parameters.

3. A generalized Grownwall-Type inequality

Throughout this paper, ¢; where ¢ is an integer, will denoted constants which are
independent of h .
Definition 3.1. Let pi(t,s) := p(t, s),p}(t,s) := p'(t,s) and set

Pty ) = Jy p1(t E)pna (€, 5)dé )
p/n(tv S) = fo pll(t7£)pngl(§a S)df (tv S) € Sv n =2

where S :={(t,s),0 < s <t < T}. The functions {p,,p,,,n =1,2,...} are called
the iterated kernels associated with the given kernels p and p’.
Definition 3.2. If the functions p and p’ satisfies
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(D)p(t, s) > 0, P(t,s) > 0,(t,5) € S (6)
b t

(if) / p(t, s)dt < 1, / Pt s)dt < ¢, (7)
a 0

(ii)p(t, 5) < Pt s) < dhlt,s) € S (8)

where v is a certain integer, then p and p’ are said to satisfy conditions C.
Theorem 3.1. Let A > 0 be a constant, and Let the function z satisfy to
condition C. The function z(t) is defined as

z(t) = kn, tE€[tn,tnr1], 0<n<N-1 )

where the t,, is given by (3) and k, > 0, if the function z satisfies the integral
inequality

b t
x(t) < / p(t, s)x(s)ds +/0 p'(t,s)z(s)ds+ A ¢€10,7) (10)

then it can be bounded by

b t
x(t) < 02/ x(s)ds + 0/2/0 z(s)ds+c3A tel0,T), (11)

Furthermore, if h := max{hy, :=tp41 — tn,0 <n < N — 1} < ¢4/N, then

Ki=max{kp, 0 <n <N -1} <A (12)
Proof
Consider
b
2(s) < / pls, e (A)dA + A, (13)
b
7'(s) < / P (s, \)z(N)d\ + Ag (14)

where A1, A2 > 0 and A1 + Ay = A.
Multiplying (13) by p(¢,s) and integrate from a to b and multiplying (14) by
P (t, s) and integrate from 0 to ¢, so we have
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p ()\)d)\ds + 61A1
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P'( )x(N)d\ds + ¢} As

o\ﬂ o
’E\
~
>
o\W
o\ \@

or
b b

/ p(t, s)x / pa(t s)ds + c1 41 (15)
¢ ¢

/ p'(t,s)x / py(t, 8)z(s)ds + ¢ As (16)
0 0

By adding (15) and (16) we obtain
b t b t

/ p(t,s)x(s)ds—i—/ p'(t, s)x(s)ds < / pg(t,s)x(s)ds—i—/ ph(t, s)x(s)ds+c1 A1+c) Ay
a 0 a 0

From (10) we have

b t
z(t) < / pa(t, s)x(s)ds + /0 py(t,s)x(s)ds + [(1+c1) A1 + (1 + ¢)) As]

Repeating the above procedure, we have

b t v—1
o)< [ pts)a(e)ds [ Bl s)a(s)ds + Y[+ )i + (14 ) As)
a 0 -
7=0
From (8)we have
b t
x(t) < 02/ x(s)ds + 0'2/ z(s)ds + c3 (17)
a 0
v—1 .
where c3 = > [(1 4 ¢c1)A1 + (1 + ¢}) A2}/, nothing that h < § from (9) and (17)
§=0
we obtain
6264 Z K/ - + D
where D = cocy Zl i N L +¢3,0<n < N-—1. The above inequality is the standard

discrete Gronwall inequality which ylelds (12). [ ]



S. Fayazzadeh, M. Lotfi/ IJM?C, 01 - 01 (2011) 59-68. 63

4. Convergence of collection methods

Throughout this paper, we write E = e(h) as shorthand for the inequality | £ |<
chd that ¢ and 6§ are positive constants.
Definition 4.1. If the functions p and p’ satisfies condition C' and

(i / " Dty 5)ds = £(h), / " Y (tng, 5)ds = £'(h) (18)

n 28

() [ Ity s) = plt,)lds = <l [ 5) = o 0)lds =) (19

t € [tn,tnt1)

where t,,; € X, 0 <n < N — 1, then p and p’ are said to condition D.
Definition 4.1. Let the function p and p’ in (1) satisfy condition D, and
H(t,s,2):=k.(t,s,z2), H(t,s,z):= k.,(t,s,2) satisfy

H(t,s,2)| <cg, |H'(t,s,2)<c, (t,8)€S, —oo0<z<o0. 20
6

Theorem 4.1. If the solution y of (1) belongs to C™(I(T')) with m > 1, then
for a uniform mesh sequence and for any choice of the collocation parameters {c;}
with 0 < ¢1 < -+ < ¢ < 1, the error e(t) := y(t) — u(t) satisfies

| e looi= max{le(t)], teI(T)}=0r™), h<1, (21)

where w is the solution of the collocation equation (4) and h is the step size of the
uniform mesh sequence.

Proof
Set t = t,; in (1) and subtract the collocation equation (4). Denoting by e, :=
Yy — uy, the restriction of the collocation method error to subinterval ¢,,, we obtain
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€n =Y — Un

b tng
—gt) + / p(t, $)k(t, 5, y(s))ds + /O Pt )k (t, 5, y(s))ds
b tng
gt - / p(t, $)k(t, 5, u(s))ds — /0 Pt K, 5, uls))ds
en(tnj) = an h /1p(tnj, ti + vh)[k(tn;, ti + vh,y(t; + vh)) — k(tn;, ti + vh,u(t; + vh))|dv
i=0 70

+h / " (bt -+ V) (bngs b+ 7B Y (b + VR)) — K (g, b + vy ult + v1))dv
0

n—1

1
+) h/o P (tnjs ti + VR)[K (tng, ti + vh,y(ti + vh)) — K (tng, ti + vh,u(t; + vh))]dy
=0
n 1
~3"h / Dl s + )y (ts + V1) — u(ts + vh) ks (tng, ts + vh, )
=0 0

+ h/ ' P (tnjs tn + vh)[y(tn + vh) — u(ty, + vh)|KL (tnj, ti + vh, &)dv
0

1
3 /0 D (bngs s+ VR (s + vh) — u(ts + VAR, (b £ + vhs &)y
=0
n 1
~S"h / D(tugs ti + V) H (b ti + vh, &)es(ti + vh)du
1=0 0

n h/ D (tngs o + VR)H! (tnj, tn + vh, €)en(tn + vh)dy
0

n—1

1
+ Z h/ p/(tnj, t; + Vh)H/<tnj, t; + vh, fz)ez(tz -+ I/h)dl/
i=0 70

1
=> h/ [p(tnj, ti + vh)H (tnj, ti + vh, &) + p'(tnj, ti + vR)H (tng, ti + vh, &)]
=0 70

ei(ti + Vh)dV + h/ J p/<tnj7 ln + Vh>Hl(tnja tn +vh, é‘n)en(tn + I/h)dl/
0
1
+ h/ P(tnj, tn + vh)H (tn;, tn + vh, &y )en(ty, + vh)dy
0
(22)

where &; € (min(y, u;), max(y,u;)). Here we have made use of the mean value
theorem applied to the third variable of the function k. For v € (0,1] we follow
Brunner [1] and write

enl(tn +vh) = By + B Ru(v), 0<n<N-1, (23)
=1
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where (3, are constants, and

B y(m) (tn + Opvh)v™

R, (v) p (0<6,<1).
Combining (22) and (23)
m n—1 1
> Bufd T R (v) = h/ [p(tnj, ti + Vh)H (tnj, ti + vh, &)
=1 i=0 70

+p (tnjs ti + VA)H' (tnj, t; + v, &)1 Bup' ™ + K™ Ry (v))dv
=1

1 m
[ pltnssto 4 U H (bt -+ b ) (3 Gt~ 4+ 7 Re0))
0 =1
+ h/ J p,(tnja tn + Vh)H,(tnja tn + vh, fn)(z Bnlyl_1 + hmRn(V))dV
0 =1

m 1
= Buld ! - h/ Ptng,tn + VR)H (tn;, tn + vh, &)V " dy
I=1 0
_h/Jﬂ@mM+WMHﬁM@ﬁwm&WF%ﬂ

1
S0y sl /0 (D(bngs ti + VR H (b s + VB, &)

+ 9 (tngs ti + VRYH (tnj, ti + vh, E))W T + gnj
(24)

where

1
dni = —h™ Ro(c;)+h / D(bngs b+ V) H (bngs tn + v €) (0™ Roy (1))
0

+h/ ] p/(tnj7 tn + Vh)Hl(tnj7tn + I/h, gn)(hmRn(V))dV
0

n—1 1
+ Z h/o (p(tnj, ti + vh)H (tn;,t; + vh, &)
=0

—i—p,(tnj, t; + Vh)Hl(tnj, t; + l/h,7 fz))(hmRz(V))dl/ (25)

1
Dy; = h/ (p(tnj,ti +vh)H (tnj, t; +vh, &)
0

+ 9/ (tnj, ti + vh)H' (tng, ti + vh, &) )V
0<i<n—-1 1<3l<m
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and

1
Dy = h/ P(tnj, tn + vh)H (tn;, tn + vh, §n)1/l*1dy
0

Cj
+ h/ p’(tnj, ty + Z/h)H'(tnj, tn + Vh,fn)yl_ldy
0

Let V := (cé-_l) denote the vandermonde matrix of order m associated with the
collocation parameters {c;}. The recurrence relation (24) can thus be written as

n—1

(V= Dun)Bn =Y DuiBi+qn, 0<n<N—1, (26)
i=0
where ¢, := (qn1,. .-, qnm)" is the vector whose components are defined by (25).

Since p and p’ satisfies (18) and H and H' satisfies (20) we have

1 c;
|h [ p(tnj, tn + vh)H (tnj, tn + vh, & ldy +h [P (tnj, tn + vh)H' (tyj, tn + vh, v ldy|
0 0
1 cj
< ‘h fp(tnjatn + Vh)H(tnjvtn + Vhagn)ylildy‘ + ‘hfp/@njatn + Vh>H/(tnjatn + thﬁn)ylildﬂ
0 0

1 Cj
< heg [ p(tng, tn + vh)dv + hel [P/ (tnj, tn + vh)dy
0 0

tnt1 2%
=cs [ p(tnj,s)ds+cy [ D(tn;,s)ds
t"l t774

< cge(h) + e’ (h)

Let ¢"(h) = max{e(h),e'(h)}, since h <1 and ¢;,¢; <1 we have

1
‘h/ p(tnja tn + Vh)H(tnja tn + I/h, gn)yl_ldy
0

+ h/ Jp/(tnj, tn + VA)H' (tyj, ty + vh, &)V " dv|< €7 (h)
0

Hence the matrix V — Dy, possesses a uniformly bounded inverse for sufficiently
small h. Thus exists a finite constant ¢; independent of h and N such that

| (V=Dpn)  1<er, 0<n<N—1. (27)

Also
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m 1 m 1
| Dni [l1 < 3 hes [(p(tngs ti +vh))dv + 3 heg [0 (tng, ti + vh))dv

j=1 0 J=1 0
m 1

= Y heo [(p(tnj, ti + vh)ce + P (tnj, ti + vh)cg)dy (28)
=1 0
Jm tiy1

= 21 I (p(tnj, s)ce + p'(tnj, s)cg)ds
J=1 t;

From (26), (27)and (28) we have

n—1 m
\mml%zzf (tng» 5)ds | B |1
=0 j=1
(29)
n—1 m it
+%ZZM' (tugs5)ds || B 1 +er || g
=0 j=1 ti
where cg = cger, ¢g = cger. Let () =|| Bni |1, so, we have
n—-1 m Ut n—1 m bitt
o< s3> [ pltugads +e 3> [ Hltws.shats)ds+ex | an s
=0 j=17 i=0 j=17
—CgZ/p(tS s)ds + ¢4 Z/pts s)ds+c7 || gn |1
Jj=1 0 Jj=1 0
+ CSZ/[p(tnjvs) —p(t, s)]z(s)ds + 6/8 Z/[p,(tnjas) _p,(t7 s)|z(s)ds
7=19 =179
1 1
< mcs/p(t, s)x( )ds—i—mc’g/p’(t s)x(s)ds +cr || qn |1
0 0
m 1
w83 [ 1p(tasss) - us\ds+%6§j/'u)%y —(t.s) | ds
=1y

1

pb)d$%+m%/ﬂm$ﬂ$%+mH%m
0

IN

3

&
O\H

~

w

+ megBe(h) + mcgBe’ (h)
1 1
=mcs | p(t,s)x(s)ds +mcg | p'(t,s)x(s)ds +c7 | gn |1
/ /
+mpB(cse(h) + cge’(h))
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where 3 := max{|| 5, [|1,0 < n < N — 1} and £”’(h) := max{e(h),e'(h)}.

Since t > t,, we obtain

1 1
z(t) < mcS/O p(t, s)z(s)ds + mc’g/o p'(t,s)x(s)ds +c7 || gn |1 +mBe”(h) (31)

Since y € C™(I(T)), we have shown the relation (21).
|

By Theorem 4.1, we have prooved that the analytical solutions of this class of

Fredholm-Volterra integral equations (FVIEs) are smooth.

5.

Conclusion

In this work we showed that the use of uniform meshes leads to optimal conver-
gence rates provided that the analytical solutions of a particular class of Fredholm-
Volterra integral equations (FVIEs) are smooth.
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