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Abstract. In this paper, we present a new iterative method with order of convergence sixth
for solving nonlinear equations. This method is developed by extending a fourth order method
of Ostrowski. Per iteration this method requires three evaluations of the function and one eval-
uation of its first derivative. A general error analysis providing the sixth order of convergence
is given. Several numerical examples are given to illustrate the efficiency and performance of
the new method.
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1. Introduction

Numerical methods for solving nonlinear equations is a popular and important
research topic in numerical analysis. In this paper, we consider iterative methods
to find a simple root of a nonlinear equation f(x) = 0, where f : D ⊂ R → R for
an open interval D is a scalar function.

Newton method is an important and basic approach for solving nonlinear equa-
tions [8,10], and its formulation is given by
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xn+1 = xn − f(xn)

f ′(xn)
. (1)

This method convergence quadratically.

Newton method has been modified in a number of ways to avoid the use of
derivatives without affecting the order of convergence. For example, on replacing
in (1) the derivative by the forward approximation

f ′(xn) ≈
f(xn + f(xn))− f(xn)

f(xn)
,

Newton method becomes

xn+1 = xn − f(xn)
2

f(xn + f(xn))− f(xn)
.

Which is called Steffensen method [6]. This method still has quadratic conver-
gence, in spite of being derivative free and using only two functional evaluations
per step.

The rest of this paper is organized as follows. In Section 2, we suggest a new
iterative method with the conjectured sixth-order convergence. In Section 3, we
establish the convergence order of this method. Finally, in Section 4, we compare
it with related methods for solving nonlinear equations.

2. Description of the Method

The well-known Ostrowski method is given by:


yn = xn − f(xn)

f ′(xn)

xn+1 = xn − f(xn)
f ′(xn)

f(yn)−f(xn)
2f(yn)−f(xn)

, (2)

Which has fourth convergence [7].
For a given x0 compute the approximate solution xn+1 by the iterative schemes

yn = xn − f(xn)

f ′(xn)
, (3)

zn = xn − f(xn)

f ′(xn)

f(yn)− f(xn)

2f(yn)− f(xn)
, (4)
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xn+1 = zn − f(zn)

f ′(zn)
. (5)

Now using the linear interpolation on two points (xn, f
′(xn)) and (yn, f

′(yn)) we
get

f ′(x) ≈ x− xn
yn − xn

f ′(yn) +
x− yn
xn − yn

f ′(xn),

Thus an approximation to f ′(zn) is given by

f ′(zn) ≈
zn − xn
yn − xn

f ′(yn) +
zn − yn
xn − yn

f ′(xn),

and based on Ostrowski method we have

f ′(yn) =
f(xn)− 2f(yn)

xn − yn
. (6)

Now using (3), (4) and (6), we get

f ′(zn) ≈
f ′(xn)[4f(yn)f(xn)− 2f(yn)

2 − f(xn)
2]

f(xn)(2f(yn)− f(xn))
, (7)

Now replacing f ′(zn) in (5) by (7), our proposed method can be described as
given below



yn = xn − f(xn)
f ′(xn)

zn = xn − f(xn)
f ′(xn)

f(yn)−f(xn)
2f(yn)−f(xn)

xn+1 = zn − f(zn)f(xn)(2f(yn)−f(xn))
f ′(xn)[4f(yn)f(xn)−2f(yn)2−f(xn)2]

. (8)

Where relation (8) is an optimal sixth-order Ostrowski-type method. In the next
section, we state and prove the convergence theorem for the method (8).

3. Analysis of Convergence

In this section we analyze the order of convergence of the method described previ-
ously.

Theorem 3.1 Let r ∈ I be a simple zero of sufficiently differentiable function
f : I ⊆ R → R for an open interval I. If x0 is sufficiently close to r, then iterative
scheme (8) has sixth-order convergence.
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Proof Let en = xn−r be the error in the iterate xn. Using Taylor series expansion,
we get:

f(xn) = f ′(r)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)], (9)

f ′(xn) = f ′(r)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n +O(e6n)], (10)

where

ck =
1

k!

f (k)(r)

f ′(r)
, k = 2, 3, ... .

From (9) and (10), we have,

yn = r+c2e
2
n+(2c3−2c22)e

3
n+(3c4−7c2c3+4c32)e

4
n+(−6c23+20c3c

2
2−10c2c4+4c5−8c42)e

5
n

+(−17c4c3+28c4c
2
2− 13c2c5+5c6+33c2c

2
3− 52c3c

3
2+16c52)e

6
n+(−22c5c3+36c5c

2
2

+6c7−16c2c6−12c24+92c4c2c3−72c4c
3
2+18c33−126c23c

2
2+128c3c

4
2−32c62)e

7
n+O(e8n).

(11)

Using Taylor series, we have

f(yn) = f ′(r)[c2e
2
n+(2c3−2c22)e

3
n+(3c4−7c2c3+5c32)e

4
n+(−6c23+24c3c

2
2−10c2c4+4c5−12c42)e

5
n

+(−17c4c3+34c4c
2
2−13c2c5+5c6+37c2c

2
3−73c3c

3
2+28c52)e

6
n+(−22c5c3+44c5c

2
2+6c7

−16c2c6−12c24+104c4c2c3−104c4c
3
2+18c33−160c23c

2
2+206c3c

4
2−64c62)e

7
n+O(e8n)].

(12)

Using Eq. (8), we obtain

en+1 = c2c3(c3 − c22)O(e6n) +O(e7n).

which shows that iterative method (8) is sixth-order convergence.
■

This method requires three evaluations of the function, namely, f(xn), f(yn)
and f(zn) and one evaluation of first derivative f ′(xn). We consider the definition
of efficiency index [2,3] as w

√
P , where P is the order of the method and w is the

number of function evaluations per iteration required by the method. We have that
the efficiency index of the method Equation (8) is 4

√
6 ≈ 1.565.
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4. Numerical Examples

We present some examples to illustrate the efficiency of the new iterative method
in this paper. We compare the Newton method (NM), the method of Ostrowski
(OM), the method of Mtinfar-Aminzadeh [5] (MAM) , the method of Fang-Chen-
Tian-Sun-Chen [1] (FCTSCM) and Eq. (8), introduced in this paper.

MAM:


yn = xn − f(xn)

f ′(xn)

zn = yn − f(yn)

f ′(yn− f(yn)

2Pf (xn,yn)
)

,

Where Pf (xn, yn) = f ′(yn)

Pf (xn, yn) = [
2f(xn)− 5f(yn)

2f(xn)− f(yn)
]f ′(xn).

FCTSCM:



yn = xn − f(xn)
αf(xn)+f ′(xn)

zn = yn − f(yn)
βf(yn)+f ′(yn)

xn+1 = zn − f(zn)
γf(zn)+f ′(yn)

,

Where α = β = γ = 1.

We use the following functions, most of which are the same as in [4,9].

f1(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140969,
f2(x) = x2 − ex − 3x+ 2, x∗ = 0.25753028543986084,
f3(x) = cos(x)− x, x∗ = 0.739085133215160,
f4(x) = sin2(x)− x2 + 1, x∗ = 1.4044916482153411.

Displayed in Table 1 are the number of iterations (n) and the number of function
evaluations (NFE) required such that |f(xn)| < 1.E − 14.

From Table 1, it is clear that the new method (8) performs better than the other
iterative methods suggested in this Table.

5. Conclusions

A sixth order method is proposed for finding real roots of nonlinear equations
without evaluating the second order derivative of the given function. We prove that
the order of convergence of this method is sixth. Our method has the efficiency
index equal to 4

√
6 ≈ 1.565 which is better then Newton method with efficiency
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Table 1. Comparison of various iterative methods.

n NFE n NFE

f1(x),x0 = 1 f3(x),x0 = 0.2
NM 5 10 5 10
OM 3 9 3 9
MAM 2 8 2 8
FCTSCM 3 15 3 15
Eq. (8) 2 8 2 8

f1(x),x0 = 2 f3(x),x0 = 1
NM 5 10 4 8
OM 3 9 2 6
MAM 2 8 2 8
FCTSCM 3 15 2 10
Eq. (8) 2 8 2 8

f2(x),x0 = 0 f4(x),x0 = 1
NM 4 8 6 12
OM 2 6 3 9
MAM 2 8 2 8
FCTSCM 2 10 4 20
Eq. (8) 2 8 2 8

f2(x),x0 = 1 f4(x),x0 = 2
NM 4 8 5 10
OM 2 6 3 9
MAM 2 8 2 8
FCTSCM 2 10 3 15
Eq. (8) 2 8 2 8

index equal to 2
√
2 ≈ 1.414 and the Fang-Chen-Tian-Sun-Chen method [1] with

efficiency index equal to 5
√
6 ≈ 1.430 . It is also comparable with other sixth order

method as its efficiency index is also 4
√
6 ≈ 1.565. The method is tested on a number

of numerical examples. On comparing our results with those obtained by Newton
method (NM) and the method of Ostrowski [7] (OM), it is found that our method
is most effective as it convergence to the root much faster. When compared with
the sixth order method of Matinfar-Aminzadeh [5] and Fang-Chen-Tian-Sun-Chen
[1], our method behaves either similarly or better on the examples considered.

References

[1] Fang L., Chen T., Tian L., Sun L. and Chen B., A modified Newton-type method with sixth-order
convergence for solving nonlinear equations, Procedia Engineering , 15 (2011) 3124–3128.

[2] Gautschi W., Numerical Analysis, an Introduction, Birkhauser, (1997).
[3] Geuma Y., Kim Y., A multi-parameter family of three-step eighth-order iterative methods locating

a simple root, Appl. Math. Comput., 215 (2010) 3375–3382.
[4] Hafiz M. A., Bahgat M. S., Solving nonlinear equations using Two-step optimal methods, Annual

Review of Chaos Theory, Bifu. Dyn. Sys., (3) (2013) 1–11.
[5] Matinfar M., Aminzadeh M., An iterative method with six-order convergence for solving nonlinear

equations, Inter. J. Math. Mode. Comput., 2(1) (2012) 45–51.
[6] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables,

Academic Press, (1970).
[7] Ostrowski A. M., Solutions of equations and systems of equations, Academic Press, New York,

(1960).
[8] Ostrowski A. M., Solution of equations in Eucilidean and Banach space, third ed., Academic Press,

(1973).
[9] Peng Y., Feng H., Li Q. and Zhang X., A fourth-order derivative-free algorithm for nonlinear

equations, Appl. Math. Comput., 235 (2011) 2551–2559.
[10] Traub J. F., Iterative methods for solution of equations, Prentice-Hall, Englewood Cliffs, NJ, (1964).


