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Abstract. Binayak et al in [Binayak S. Choudhury and Kirshnapada Das, Fixed point of
generalized Kannan-type mappings in generalized menger spaces, Commun. Korean. Math.
Soc., (4) 24 (2009) 529-537] proved a fixed point of generalized Kannan type-mappings in
generalized Menger spaces. In this paper we extend generalized Kannan-type mappings in
generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping
in generalized fuzzy metric spaces. Finally we present an example of our main result.
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1. Introduction

A generalization of the concept of metric space was obtained by Branciari [2].
Also, in the same work, Banach contraction mapping theorem in generalized met-
ric spaces was established. Olaleru, et al [12] generalize some results on coupled
fixed point theorems of generalized ϕ-mappings in cone metric spaces. In 1942,
Menger [11] introduced the notion of probabilistic metric space as a generaliza-
tion of metric space. Such a probabilistic generalization of metric spaces appears
to be well adapted for the investigation of physical quantities and physiological
thresholds.
Kannan-type mappings was first discovered by R. Kannan in 1968 [9]. These

mappings are important in metric fixed point theory for several reasons. First,
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the Banach contraction mapping theorem is for continuous maps, but Kannan-
type mapping does not need necessarily be continuous. Another reason is their
connection with metric completeness. In fact, Subrahmanyam in [? ] proved that
a metric space (X, d) is complete if and only if every Kannan-type mapping on X
has a fixed point. Note that a Banach contraction mapping may have a fixed point
in metric space which is not complete.
Binayak et al [1] introduced generalized Menger space as a generalization of

Menger space as well as a probabilistic generalization of generalized metric space
and, then, proved a fixed point of generalized Kannan type-mappings in generalized
Menger spaces. Kramosil and Michalek [10] gave a notion of fuzzy metric space
which could be considered as a reformulation, in the fuzzy context, of the notion
of probabilistic metric space. Menger [11] and others have intensively studied the
fixed point theory of these spaces (see [6–8] ).
In this work generalized fuzzy metric space is considered as an extension of fuzzy

metric space. Then, we prove a fixed point of generalized Kannan-type mappings
in generalized fuzzy metric space. Then we give some example of our results.

2. Preliminaries

Before giving details of the proof of the main result, we begin by recalling some
basic definitions and preliminaries of our notations.

Definition 2.1 Let X be a nonempty set and d : X2 → R+ a mapping such that
for all x, y, z, u ∈ X,

(i) d(x, y) ⩾ 0, d(x, y) = 0 ⇔ x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ⩽ d(x, z) + d(z, u) + d(u, y).

Then (X, d) is called a generalized metric space.

Obviously, every metric space is a generalized metric space, but the reverse is
not true [4].

Example 2.2 Let X = {a, b, c, e} and d : X2 → R+ be defined by
d(a, b) = 0.25, d(a, c) = d(b, c) = 0.1, d(a, e) = d(b, e) = d(c, e) = 0.2 and

d(x, x) = 0, d(x, y) = d(y, x) x, y ∈ X.

Then it is easy to check that (X, d) is a generalized metric space, whereas it is
not a metric space because

d(a, b) = 0.25 > d(a, c) + d(b, c) = 0.2.

In 1965, the concept of fuzzy set was introduced by Zadeh [15] which laid the
foundation of fuzzy mathematics. The concept of fuzzy metric space has been
introduced in different ways by some authors(see i.e. [5, 10]). In 1975, Kramosil
and Michalek [10] introduced the idea of fuzzy metric space, which created a path
for additional expantion of analysis in such spaces. Further, George and Veeramani
[11] modified this structure [10] with a view to obtain a Hausdoroff topology on
it. Fuzzy set theory has applications in applied sciences such as neural network
theory, stability theory, mathematical programming and etc.

Definition 2.3 A function B from a set X to the closed unit interval [0, 1] in R
is called a fuzzy set in X. And for every x ∈ X, B(x) is a membership grade of x
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in B. The set {x ∈ X : B(x) > 0} is called the support of B.

Kramosil and Michalek [10] and George and Veeramani [7] considered the nota-
tion of fuzzy metric space by useing continuous t-norms. This paper makes use of
Kramosil and Michalek definition of fuzzy metric space.

Definition 2.4 An operation ∗ : Πn
i=1[0, 1] → [0, 1] is an n-th order continuous

t-norm if ([0, 1], ∗) is a commutative topological monoid with unit 1 such that

a1 ∗ a2 ∗ a3 ∗ ... ∗ an ⩽ b1 ∗ b2 ∗ b3 ∗ ... ∗ bn

whenever ai ⩽ bi for each ai, bi ∈ [0, 1], i = 1, 2, ..., n.

Definition 2.5 A 3-tuple (X,M, ∗) is said to be a fuzzy metric space, if X is a
nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on X2× [0,∞) where
the following statments hold for all x, y, z ∈ X and s, t > 0:

(i) M(x, y, 0) = 0,
(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(iii) M(x, y, t) =M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ⩽M(x, z, t+ s),
(v) M(x, y, .) : [0,∞) → [0, 1] is left-continuous.

If (X,M, ∗) is a fuzzy metric space we say that (M, ∗) (or simply M) is a fuzzy
metric on X.

Example 2.6 Let (X, d) be a metric space and a ∗ b = ab for all a, b ∈ [0, 1]

Md(x, y, t) =
t

t+ d(x, y)
x, y ∈ X, t > 0,

Md(x, y, t) is a fuzzy metric space. Md is called the standard fuzzy metric induced
by the metric d. M(x, y, t) can be thought of as the degree of nearness between x
and y with respect to t.

Fuzzy metric space can be generalized in a way similar to metric space. In [3]
Chugh and Kumar introduced the generalized fuzzy metric space (X,M, ∗) as fol-
lows.

Definition 2.7 A 3-tuple (X,M, ∗) is said to be a generalized fuzzy metric space
if X is a nonempty set, ∗ is a 3-rd continuous t-norm and M is a fuzzy set on
X2 × [0,∞), where the following statments hold for all x, y, z ∈ X and r, s, t > 0:

(i) M(x, y, 0) = 0,
(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(iii) M(x, y, t) =M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ∗M(z, u, r) ⩽M(x, u, t+ s+ r),
(v) M(x, y, .) : [0,∞) → [0, 1] is left-continuous.

It is easy to check that every fuzzy metric space is a generalized fuzzy metric
space. Next lemma shows that every generilized metric space is a generalized fuzzy
metric space.

Lemma 2.8 Every generalized metric space (X, d) is a generalized fuzzy metric
space.

Proof Let ∗ be the 3-rd order continuous minimum t-norm given by

x ∗ y ∗ z = min{x, y, z}, x, y, z ∈ X.
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Let M(x, y, t) = H(t− d(x, y)) such that

H(s) =

0 s ⩽ 0

1 s > 0
,

where x, y ∈ X and t > 0. Obviously, the conditions (i), (ii), (iii) and (v) of
generalized fuzzy metric space hold. If the condition (iv) does not hold, then there
exist x, y, z, u ∈ X and r, s, t > 0 such that,

M(x, y, t) ∗M(y, z, s) ∗M(z, u, r) > M(x, u, t+ s+ r).

Since ∗ is minimum t-norm, from the definition of M we have,

M(x, y, t) =M(y, z, s) =M(z, u, r) = 1, M(x, u, t+ s+ r) = 0.

And hence,

d(x, y) + d(y, z) + d(z, u) < t+ s+ r ⩽ d(x, u),

so this is a contradiction. This completes the proof.
■

Definition 2.9 Let (X, d) be a metric space and let f be a mapping on X. The
mapping f is called Kannan-type mapping if there exists 0 ⩽ α < 1

2 such that,

d(f(x), f(y)) ⩽ α[d(x, f(x)) + d(y, f(y))] x, y ∈ X.

Example 2.10 Let f : R → {0, 14} be defined by

f(x) =


1
4 x > 1

0 x ⩽ 1

It is easy to check that f is a Kannan-type mapping but it is not continuous.

Definition 2.11 A function ψ : [0, 1]× [0, 1] → [0, 1] is said to be a Ψ-function if

(i) ψ is monotone increasing and continuous,
(ii) ψ(x, x) > x for all 0 < x < 1,
(iii) ψ(1, 1) = 1, ψ(0, 0) = 0.

Definition 2.12 Let (X,M, ∗) be a generalized fuzzy metric space with minimum
t-norm ∗ and let ψ be a Ψ-function. A mapping f : X → X is called generalized
Kannan-type mapping if for all x, y ∈ X

M(f(x), f(y), t) ⩾ ψ(M(x, f(x),
r

a
),M(y, f(y),

s

b
)), (1)

where r, s > 0 and a, b > 0 with t = r + s and 0 < a+ b < 1.

Definition 2.13 Let (X,M, ∗) be a generalized fuzzy metric space. A sequence
{xn} ⊆ X is said to converge to x ∈ X if for all 0 < ε < 1 there exists a positive
integer N such that for all n > N and t > 0, M(xn, x, t) > 1− ε.
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Definition 2.14 Let (X,M, ∗) be a generalized fuzzy metric space. A sequence
{xn} ⊆ X is said to be a Cauchy sequence if for all 0 < ε < 1 there exist a positive
integer N such that M(xn, xm, t) > 1− ε , for all n,m > N and t > 0.

Definition 2.15 A generalized fuzzy metric space (X,M, ∗) is said to be complete
if every Cauchy sequence in X is a convergent sequence.

3. Fixed Point of Generilized Kannan-Type Mapping

In this section, we prove a fixed point theorem for generalized Kannan-type map-
pings on a complete generalized fuzzy metric space. Before proving the main the-
orem a technical lemma should be proved.

Lemma 3.1 Let (X,M, ∗) be a generalized fuzzy metric space and f be a generalized
Kannan-type self-map on X. Let limt→∞M(x, y, t) = 1 for all x, y ∈ X and xn =
f(xn−1) be an iterative sequence generating by x0 ∈ X for all n ∈ Z+, then

lim
n→∞

M(xn+1, xn, t) = 1 t > 0.

Proof Let x0 ∈ X, xn = f(xn−1) be an iterative sequence for all positive integers
n and r, s, a and b be positive real numbers with 0 < a+b < 1. From the inequality
(1) of generalized Kannan-type mapping, for t = r + s we have:

M(xn+1, xn, t) =M(f(xn), f(xn−1), t)

⩾ ψ(M(xn, f(xn),
r

a
),M(xn−1, f(xn−1),

s

b
))

= ψ(M(xn, xn+1,
r

a
),M(xn−1, xn,

s

b
))

= ψ(M(xn+1, xn,
r

a
),M(xn, xn−1,

s

b
)). (2)

For all t > 0, putting r = at
a+b , s = bt

a+b and c = a + b in (2), we can obtain the
following:

M(xn+1, xn, t) ⩾ ψ(M(xn+1, xn,
t

c
),M(xn, xn−1,

t

c
)) (n ∈ Z+). (3)

Now we show that the following inequality holds:

M(xn+1, xn,
t

c
) ⩾M(xn, xn−1,

t

c
) t > 0, n ∈ Z+. (4)

Proof by contradiction, suppose that there exists t > 0 such that
M(xn+1, xn,

t
c) < M(xn, xn−1,

t
c). By Ψ-function properties (2.11) and the inequal-

ity ( 3), we have
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M(xn+1, xn, t) ⩾ ψ(M(xn+1, xn,
t

c
),M(xn, xn−1,

t

c
))

⩾ ψ(M(xn+1, xn,
t

c
),M(xn+1, xn,

t

c
))

> M(xn+1, xn,
t

c
)

> M(xn+1, xn, t),

which is a contradiction. So the inequality ( 3) and ( 4) implies that the following
desired inequality:

M(xn+1, xn, t) ⩾M(xn, xn−1,
t

c
), (t > 0, n ∈ Z+).

If we apply induction to the above inequality we see that;

M(xn+1, xn, t) ⩾M(x1, x0,
t

cn
) (n ∈ Z+).

Our additional assumption on fuzzy metric implies that limn→∞M(x1, x0,
t
cn ) =

1. Thus, by taking limit as n tends to infinity, it can deduce that

limM(xn+1, xn, t) = 1, t ⩾ 0.

■

Now we are ready to state and prove our main results. Let ∗ be the 3-rd order
continuous minimum t-norm given by α ∗ β ∗ γ = min{α, β, γ} and (X,M, ∗)
be a complete generalized fuzzy metric space. We prove the existence fixed point
theorem of generalized Kannan-type mapping.

Theorem 3.2 Let (X,M, ∗) be a complete generalized fuzzy metric space, where

(i) ∗ is the 3-rd order continuous minimum t-norm,
(ii) limt→∞M(x, y, t) = 1 for all x, y ∈ X,
(iii) f : X → X be a generalized Kannan-type mapping.

Then f has a unique fixed point.

Proof Let x0 ∈ X and xn = f(xn−1) be an iterative sequence that was constructed
in the above lemma, now we show that {xn} is a Cauchy sequence. Suppose that
it is not Cauchy, so by definition, there exists 0 < ε < 1 for which we can find
t > 0 and subsequences {xm(k)} and {xn(k)} of {xn} with n(k) > m(k) > k for all
positive integers k such that

M(xm(k), xn(k), t) ⩽ 1− ε. (5)



E. Feizi et al./ IJM2C, 06 - 01 (2016) 19-27. 25

So for all r, s > 0 with t = r + s and a, b > 0 with 0 < a+ b < 1 we have

1− ε ⩾M(xm(k), xn(k), t)

=M(f(xm(k)−1), f(xn(k)−1), t)

⩾ ψ(M(xm(k)−1, f(xm(k)−1),
r

a
),M(xn(k)−1, f(xn(k)−1),

s

b
))

⩾ ψ(M(xm(k)−1, xm(k),
r

a
),M(xn(k)−1, xn(k),

s

b
)).

Therefore,

1− ε ⩾ ψ(M(xm(k)−1, xm(k),
r

a
),M(xn(k)−1, xn(k),

s

b
)). (6)

By lemma(3.1), for all t > 0 we have

lim
n→∞

M(xn+1, xn, t) = 1.

So we can choose k large enough such that

M(xm(k)−1, xm(k),
r

a
) > 1− ε and M(xn(k)−1, xn(k),

s

b
) > 1− ε (7)

Therefore, from (6), (7) and the definition of Ψ-function it is inferred that,

1− ε ⩾ ψ(1− ε, 1− ε) > 1− ε (8)

which is a contradiction. So, {xn} is a Cauchy sequence and completeness of gen-
eralized fuzzy metric space (X,M, ∗) implies that limn→∞ xn = x for some x ∈ X.
Now we claim that x is a fixed point for f . Assume it is not; so there exists t > 0
such that 0 < M(x, f(x), t) < 1. Since 0 < b < 1, we can choose η1, η2, r, s > 0
such that

t = η1 + η2 + r + s and
s

b
> t. (9)

Then we have

M(x, f(x), t) ⩾M(x, xn, η1) ∗M(xn, xn+1, η2) ∗M(xn+1, f(x), r + s)

⩾M(x, xn, η1) ∗M(xn, xn+1, η2) ∗ ψ(M(xn, f(xn),
r

a
),M(x, f(x),

s

b
))

⩾M(x, xn, η1) ∗M(xn, xn+1, η2) ∗ ψ(M(xn, xn+1,
r

a
),M(x, f(x),

s

b
))(10)

By Lemma (3.1) and the convergence of {xn} to x, there exists a positive integer
N1 such that for all n > N1,

M(x, xn, η1) ∗M(xn, xn+1, η2) ∗M(xn, xn+1,
r

a
) > M(x, f(x), t).
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Then from (9) and (10) it follows that,

M(x, f(x), t) > M(x, f(x), t) ∗ ψ(M(x, f(x), t),M(x, f(x),
s

b
))

⩾M(x, f(x), t) ∗ ψ(M(x, f(x), t),M(x, f(x), t))

⩾M(x, f(x), t),

which is a contradiction.
Hence M(x, f(x), t) = 1 for all t > 0, therefore, x is a fixed point for f .

For the uniqueness, suppose that f has two fixed points x and u. Therefore, with
all of the above assumptions on a, b and r, s, for all t > 0, we have

M(x, u, t) =M(f(x), f(u), t)

⩾ ψ(M(x, f(x),
r

a
),M(u, f(u),

s

b
))

= ψ(M(x, x,
r

a
),M(u, u,

s

b
))

ψ(1, 1) = 1.

Thus x = u, which completes the proof. ■

Finally, an example will help to support our theorem.

Example 3.3 Let X = {x1, x2, x3, x4}, ∗(α, β, γ) = min{α, β, γ} and M(x, y, t) be
defined as

M(x1, x2, t) =M(x2, x1, t)


0 if t ⩽ 0

0.70 if 0 < t ⩽ 6

1 if t > 6

M(x1, x3, t) =M(x3, x1, t)


0 if t ⩽ 0

0.90 if 0 < t ⩽ 3

1 if t > 3

M(x1, x4, t) =M(x4, x1, t)


0 if t ⩽ 0

0.80 if 0 < t ⩽ 4

1 if t > 4

M(x2, x3, t) =M(x3, x2, t)


0 if t ⩽ 0

0.95 if 0 < t ⩽ 3

1 if t > 3
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M(x2, x4, t) =M(x4, x2, t)


0 if t ⩽ 0

0.80 if 0 < t ⩽ 4

1 if t > 4

M(x3, x4, t) =M(x4, x3, t)


0 if t ⩽ 0

0.70 if 0 < t ⩽ 6

1 if t > 6

Then (X,M, ∗) is a complete generalized fuzzy metric space. Let f : X → X be

given by f(x1) = f(x2) = f(x3) = x3 and f(x4) = x1. If we take ψ(x, y) =
√
x+

√
y

2
and a = 0.2, b = 0.75, then f satisfies all conditions of the Theorem (3.2) and x3
is a unique fixed point of f .

4. Conclusion

In this work, we extend Kannan- type mappings to generalized Kannan-type maps
in generalized fuzzy metric spaces. Then we proved the existence of unique fixed
point theorem for this family of mappings on generalized complete fuzzy metric
spaces. We also supported our result by an example.
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