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Abstract.Noether’s first theorem shows how symmetry groups of one-parameter transfor-
mations lead to the generation of conservation laws for the Euler-Lagrange equations. She
states in her second theorem that there is a relationship between Euler’s basic equation and
Lagrange’s basic equation. This one-to-one correspondence leads to a type of symmetry called
generalized symmetry. According to these materials, in this paper, we want to obtain these
types of symmetries for the Benjamin-Bona-Mahony (BBM) equation and show that each
symmetry is connected to a specific conservation law. For this purpose, we obtain the symme-
tries of this equation using the Lie symmetry method, and then using the adjoint operator, we
provide a classification on the group invariant solutions of this equation. Then, by applying
Noether’s method, we obtain a new conservation law for each symmetry.
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1. Introduction

When we work with differential equations, the symmetry group can be very helpful
in finding solutions. By integrating once and reducing the equation’s order to one,
we can solve simple equations using this method. However, for equations with
partial derivatives, the general solution cannot be easily found using the symmetry
group unless the system can be converted into a linear system. In this case, we can
only find solutions that belong to specific subgroups of the symmetry group, which
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are called group invariant solutions. These solutions have fewer separate variables
than the original system [6, 15].
One of Lie’s important findings in the study of differential equations is that when

a dynamic system is moved just a tiny bit, the complex rules that control the sys-
tem become easier to understand. This is very important in the field of physics
[13, 18]. Another way we can use the symmetry group is to help us find conserva-
tion laws. In 1918, Emmy Noether explained two important ideas about symmetry
groups. These ideas showed how the number of changes in a group relates to certain
equations called Euler-Lagrange equations [15]. Noether’s first theorem explained
how groups that have one parameter and involve changes in the way things are cal-
culated can lead to the development of conservation laws for the Euler-Lagrange
equations. This correspondence is a new set of symmetries called generalized sym-
metries [15]. The main distinction between this type of symmetry and geometric
symmetries is that in addition to independent and dependent variables, these sym-
metries also include the derivative of dependent variables. Suppose the coefficients
of the infinitesimal generators of the group of transformations are only functions
of the independent and dependent variables of the base space. In that case, the
transformations group is called the group of Lie point symmetries [2, 11]. If this
restriction of coefficients is removed, then the coefficients of the infinitesimal gen-
erators of the group of transformations are also a function of dependent derivatives
(like the coefficients of the generators of the extended group in the jet space), in this
case, the obtained symmetries are higher (generalized) symmetries or Lie-Backlund
symmetries. Geometrically, Lie-Backlund transformations are higher-order general-
izations of contact transformations (first-order tangent). They can be considered as
tangent transformations of infinite order. By generalizing infinitesimal generators of
point and contact transformation groups, we approach the theory of Lie-Backlund
transformation groups. This generalization is known as the Lie-Backlund opera-
tor. It’s important to note that any one-parameter group could potentially be a
variational problem, regardless of whether it comes from geometric or generalized
symmetries [1]. This has the potential to create conservation laws, and conversely,
any conservation law associated with these symmetries can be transformed into a
variational problem. When it comes to studying a system, the conservation laws
are essentially a divergence expression of the differential equations that becomes
zero on all solutions. This means that if a system of differential equations has a
conservation law, it’s because there are certain numbers that can be used with
specific operations to make the equations disappear.
In this work, we figure out the Lie symmetry and the generalized symmetry of

the BBM equation. Then, we use this type of symmetry to obtain new conservation
laws for this equation.
The BBM equation is a partial differential equation that describes wavelengths
in some nonlinear systems. Consider the BBM or Regular-Long-Wave equation as
follows:

∆ := ut + ux + uux + uxxx = 0, (1)

which was foremost presented by Benjamin-Bona-Mahony to enhance the
Kortewage-de- Vries (KdV) equation for short amplitude wavelengths with dimen-
sion 1+1 [4, 5, 8]. Ogawa [14] analyzes the reality of periodic waves and solitary
waves of (1) in 1994 and shows the association between the wavelength and the
amplitude. Also, in [12], from the scaling method, the conservation laws and the ex-
act group invariant solutions of a type of equation (1) have been obtained. For the
perturbed generalized BBM equation, approximate symmetries and approximate
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solutions have been obtained using the Ibragimov method [10]. In recent times, re-
searchers have explored a new modified BBM local fractional equation that relies
on the local fractional derivative. The study yielded practical and interesting out-
comes that can be of significant value in academic and professional settings. The
equation has potential applications in multiple domains and may provide a robust
foundation for further research in the field [16]. If we terminate terms u2x and u4x
in equation (1), the KdV equation is acquired, which is widely utilized in the anal-
ysis of water waves [9, 17]. Also, important and practical studies have been done
regarding this equation and the conservation laws as well as its solutions [3, 7, 8].
The innovative research presented here sets itself apart from previous studies by
utilizing direct methods and uncovering new conservation laws for this equation.
The meticulous calculation technique employed leaves no doubt that these equa-
tions are non-equivalent and non-trivial. This groundbreaking research opens up
new avenues for exploration and represents an important contribution to the field.
This article is organized as follows: In Section 2, we discuss necessary and useful

concepts and obtain the 1-dimensional optimal system for the BBM equation. In
the third Section, we find the conservation laws of the equation by the direct
method and using multipliers. Finally, in Section, we get contact transformations
and generalized symmetries or the Noether’s symmetries of the BBM equation.

2. Group invariant solutions and optimal system of BBM equation

In this section, we will review the key definitions and theorems that are essential
for the rest of the work. It is important to have a clear understanding of these
concepts in order to properly apply them later on and then we obtain the group
invariant solutions and optimal system of BBM equation.
Consider a system of p independent variables x = (x1, ..., xp) and q dependent

variables u(x) = (u1, ..., uq) represented by partial differential equations of rank n
as follows:

∆η(x, u, u
(n)) ≡ 0, η = 1, 2, 3, .., k. (2)

Such a system’s solution is an equation of the type u = f(x), where

uα = fα(x1, x2, x3, ..., xp), α = 1, 2, 3, ..q,

are smooth functions of independent variables. Therefore, we assume that X rep-
resents a coordinate system on Rp and U represents a coordinate system on Rq.

Definition 2.1 A transformations local group like G that act on an open subset
of X × U like O to change each solution of system ∆ = 0 into another solution is
a symmetry group for a system of differential equations ∆ = 0.

Definition 2.2 Let M ⊂ X × U ba an open subset, the vector field on M is a
vector like v and we can represent it as follows:

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
. (3)

Also, the n-th prolongation of vector field v is defined as follows

Pr(n)(v) = v +

q∑
α=1

∑
J

ϕJα(x, u
(n))

∂

∂uαJ
. (4)
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Note that the coefficients in the above equation are defined as follows

ϕJα(x, u
(n)) = DJ(ϕα −

p∑
i=1

ξiuαJ,i) +

p∑
i=1

ξiuαi , α = 1, 2, ..., q, (5)

where

Qα(x, u
(1)) = ϕα −

p∑
i=1

ξiuαi , α = 1, 2, ..., q, (6)

and q-tuple Qα(x, u
(1)) = (Q1, ..., Qq) called the characteristic of v.

Theorem 2.1 Let

∆k(x, u
(n)) ≡ 0, k = 1, 2, ..., l, (7)

be a differential equations system of maximum rank that is defined on an open sub-
set O, and v is the infinitesimal generator of G as a local group of transformations
act on O. Then G is the system’s symmetry group if and only if

Pr(n)(∆k(x, u
(n))) ≡ 0, k = 1, 2, ..., l,⇐⇒ ∆k(x, u

(n)) ≡ 0. (8)

Now, we consider the BBM equation

ut + ux + uux + uxxx = 0

As we already understand, the foundation of the infinitesimal generating group
method is in a way which reduces the independent variables in PDEs. it reduces
the order in ODE equations. Now we put the infinitesimal group as below

x̃ = x+ εξ(x, t, u) +O(ε2),

t̃ = t+ ετ(x, t, u) +O(ε2),

ũ = u+ εϕ(x, t, u) +O(ε2),

(9)

as well as the state of invariance (1). Invariance by applying (9) states that u
remains a solution to (1) even after applying (9) (if u is solution then ũ is solution
too).
We have the following general form of vector field for the BBM equation

v = ξ(x, t, u)∂x+ τ(x, t, u)∂t+ ϕ(x, t, u)∂u, (10)

which must apply to relation Pr(3)(v(∆)) = 0. To discover infinitesimal genera-
tors v, we must first calculate all feasible coefficient values of ξ, τ and ϕ. This
necessitates calculating the third prolongation of v,

Pr(1)(v) = v + ϕt
∂

∂ut
+ ϕx

∂

∂ux
,

P r(2)(v) = v + Pr(1)(v) + ϕxx
∂

∂uxx
+ ϕtx

∂

∂utx
+ ϕtt

∂

∂utt
,

P r(3)(v) = Pr(2)(v) + ϕxxx
∂

∂uxxx
+ ϕxxt

∂

∂uxxt
+ ϕxtt

∂

∂uxtt
+ ϕttt

∂

∂uttt
,

(11)
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with the coefficients

ϕx = DxQ+ ξ1uxx + ξ2uxt,

ϕtx = DxDtQ+ ξ1uxxt + ξ2uxtt,

ϕxxx = D3
xQ+ ξ1uxxxx + ξ2uxxxt,

ϕxxt = D2
xDtQ+ ξ1uxxtt + ξ2uxttt.

...

(12)

To find the infinitesimal generator for the BBM equation, we must to solve the
following equation obtained by acting Pr(3)(v) to BBM equation.

ϕ2u = 0, ηx = ηu = ξu = 0, ξx = −1

2
ϕu, ηt = −3

2
ϕu,

ξt = −ϕu, u− ϕu + ϕ.

(13)

When we solve the system, we get these solutions for the vector’s coefficients v:

ξ1 =
1

2
(−x− 2t)c1 + c2t+ c4, ξ2 = −3

2
c1t+ c3, ϕ = c1u+ c2, (14)

such that c1, c2, and c3 are arbitrary fixed numbers. So the BBM equation has four
vector fields
v1 = (12x+t)∂x+

3
2 t∂t−u∂u, v2 = ∂u+t∂t, v3 = t∂x+∂u+∂t, v4 = ∂t+∂x,

that create the Lie algebra g. Also their commutator table is:

Table 1. The table of commutators.

[, ] v1 v2 v3 v4
v1 0 v2

3
2v2 −

1
2v3 − v4 − 3

2v4
v2 −v2 0 −v2 + v3 − v4 −v2 + v3 − v4
v3 − 3

2v2 +
1
2v3 + v4 v2 − v3 + v4 0 −v2 + v3 − v4

v4
3
2v4 v2 − v3 + v4 v2 − v3 + v4 0

Lemma 2.3 The groups Wi(ε) are made by vectors v1, v2, v3 and v4 as follows

W1(x, t, u) = (e
1

2
ε(−t+ x) + te

3

2
ε, te

3

2
ε, ue−ε),

W2(x, t, u) = (x+ tε, t, ε+ u),

W3(x, t, u) = (
1

2
ε2 + x+ tε, ε+ t, u+ ε),

W4(x, t, u) = (x+ ε, t+ ε, u).

(15)

Because every part of a system has a different subgroup parameter in the full
symmetry group, there are solutions called invariant solutions. Thus, the following
theorem is proven.

Theorem 2.2 Let u = f(x, t) satisfies equation (1), then the following functions
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are solutions too:

W1(ε).f(x, t) = eε(te
3

2
ε + e

1

2
ε(−t+ x), te

3

2
ε)

W2(ε).f(x, t) = (tε+ x, t)− ε,

W3(ε).f(x, t) = (
1

2
ε2 + tε+ x, ε+ t)− ε,

W4(ε).f(x, t) = (ε+ x, ε+ t),

(16)

such that ε is a constant number.

We combine supplied vector fields as c1v1+c2v2+c3v3+c4v4 to find symmetries.
and analyze the group.
Now we classify the group invariant solutions by using the classification of adjoint
action orbits on the obtained subalgebras for the equation. Consider the group
G, which is a Lie group. An optimum system is a list of groups that are similar
to each other and have the same properties as the other groups in the list. It
only belongs to one of the groups on the list. Correspondingly, an optimal system
can be formed by a compilation of subalgebras. Subalgebra g, in particular, may
be associated with a single member of the aforementioned list provided specific
adjoint representation factors, namely h̃ = Adg(h), g ∈ G. The accurate solutions
are obtained, and the symmetry of the differential equations is then established.
The symmetry group affects qualities. We may find different solutions to the
problem by recognizing these qualities.
Consider the adjoint action on the Lie series as follows

Ad(exp(εvi))vj =
∑∞

n=0
(εn/n!)(advi)

n(vj),

so that [vi, vj ] represents the commutator for the Lie algebra, ε represents param-
eter and i, j = 1, 2, 3, 4. Adjoint with (i, j)−th entry suggesting Ad(exp(εvi))vj in
Table 2

Table 2. The adjoint presentation table.

Ad v1 v2 v3 v4
v1 v1 eεv2 + (−e 1

2 ε + e−ε)v3 e
1
2 εv3 (e

3
2 ε − e

1
2 ε)v3 + e

3
2 εv4

v2 v1 εv1 + v2 + εv3 + εv4 (1− ε)v3 − εv4 εv3 + (1 + ε)v4
v3 v1 ( 32ε−

5
4ε

2)v1 (− 1
2ε+

5
4ε

2)v1 (−ε− 5
4ε

2)v1
+(1− ε)v2 + εv4 +εv2 + v3 − εv4 −εv2 + (1 + ε)v4

v4 v1 (1− ε)v2 − εv3 εv2 + (1 + ε)v3 − 3
2εv1 − εv2 − εv3 + v4

If F ε
i : g −→ g is a linear map, by v 7→ Ad(exp(εivi).v), for i = 1, 2, 3, 4, then

the matrices M ε
i for F ε

i with relation to the base {vi}, i = 1, 2, 3, 4, are

M ε
1 =


1 0 0 0

0 e−ε −eε
1
2 + e−ε 0

0 0 e3ε e
1

2
ε

0 0 e
3

2
ε − e

1

2
ε e

3

2
ε

 , M ε
2 =


1 0 0 0
ε 1 ε ε
0 0 1− ε −ε
0 0 ε 1 + ε

 ,
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M ε
3 =


1 0 0 0

3
2ε−

5
4ε

2 1− ε 0 ε
−1

2ε+
5
4ε

2 ε 1 −ε
−ε− 5

4ε
2 −ε 0 1 + ε

 , M ε
4 =


1 0 0 0

3
2ε−

5
4ε

2 1− ε 0 ε
−1

2ε+
5
4ε

2 ε 1 −ε
−ε− 5

4ε
2 −ε 0 1 + ε

 .

Theorem 2.3 An one-dimensional optimum system of Lie algebra g is generated
by

Y1 = v1 + αv2, Y2 = βv2 + v3, Y3 = γv3, (17)

where α, β and γ are arbitrary constants.

Proof :
If V = a1v1 + a2v2 + a3v3 + a4v4 be a general element of g, first that suppose
a1 6= 0, we can assume that a1 = 1. According to Table 2, if we use such a V by
Ad(exp(−a2/(1 + a3 + a4)), we may eliminate the coefficient of v2,

V ′ = v1 + a′3v3 + a′4v4,

where certain values a′3, a
′
4 depending on the a2, a3, a4 in the next step , we operate

on V ′ with Ad(exp(2a4/3 + 2a3)) to destroy the coefficient of a4 by leading to
V ′′ = v1 + a′3v3 and in the last step with Ad(exp(a′3v3)) by vanishing the residual
coefficient, such that V is identical to v1 in the adjoint expression. Any subalgebra
in dimension one formed by a v with a1 6= 0 has the same meaning as the subgroup
formed by v1. Then we assume a1 = 0 and a2 6= 0 and repeat the process.

3. BBM equation’s local conservation law

Noether developed her renowned approach (known as Noether’s theorem) for de-
termining conservation laws for systems of equations that follow a specific pattern
(known as a variational principle or action functional) in 1918. If a certain differ-
ential equations system has a principle variational, the ultimate solutions to its
action differential equations will take the form of the Euler-Lagrange equations. In
the current paper, Noether demonstrated that if an action functional has a sym-
metry, the fluxes of a local conservation law may be calculated using a formula
that incorporates the infinitesimal values of the symmetry and the Lagrangian.
Let ∆ be a system composed of p variables x = (x1, ..., xp) and q dependent vari-

ables u(x) = (u1, ..., uq), each of which is described by partial differential equations
of order k,

∆η(x, u;u
(k)) ≡ 0, η = 1, 2, ..., l. (18)

Definition 3.1 A local conservation law for (18) is the divergence expression as
follows

DiΦ
i [u] = D1Φ

1 [u] + ...+DnΦ
n [u] = 0, (19)

applicable to all obtained solutions for differential equation system (18). In (19):

DiΦ
i [u] = Φi(x, u, ∂u, ∂2u, ..., ∂ru) = 0, i = 1, 2, 3, ..., n.

The operators that signify total derivative and the fluxes corresponding to the
law of conservation are respectively present. The Noether’s theorem is a well-known
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systematic approach to determine the conservation laws as related to variable sym-
metries in systems of Euler-Lagrange equations. Noether’s explicit formula for local
conservation laws is derived from a set of local multipliers that give rise to compo-
nents of local symmetries in evolutionary form. As such, it can be observed that all
local conservation laws that emerge from Noether’s theorem are obtained through
the direct method. The direct method is a versatile approach that can be applied
to any differential equation (DE) system, regardless of whether its linearized sys-
tem is self-adjoint. Notably, the method does not require the determination of any
functional. Furthermore, any solution of an over-determined linear PDE system
that satisfies the multipliers can represent a set of local conservation law multipli-
ers. This over-determined linear PDE system is derived directly from the given DE
system.
It is worth noting that if the linearized system is self-adjoint, the local symmetry-

determining equations are a subset of this over-determined linear PDE system. This
observation is significant because it highlights the potential for the direct method
to identify local symmetries in DE systems even when the linearized system is not
self-adjoint. By its versatility and directness, the direct method is a valuable tool
in the study of DE systems.

3.1 Finding the conservation law with direct method

When it comes to establishing local conservation laws for a wide range of partial
differential equation systems, the direct method is a systematic approach that
provides a realistic mechanism. This involves searching for multipliers that can be
used to combine different equations in a certain way, resulting in an expression
that shows how much the equations spread out (divergence expression). Collecting
the coefficients of the local conservation law is crucial in recreating the fluxes
associated with it. Typically, this is done in the type (18) non-degenerate different
equations system. By seeking scalar products, nontrivial local rules that combine
linear combinations of the constitutive equations in the different equations system
(18) backed by multipliers (i.e., factors that generate high divergence terms)
may be identified. To obtain these formulations, we substitute different functions
for the dependent variables and their derivatives, or multipliers, in the different
equations system (18). If the coefficients are not unique, every solution to the
different equations system (18) leads to the disappearance of these divergence
terms.

Definition 3.2 The Euler operator for Uµ define as follows

EUµ = ∂/∂Uµ −Di∂/∂U
µ
i + ...+ (−1)sDi1 ...Dis∂/∂U

µ
i1...is

+ ....

Euler operator vanishes divergences. Now, we find local conservation law multi-
pliers of the BBM equation. For this, we let Λ = Λ(x, t, u, ux, uxx, uxxx, uxxxx) for
the BBM equation, then if Λ justifies the following condition, Λ can be considered
as the local conservation law multiplier for the BBM equation

Eu (Λ(ut + ux + uux + uxxx)) ≡ 0. (20)



M. Jafari and M. Farazi/ IJM2C, 13 - 04 (2023) 1-14. 9

Then, from equations (19) and (20) we have

Λ = 1,

Λ = u,

Λ = t+ tu− x,

Λ = uxx +
1

2
u2,

Λ = uuxx +
1

6
u3 +

1

2
u2 +

3

5
uxxxx.

(21)

3.2 Computation of fluxes for the conservation laws

In this subsection, we obtain the corresponding flux for each of the multipliers
obtained in the previous subsection.

Case 1: If the multiplier is u, then

u(ut + ux + uux + uxxx) = DxΨ+DtΦ, (22)

where D represents the total derivative operators. let Ψ =
Ψ(x, t, u, ux, uxx, uxxx, uxxxx) and Φ = Φ(x, t, u, ux, uxx, uxxx, uxxxx). Now,
we determine Φ and Ψ by extending the equation (22):

Ψx+Ψuux+Ψux
uxx+Ψuxx

uxxx+...+Φt+Φuut+Φux
uxt+... = u(ut+ux+uux+uxxx).

By solving the equation, we obtain

Φ =
1

2
u2,

Ψ = uuxx −
1

2
u2x +

1

3
u3 +

1

2
u2.

(23)

Case 2: If the multiplier be Λ = 1, then

Φ = u,

Ψ = uxx +
1

2
u2 + u.

(24)

Case 3: If the multiplier be Λ = t+ tu− x, then

Φ =
1

2
tu2 +

1

2
(2t− 2x)u,

Ψ =
1

3
tu3 +

1

6
(−3x+ 6t)u2 +

1

6
((6uxx + 6)t− 6x)u

+
1

6
(−3u2x + 6uxx)t+ ux − xuxx.

(25)
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Case 4: If the multiplier be Λ = uxx +
1
2u

2, then

Φ =
1

6
u3 + uuxx,

Ψ =
1

2
u2x +

1

2
u2xx +

1

2
u2uxx +

1

8
u4 +

1

6
u3.

(26)

Case 5: If the multiplier be Λ = uuxx +
1
6u

3 + 1
2u

2 + 3
5uxxxx, then

Φ =
1

24
u4 +

1

2
uxxu

2 + (
1

2
u2x +

3

5
uxxxx)u,

Ψ =
1

30
u5 +

1

24
u4 +

1

6
uxxu

3 +
1

4
u2u2x

+
1

120
(24u2xx + 60u2x + 72uxxxux)u+

3

10
u2xxx −

1

10
uxxu

2
x +

3

5
uxxxux −

3

10
u2xx.

(27)

4. Contact and generalized transformations

Suppose that we have n independent variables x = (x1, ..., xn) and a single depen-
dent variable u(x), then we have the following.

Definition 4.1 The definition of a contact transformation on E is as follows:

(x, u, p) 7→ (x̃, ũ, p̃) = (φ(x, u, p), ψ(x, u, p), η(x, u, p)), (28)

where p = (u1, ..., up) and ui = ∂u/∂xi are the first-order derivatives of u with
respect to the variables from which it is independent. It is defined in the k-th order
of u in the jet space and is a one-to-one transformation of the whole space E on
the first-order derivatives of u.

Theorem 4.1 [15] The functions φ = (φ1, ..., φp) and χ = (χ1, ..., χp) must all be
satisfied in the following relations to be a contact transformations,

∂ψ

∂ui
= χi∂φ

i

∂ui
,

∂ψ

∂xi
+ ui

∂ψ

∂u
= χi(

∂φi

∂xi
+ ui

∂φj

∂u
), i, j = 1, 2, ..., p.

(29)

Similar to point transformations, contact transformations can be expressed as one-
parameter. Let ε be the contact transformations group’s parameter, then

x̃i = xi + εξi(x, u, p) +O(ε2),

ũ = u+ εϕ(x, u, p) +O(ε2),

ũi = ui + εϕi(x, u, p) +O(ε2).

(30)
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In the above relations ξi and ϕi derived from the infinitesimal generator in the
form

v =

p∑
i=1

(ξi(x, u, p)∂xi + ϕi(x, u, p)
∂

∂ui
) + ϕ(x, u, p)∂ui, (31)

such that

ϕi = Diϕ−
p∑

j=1

Diξ
juj =

∂ϕ

∂ui
−

p∑
j=1

∂ξi

∂xi
∂u

∂uj
. (32)

Theorem 4.2 [15] Equations (30) generate the infinitesimal generator if and only
if the functions ξi and ϕi hold in the following relations,

∂ϕ

∂ui
−

p∑
j=1

uj
∂ξj

∂ui
= 0, i = 1, 2, ..., p. (33)

Theorem 4.3 [15] The contact transformation of one-parameter Lie groups with
an infinitesimal generator is the same as any one-parameter local transformation
with an infinitesimal generator

v = Q(x, u, u(1))∂u,

where

v =

p∑
i=1

ξi(x, u(1))∂xi + ϕ(x, u(1))∂u +

p∑
i=1

ξi(x, u(1))ϕ1(x, u(1))∂ui. (34)

Therefor, the coefficients of this generator are satisfy the following expressions

ξi(x, u(1)) =
∂Q

∂ui
,

ϕ(x, u(1)) = ui
∂Q

∂ui
−Q,

ϕ
(1)
i (x, u(1)) = −∂Q

∂ui
− ui

∂Q

∂u
, i = 1, ..., p.

(35)

Definition 4.2 Consider the vector field v

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

ϕα[u]
∂

∂uα
. (36)

If ξi and ϕα are smooth differential functions, then v is a generalized vector field.

Definition 4.3 If v is a generalized vector field, u = f(x) and

∆ν(u) ≡ ∆ν(x, u
(n)) = 0, ν = 1, 2, .., l, (37)

be a system of PDEs that satisfy the following relations

Pr(v)(∆v) = 0, ν = 1, 2, .., l, (38)
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then v is a generalized infinitesimal symmetry for this system.

Definition 4.4 suppose you have a q-tuple of differential functions

Q[u] = (Q1[u], ..., Qq[u])ϵAq.

The generalized vector field vQ is therefore referred to as an evolutionary vector
field if and only if vQ is defined as follows, and Q is referred to as its characteristic.

vQ =

q∑
α=1

Qα[u]
∂

∂uα
. (39)

Lemma 4.5 [15] Only when vQ is the evolutionary representation of a system of
differential equations, the vector field v considered to be symmetry.

Now, consider the following Benjamin-Bona-Mahoney equation

∆ := ut + ux + uux + uxxx = 0.

Let vQ = Q[u]∂u be the generalized symmetry in evolutionary form of the men-
tioned equation. We want to substitute any time-based changes in u in Q with
expressions that only involve changes based on x and this won’t change the equiv-
alent category of v. For example, ut is replaced by −ux − uux − uxxx and uxt by
−u2x − uxx − uuxx − uxxxx ,uxxt by −3uxxux − uuxxx − ux5 and so on. Every sym-
metry corresponds to a characteristic Q = Q(x, t, u, ux, uxx...). According to the
definition of the infinitesimal condition, (4.3), for invariance we have

DtQ = −(DxQ+ uxQ+ uDxQ+D3
x3Q), (40)

which must be satisfied for all solutions. We have

Pr(v) = ux
∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ ...,

and

Pr(v) = Q∂u+DxQ∂ux +D2
xQ∂uxx + ....

Since we only need to hold on the solutions, so we can use (1) and its pro-
longations to replace any t derivatives of u. After examining (40) closely, we can
identify the coefficients of u’s derivatives in descending order. Based on this data,
we determine that the characteristic of every fourth order generalized symmetry for
the BBM equation is a linear, constant-coefficient combination of five fundamental
characteristics denoted by

Q1 = uxtu− (1/3)uxx+ uxxxt+ 1/3− (2/3)u,

Q2 = tu1 − 1,

Q3 = uux + uxxx,

Q4 = ux,

Q5 = uxtu+ (1/3) + uxxu+ (1/4)u2ux − (1/3)uxx+ uxxxt+ (1/2)uxxxu

− (2/3)u+ (3/10)uxxxxx.

(41)
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Therefore Generalized symmetry group (Noether transformation) are obtained as
follows

v1 = −(3uxtu− ux + 3uxxxt+ 1− 2u)∂u,

v2 = −(tux − 1)∂u,

v3 = uux + uxxx∂u,

v4 = ux∂u,

v5 = (1/4u2ux + uxxux + 1/2uxxxu)∂u.

(42)

Theorem 4.4 As a result of theorems (4.3) and (4.1), the contact symmetries of
the BBM equation are as follows:

v2 = −(tux − 1)∂u,

v4 = ux∂u.
(43)

Remarks and dissections

A local transformation in one parameter for a generator of type

v = η(x, u, ∂u)
∂

∂u
, (44)

is exclusive identical to a producer of a Lie group in dimension one of contact gen-
erators. η(x, u, ∂u), in particular, serves as a defining function in this situation.
It is demonstrated that any infinitesimal generator in the form of (44) is compara-
ble to a producer of a Lie group, and that the transformation η(x, u, ∂u) is linear
concerning the dependency first derivative. We may also deduce this conclusion
from the fact that each conservation law in the Euler-Lagrange equation has a
corresponding variational symmetry, as demonstrated by Noether’s theorem. As
outlined in the introduction, numerous attempts have been made to identify ex-
act solutions and conservation laws for the BBM equation. This study investigates
new conservation laws. To ensure the credibility of the densities, it is necessary
to demonstrate that they are nontrivial, independent, and accurate by verifying
that no density is a total derivative concerning x. Additionally, the definition of a
conservation law is only relevant when evaluated on the given PDEs’ solutions. The
densities must be functionally or linearly independent, meaning that they should
not be a linear combination of other densities, a derivative of another density, or a
combination of both. The conservation laws derived in this study satisfy the funda-
mental condition of a conservation law, as defined in equation (19). Regarding the
construction method, it is evident that these conservation laws are non-equivalent
and nontrivial, and we can therefore conclude that they are innovative.

Conclusion

In this article, using multipliers and the direct method, we obtained the conser-
vation laws of the Benjamin-Bona-Mahony (BBM) equation. In this method, the
fluxes were obtained by multipliers and solving the equations that are made for
their coefficients. Also, the generalized symmetries and contact transformations of
this equation, which are very important in examining the conservation laws, were
obtained for this equation.
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