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Abstract. In this work, an iterative method under the umbrella of inverse-free methods
which do not rely on the calculation of the inverse matrix per loop is proposed for finding the
maximal solution of a well-known nonlinear matrix equation (NME) in the form of Hermitian
positive definite (HPD) matrices. The computational of the minimal solution is discussed as
well. The iterative scheme is constructed based on methods for finding generalized matrix
inverse. We illustrate some estimations for obtaining the solution, and its convergence. To
ensure its validity and usefulness, some experiments are run which reveal the superiority of
the proposed method.
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1. Introduction

Here a nonlinear matrix equation (NME) [13] of the following type, where P ∈ Cn×n

is its Hermitian Positive Definite (HPD) solution, is considered:

P +A∗P−1A = I, (1)

at which I is an identity matrix of suitable size, A is an n× n invertible complex
or real matrix and A∗ is the conjugate transpose of the matrix A, see [17]

∗Corresponding author. Email: lotfi@iauh.ac.ir

© 2022 IAUCTB
http://ijm2c.ctb.iau.ir



164 T. Nadaf and T. Lotfi/ IJM2C, 12 - 03 (2022) 163-171.

The problem (1) is a part of the Riccati equation, often referred to as the Discrete-
time Algebraic Riccati Equation or, for short, generally alluded to as DARE. In
several disciplines such as stochastic filtering, queuing theory, etc., this type of
nonlinear equation typically appears, see [1, 19] for further discussions.
This problem for any HPD solution P possesses the minimal solution PS and

the maximal solution PL such that PS ⩽ P ⩽ PL, see for more [7].
The maximal solution for (1) could be derived via:

PL = I − YS ,

where YS is the minimal solution of the dual NME as follows:

AY−1A∗ + Y = I.

To discuss about the well-known NMEs given in literature, one may refer to
Table 1.

Table 1. Various kinds of NMEs.

Year NME
2001 [7] A∗P−2A+ P = I
2008 [9] P = I −A∗P−1A− B∗P−1B
2009 [2] A∗P−tA+ Ps = Q
2013 [5] P = I −AHP−1A− BHP−1B
2016 [6] P1 +A∗P−α1

2 A = I,P2 + B∗P−α2

1 B = I
2017 [4] P +A∗P−1A+ B∗P−1B = Q

Solving the NMEs in Table 1 theoretically and finding the closed form solution
is almost impossible and this opens up the avenue of finding numerical solutions
by efficient iteration schemes which guarantee not only the convergence but also
converge as fast as possible in low computational cost.
From now on we focus on (1) and review some of the existing methods for solving

this NME. The fixed-point iterative method (FPI) is given by [3]:{
P0 = I,

Pk+1 = I −A∗P−1
k A.

Here per computing cycle, one matrix inverse must be computed. Authors in [10]
presented another iteration scheme (SM) to compute the minimal solution as fol-
lows: {

P0 = AA∗,

Pk+1 = Pk(2I −A−∗(I − Pk)A
−1Pk).

(2)

This scheme is categorized as methods without the computation of inverse per
computing step, since A−1 is calculated once only. Noticing that A−∗ = A−1∗

.
Further discussions about nonlinear equation solvers can be found in [8, 16].
Iteration schemes such as the method (2) converges slowly specially at the be-

ginning of the process due to the nature of local iteration schemes for solving
nonlinear equations. In fact root solvers reaches the real convergence speed only
when they arrive at the convergence phase which is not immediate if the initial
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guess/approximation is not chosen close enough to the simple roots. We have sim-
ilar situations here when we tackle NMEs and employ them for solving NMEs.
Author in [22] discussed how one can employ the Newton’s methods for multi-
ple roots in order to speed up the initial phase of the convergence for applying
iterations schemes in solving NMEs as follows:

Pk+1 = Pk ((r + 1)I − tHkPk) , (3)

for any 1 ⩽ r ⩽ 2.
An important iteration method presented in [14, 21], here denoted by EAM, is

as follows:


P0 = Z0 = I,

Zk+1 = I + (I − Pk)Zk,

Pk+1 = I −A∗Zk+1A.

Authors in [18] proposed another iteration scheme as a generalization of the
Chebyshev’s method (SOM) to solve (1) in what follows:

{
P0 = AA∗,

Pk+1 = Pk[3I −A−∗(I − Pk)A
−1Pk(3I −A−∗(I − Pk)A

−1Pk)].

As can be seen the iterative methods discussed above are categorized in two
forms. In one way, they need the calculation of inverse matrix per computing loop
while for the other ones, they do not need. Since the calculation of an inverse
matrix is computationally so expensive (see e.g. [11]), we attempt to propose a
novel method which does not rely the computation of a matrix per cycle and
needs only one matrix inverse at the beginning of the procedure. Some theoretical
discussions about the convergence of the HPD solution for this NME under the
new proposed iteration scheme are given. Computational works are done severely
to show how the method converges rapidly to the solution as rapidly as possible
by choosing a proper initial approximation for the iteration scheme.
The rest of this paper is unfolded as follows. In Section 2, the solution of this

NME as the zero of an operator nonlinear equation is introduced. It is shown by way
of illustration that the proposed solution method is useful and provides promising
results. Several numerical experiments are investigated with implementation details
in Section 3 to confirm its applicability and to compare with several schemes. Lastly,
some concluding summaries are made in Section 4.

2. Deriving a new iteration scheme

It is recalled that an efficient procedure to compute the HPD solutions of (1) is to
find the solution of the nonlinear equation, U(P) = 0, where [10]:

U(P) := −I + P +A∗P−1A = 0. (4)
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The equation (4) could be re-written as follows [18]:

U(P) = A∗P−1A+ P − I
= −(I − P) +A∗P−1A
= −(A−∗ − PA−∗)A∗ +A∗P−1A
= A∗P−1A−A(A−1A−∗ −A−1PA−∗)A∗

= (A−1PA−∗)−1 −A(A−1A−∗ −A−1PA−∗)A∗.

It is clear that we can incorporate now a transformation as comes next:

L = A−1PA−∗,

to further simplify the nonlinear operator equation:

G(L) = L−1 −A(A−1A−∗ − L)A∗ = 0.

For obtaining an iteration scheme to find the minimal HPD solutions, now it is
necessary to solve the following:

L−1 −B = 0, (5)

where

B = A(A−1A−∗ − L)A∗. (6)

To contribute we employ (5)-(6) and propose the following method:
P0 = AA∗,

Hk = A−∗(I − Pk)A
−1,

Ck = I −HkPk,

Pk+1 = Pk[I + Ck + C2
k + C3

k + C4
k ].

(7)

The method has actually been built based on the following fifth-order iteration
scheme [15]:

Zk+1 = Zk(I +Rk(I +Rk(I +Rk(I +Rk)))),

for computing generalized outer inverse of A, where Rk = I −AZk.
The matrix iteration (7) requires one time to compute A−1 specially at the initial

stage of the implementation and it provides the iteration scheme to be considered
as inversion-free methods to solve (1), see also [12].
Designing new iterative methods without studying their convergence cannot be

useful in practice. Due to this, in what follows we investigate the convergence of
the proposed method

Theorem 2.1 Having the HPD matrix P0 = AA∗, the method (7) furnishes a
sequence of Hermitian matrices.

Proof It is obvious that the seed AA∗ is Hermitian, and Hk = A−∗(I − Pk)A
−1.

Therefore, H0 = A−∗A−1 − A−∗AA∗A−1, is also Hermitian, i.e., H∗
0 = H0. Now
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using inductive argument, we have

(P1)
∗ = (P0[I + C0 + C2

0 + C3
0 + C4

0 ])
∗

= [P0 + P0(I −H0P0) + P0(I −H0P0)
2

+P0(I −H0P0)
3 + P0(I −H0P0)

4]∗

= P1.

By considering (Pl)
∗ = Pl, (l ⩾ k) we now show that

(Pl+1)
∗ = (Pl[I + Cl + C2

l + C3
l + C4

l ])
∗

= [Pl + Pl(I −HlPl) + Pl(I −HlPl)
2

+Pl(I −HlPl)
3 + Pl(I −HlPl)

4]∗

= Pl+1.

(8)

Note that Hl = (Hl)
∗ has been employed in (8). Now the conclusion is valid for

any l + 1. Therefore, proof is ended. ■

Theorem 2.2 Assume that Pk and A are invertible matrices. Then the sequence
{Pk} produced by (7) tends to the minimal solution of the NME (1) by having
P0 = AA∗.

Proof We start by denoting that Hk = A−∗(I − Pk)A
−1. Thus, we can write

I −HkPk+1 = I − [A−∗(I − Pk)A
−1](Pk[I + Ck

+C2
k + C3

k + C4
k ])

= I − [A−∗(I − Pk)A
−1](Pk[I + (I −HkPk)

+(I −HkPk)
2 + (I −HkPk)

3 + (I −HkPk)
4])

= (I −HkPk)
5.

(9)

Now by using (9) and taking a norm from both sides, one attains that

∥I −HkPk+1∥ ⩽ ∥I −HkPk∥5. (10)

So, the inequality (10) can lead to convergence as long as the initial approximation
read

∥I −HP0∥ < 1.

This yields to the following condition

∥I − [A−∗(I − P)A−1]P0∥ < 1.

Now by employing the HPD initial approximation P0 = AA∗, one obtains that

∥A−∗PA∗∥ < 1,

which holds as long as P is the minimal HPD solution of (1). Also, due to

0 < PS = I −A∗P−1
S A = A∗[A−∗A−1 − P−1

S ]A = A∗[P−1
0 − P−1

S ]A,

we obtain that P−1
0 > P−1

S , thus P0 < PS . Hence, by mathematical induction, it
is seen that {Pk} converges to PS . Now the proof ends. ■



168 T. Nadaf and T. Lotfi/ IJM2C, 12 - 03 (2022) 163-171.

The proposed method (7) tends to generalized outer inverse of a matrix with
fifth order of convergence but this is not the order when tackling the NMEs. In
fact it converges linearly to the solution but as will be discussed Section 3, it is
much faster than the existing schemes in literature for finding maximal solutions.
To accelerate the convergence of the scheme specially at the initial phase of

convergence, one may impose a scaling approach to force each iteration in order to
arrive at the convergence phase much faster. Besides, a better initial matrix can
also help to reduce the number of iterates to obtain the final solution.

3. Benchmarking

Computational efficiency and convergence behavior of PM (7) for the NME (1) are
hereby illustrated on some numerical problems. All the compared methods here
are written in the programming package Mathematica 12.0, [20]. Some comments
are in order:

• All computations are performed in standard floating point arithmetic without
applying any compilations. The matrix inversions whenever required are done
using Mathematica 12.0 built-in command.

• We find the number of iterates to observe the convergence. In the codes we
wrote to implement different schemes, we stop all the applied schemes when two
successive iterations in the infinity norm is less than a tolerance as follows:

∥Pk+1 − Pk∥∞ < 10−4.

• Here PM is employed along with (3) with k = 2 iterates and then (7) is used.

Example 3.1 This experiment put on test the effectiveness of PM for a 3× 3 real
matrix A defined as follows:

A =

 0.2 0.14 −0.01
0.1 0.12 0.1
0.14 0.02 0.4

 ,

to find the minimal solution of (1) which is given by

PS =

0.0663655 0.0427279 0.0405507
0.0427279 0.0448048 0.0815726
0.0405507 0.0815726 0.245427

 .

The results are given in Figure 1. We have used r = 1.5 for the PM and SOM.

Noting that PM converges to PS , therefore we employ other methods in comput-
ing the maximal solution of the dual problem AX−1A∗ +P − I = 0 in our written
implementations to have fair comparisons.
Computational results from Example 3.1 show that PM converges faster that

the existing iterative methods for the same purpose. Our method requires fewer
numbers of iterates to reach the stopping criterion. In fact under mild conditions,
error analysis, convergence and stability of the scheme were observed based on the
expected norm of the error.
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P1 =

0.0669299 0.0420752 0.0375196
0.0420752 0.0428617 0.0759879
0.0375196 0.0759879 0.231133

 ,

P2 =

0.0658539 0.0424737 0.0404553
0.0424737 0.0445757 0.081174
0.0404553 0.081174 0.244185

 ,

P3 =

0.0663145 0.0426801 0.0404622
0.0426801 0.0447352 0.0814063
0.0404622 0.0814063 0.244995

 ,

P4 =

 0.066357 0.042715 0.0405195
0.042715 0.0447822 0.081515
0.0405195 0.081515 0.245279

 ,

P5 =

0.0663637 0.0427246 0.0405424
0.0427246 0.0447987 0.0815569
0.0405424 0.0815569 0.245387

 ,

P6 =

0.0663655 0.0427279 0.0405507
0.0427279 0.0448048 0.0815726
0.0405507 0.0815726 0.245427

 .

Example 3.2 Here we compare different iteration schemes to find the minimal
solution of (1) when A is a complex matrix as follows:

A =
1

2


0.3 −0.2 0.5 0.1
0.1 −0.36 i 0.3
0.05 −0.01 −0.1 0.12
0.1 i 0.23i 0.001

 ,

and the solution is:

PS =

 0.104 + 9.64× 10−7i 0.049− 0.120i −0.002− 0.002i −0.013 + 0.043i
0.049 + 0.120i 0.364 + 0.00002i 0.020 − 0.034i 0.022 + 0.171i
−0.002 + 0.002i 0.020 + 0.034i 0.011 + 1.64× 10−6i −0.020 + 0.008i
−0.013− 0.043i 0.022− 0.171i −0.020− 0.008i 0.456 + 0.00006i

 .

The numerical evidences are furnished in Figure 2. It too reveals that the pro-
posed method is efficient in solving NME (1). We have used r = 2 for the PM and
SOM.
Before ending this section, it is necessary to re-do Example 3.2 but this time with

another r = 3.2. In fact, one time with r = 3.2, the multiple Newton’s method is
employed and then we switch to the PM and SOM for the rest of the iterates.
The results for such a consideration is furnished in Figure 3. This confirms the
usefulness of PM one more time for finding the maximal solutions.
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Figure 1. Comparison results in Example 3.1.
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Figure 2. Comparison results in Example 3.2.

0 5 10 15 20 25
No. of iterations

10
-4

0.001

0.010

0.100

Error

▼ PM

▲ SOM

◆ EAM

■ FPI

● SM

Figure 3. Comparison results in Example 3.2 using a different accelerator.

4. Conclusions

In this work, an iterative procedure for solving a NME was investigated and tested.
Under mild conditions, error analysis and convergence of the scheme were estab-
lished based on the expected norm of the error. To understand the scheme better,
different types of numerical problems were given. All numerical tests show that the
theoretical conclusions of this research are in agreement with the pieces of compu-
tational evidence. We drew the conclusion that the presented iterative technique is
efficient in terms of computing computational solutions for a wide variety of non-
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linear matrix problems. This technique also delivers accurate results with fewer
iterations and cheaper computing costs when compared to several comparable it-
erative algorithms.
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