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Abstract. Since December 2019 that the coronavirus pandemic (COVID-19) has hit the
world, with over 13 million cases recorded, only a little above 4.67 percent of the cases have
been recorded in the continent of Africa. The percentage of cases in Africa rose significantly
from 2 percent in the month of May 2020 to above 4.67 percent by the end of July 15, 2020.
This rapid increase in the percentage indicates a need to study the transmission, control
strategy, and dynamics of COVID-19 in Africa. In this study, a nonlinear mathematical model
to investigate the impact of asymptomatic cases on the transmission dynamics of COVID-19 in
Africa is proposed. The model is analyzed, the reproduction number is obtained, the local and
the global asymptotic stability of the equilibria were established. We investigate the existence
of backward bifurcation and we present the numerical simulations to verify our theoretical
results. The study shows that the reproduction number is a decreasing function of detection
rate and as the rate of re-infection increases, both the asymptomatic and symptomatic cases
rise significantly. The results also indicate that repeated and increase testing to detect people
living with the disease will be very effective in containing and reducing the burden of COVID-
19 in Africa.
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1. Introduction

Coronavirus disease (COVID-19), initially referred to as 2019-nCoV or SARS-CoV-
2, is a new strain of coronavirus that has caused fears in many countries of the world
since its emergence in the city of Wuhan in December, 2019. The coronavirus is a
family of viruses initially existing in animals but which was found to infect human
with some respiratory infections. They were not expected to be deadly until the
emergence of COVID-19, which has claimed over 500,000 human lives. Although
the the first case was recorded in Wuhan, China, it is not yet clear as to how the first
human contracted the disease. However, some researchers opined that COVID-19
came from bats, wolf pulps or rats [30]. The first human acquired the virus (from
whichever source or means) and the transmission continues from human to human.
COVID-19 spreads through infected droplets when humans sneeze, yawn or cough
. The disease can also spread when human have contact with the surfaces con-
taminated with the virus and thereafter touches their nose, mouth, eyes or ears.
The virus was declared a pandemic by the World Health Organization (WHO) on
the 30th of January, 2020. As at 28th of June, 2020, over 10 million cases were
recorded in over 200 countries and territories around the world. As at the time of
this study, there are no specific treatments or vaccines for COVID-19, although
different measures have been adopted to slow down the transmission of the disease
and its mortality rate. The measures include; 1) advocacy on regularly washing
of hands and covering of nose, 2) rapid tracing, finding and quarantining all con-
firmed cases to prevent further transmission, 4) physical distancing, 5) restrictions
and temporary bans on non-essential travels and 6) proper clinical care for the pa-
tients. COVID-19 comes with a number of symptoms including high fever, cough,
sneezing and running nose, fatigue, muscles and joint pains, shortness of breath,
and sore throat. The period of incubation ranges from two to fourteen days and
the average incubation is five to six days of infection. There have been few cases
recorded of people who are infected but do not show any symptoms, this cases
are referred to as asymptomatic cases. At the height of the disease, patient may
develop a cardiovascular problems or neurologic complications, multi-organ failure
and pneumonia, and finally, death. The more reliable diagnosing test that is been
use is real-time reverse transcription polymerase chain reaction (rRT-PCR) while
CT scans may also be helpful to diagnose COVID-19 [3, 8–11, 20, 21, 24, 26, 28, 29].
Africa is the last continent to be hit by the pandemic. However, [16] opined that

Africa is expected to be the most vulnerable continent where COVID-19 spreading
will have a major impact. The continent confirmed its first case of COVID-19 in
Egypt on 14th of February, 2020. The first case in the sub-Saharan Africa was
recorded on 27th of February, in an Italian patient who entered Nigeria on 25th of
February, 2020 [17, 35]. As of 18th April 2020, Africa CDC reported, 19,895 con-
firmed cases, including 1,017 deaths and 4,642 recoveries, from 52 African countries,
while two countries (Comoros and Lesotho) were still virus-free [6]. Meanwhile,
contrary to the expectations that the virus should be imported from the origi-
nal COVID-19 epicentre in China, most cases recorded in Africa were imported
from Europe and United States of America [25]. COVID-19 has caused extremely
high morbidity (≈ 5.27 million cases) and significant fatalities (case fatality rate
≈ 6.5%) worldwide. Of the cases reported in more than 200 countries worldwide
by May 24, 2020, Africa accounted for only 3.0% fatalities while with Americas
and Europe leading the fatality rate. Africa epidemic curve has remained flatter
than that in other continent. By May 24, 2020, Nigeria, the populous country in
Africa with population over 200 million had reported 7,526 cases and 221 fatalities
(2.9%), whereas Kenya with population of about 47 million had reported 1,192
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total cases and 50 fatalities (4.2%) [19].
Several mathematical models to study direct human-to-human and environmen-

tal transmission of COVD-19, to compare its spread with the spread of previous dis-
eases, forecast local and international spread, etc. have been developed within the
short time. One common outcome of all these researches is that the disease would
remain endemic for a long time; thus necessitating long-term disease prevention
and intervention programs [1, 2, 7, 12, 14, 15, 18, 22, 23, 27, 31, 33, 34, 36–38].
As the case is, it is not very clear whether a recovered individual can also be

infected again. Some few cases have been recorded where they were initially con-
sidered recovered but later tested positive of COIVD-19 again. More so, several
asymptotic cases of COVID-19 have been recorded but it is also not clear whether
asymptomatic individual can transmit the disease to a susceptible individual. It
becomes clear that even though there is no scientific justification as to whether
an individual can be re-infected, it is only better to take into consideration the
possibility of re-infection. As at May 25, 2020, Africa had only 114,223 confirmed
cases of COVID-19 which had increased to 142,398 cases by May 30, 2020; a 24.7
percent increase in the number of confirmed cases. As at July 9, 2020, the number
of recorded cases has risen to 523,782 which means about 359 percent increase in
the number in confirmed cases. This is a rather rapid increase in the number of
confirmed cases in Africa and at such increasing rate, there are worries that Africa
may rise from the least-hit continent to become the worst-hit continent with the
highest number of cases and the longest to recover from the pandemic.
Motivated by the fact that no author has considered the impact of asymptomatic

case with re-infection in the dynamics of COVID-19, this research is conducted to
unravel the impact of asymptomatic cases on the dynamics of transmission of
COVID-19, with possible cases of re-infection. This paper arranged as follows; the
governing model is formulated in section 2, the stability analysis of the equilibria is
carried out in section 3, and the numerical simulations and discussions are presented
in section 4 before the conclusion in section 5.

2. The model

In order to formulate the model, the following assumptions are made;

(1) the population is divided into five different epidemiological compartments;
susceptible human class (S), exposed human (E), symptomatic human class
(Is), asymptomatic human class (Ia) and the Recovered human class (R).

(2) The influx rate into the population at any time is Λ.
(3) the population is assumed to die naturally at a rate µ in each of the classes.
(4) the disease is acquired when there is an interaction between a susceptible

individual and an infected individual. Let the force of infection rate be

λ = β

(
Is + Ia
N

)
(1)

where β is the transmission rate for both the symptomatic and asymp-
tomatic population.

(5) N is the total human population and is given by

N = S + E + Is + Ia +R. (2)

(6) v is the progression rate from the exposed class to the infected classes.
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(7) a fraction p of infected human population is asymptomatic while the re-
maining fraction (1− p) is symptomatic.

(8) the symptomatic (asymptomatic) population may die as result of the dis-
ease at a rate αs(αa) and recover at the rate rs(ra).

(9) recovered individual may be re-infected as a result of continuous contact
with the infected individuals.

(10) the re-infection rate is given by ψ.

Combining the above assumptions, the model for the dynamics of COVID-19 with
the asymptotic cases and possibility of re-infection is modeled by the following
ordinary differential equations [3];

S′ = Λ− λS − µS (3)

E′ = λS − (v + µ)E + ψλR (4)

I ′s = (1− p)vE − (αs + rs + µ)Is (5)

I ′a = pvE − (αa + ra + µ) Ia (6)

R′ = raIs + raIa − µR− ψλR (7)

where,

λ = β

(
Is + Ia
N

)
(8)

Let S(t)+E(t)+Is(t)+Ia(t)+R(t) = N(t). By adding equations (3 - 7), it becomes
clear that

dN

dt
= Λ− µN − αsIs − αaIa ≤ Λ− µN (9)

Then, it follows from (9) that

N(t) ≤ Λ

µ
+ e−µt

(
N(0)− Λ

µ

)
(10)

and as t→ ∞, we have the feasible region of the system as

D =

{
(S,E, Is, Ia, R) ∈ R5

+ : N ≤ Λ

µ

}
,

it is positively invariant and sufficient to consider solutions in D for all t ≥ 0.
Therefore, the system (3 - 7) is mathematically and epidemiologically well-posed
and it is sufficient to consider the dynamics of the flow generated by the system
(3 - 7) in the domain D. Since we are considering a disease transmission model of
human population, we assume non-negativity of all the parameters and the states
variables for the model.

3. Stability of equilibria

In this section, the existence of the disease-free equilibrium (DFE) and the endemic
equilibrium are established.
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3.1 Local asymptotic stability of the DFE and reproduction number

The disease-free equilibrium is

U0 =
(
S0, E0, I0s , I

0
a , R

0
)
=

(
Λ

µ
, 0, 0, 0, 0

)
. (11)

The Reproduction number ℜ0 which ascertains the transmission ability of the dis-
ease [32] is obtained as

ℜ0 =
βv ((1− p) (αa + ra + µ) + p (αs + rs + µ))

(v + µ) (αa + ra + µ) (αs + ra + µ)
. (12)

The following lemma is well-known and also supports the results of this research.

Lemma 3.1 The disease-free equilibrium U0 of system (3 - 7) always exists and
U0 is locally asymptotically stable whenever ℜ0 < 1 and unstable if ℜ0 > 1.

Next is to examine the reproduction number ℜ0 by evaluating the impact of the
progression rate v and asymptomatic case detection rate p. Now, the rate of change
of ℜ0 with respect to v is;

∂ℜ0

∂v
=
βµ ((1− p)(αa + ra + µ)− p(αs + rs + µ))

(v + µ)2 (αa + ra + µ) (αs + rs + µ)
, (13)

from which it can easily be inferred that the progression rate v will have a posi-
tive impact in controlling the spread of COVID-19 if (0.5 < p ≤ 1) , otherwise the
progression rate v will have a negative impact on the spread of COVID-19. Also,
consider the rate of change of ℜ0 with respect to p,

∂ℜ0

∂p
= − vβ ((αa + ra + µ) + (αs + rs + µ))

(v + µ) (αa + ra + µ) (αs + rs + µ)
, (14)

from which it is clear that

∂ℜ2
0

∂p
< 0,

implying that increase in testing strategy to detect asymptomatic cases of COVID-
19 will have a positive impact on the reduction of COVID-19 burden in a popula-
tion.

Theorem 3.2 The system (5) has a unique endemic equilibrium if ℜ0 > 1.

Proof The endemic equilibrium point (EEP) corresponding to the system (3 - 7)
expressed in terms of the equilibrium value of the force of infection λ∗ is given as

U∗ = (S∗, E∗, I∗s , I
∗
a , R

∗) . (15)
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where

S∗ =
Λ

(λ∗ + µ)
, E∗ =

λ∗S∗ + ψλ∗R∗

(v + µ)
, I∗s =

(1− p)vE∗

(αs + rs + µ)
, I∗a =

pvE∗

(αa + ra + µ)
,

(16)

R∗ =
(rs (αa + ra + µ) (1− p) + ra (αs + ra + µ)) vΛλ∗

(λ∗ + µ) ((αa + ra + µ) (ψλ∗ + µ)− (rs (αa + ra + µ) (1− p) + ra (αs + ra + µ)) vψλ∗)
(17)

and the EEP force of infection is

λ∗ = β

(
I∗s + I∗a
N∗

)
(18)

substituting (16) and (17) into the equation (18), we have

C0
1λ

∗2 + C0
2λ

∗ + C0
3 = 0 (19)

where

C0
1 =

Λ

(v + µ)
ψ (pv (αs + rs + µ) (1− ra) + (1− p) (αa + ra + µ) (1− rs) v

+2 (αs + rs + µ) (αa + ra + µ)) (20)

C0
2 =vΛ (rs (αa + ra + µ) (1− p) + ra (αs + rs + µ) p)

(
1− µψ

(v + µ)

)
+

µvΛ

(v + µ)
((1− p) (αa + ra + µ) + p (αs + rs + µ)) (1− βψ)

+
µΛ

(v + µ)

(
2 (1− p) v

(αs + rs + µ)
+ ψ (αs + rs + µ) (αa + ra + µ)

)
(21)

C0
3 = µΛ (αs + rs + µ) (αa + ra + µ)

(
µ

(v + µ)
−ℜ0

)
(22)

■

Solving the polynomial (19) gives the components of the EEP. Observe that the
coefficients C0

1 and C0
2 are positive and ℜ0 > 1 implies that C0

3 < 1.

3.2 Backward bifurcation analysis

Set the variables such that

S = x1, E = x2, Is = x3, Ia = x4, R = x5

and re-write the equation (5) as

dX

dt
= G = (g1, g2, g3, g4, g5)
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such that

x′1(t) = g1 = Λ− λxx1 − µx1 (23)

x′2(t) = g2 = λxx1 − (v + µ)x2 + ψλxx5 (24)

x′3(t) = g3 = (1− p)vx2 − (αs + rs + µ)x3 (25)

x′4(t) = g4 = pvx2 − (αa + ra + µ)x4 (26)

x′5(t) = g5 = rsx3 + rax4 − µx5 − ψλxx5 (27)

where,

λx = β

(
x3 + x4

x1 + x2 + x3 + x4 + x5

)
(28)

Let β = β0 be the bifurcation parameter for the system (23 - 27), then when
ℜ0 = 1,

β0 =
(v + µ) (αs + rs + µ) (αa + ra + µ)

v ((1− p) (αa + ra + µ) + p (αs + rs + µ))
. (29)

The Jacobian matrix associated to the model (23 - 27) is

J (U0) |β=β0=


−µ 0 −β −β 0
0 −(v + µ) β β 0
0 (1− p)v − (αs + rs + µ) 0 0
0 pv 0 − (αa + ra + µ) 0
0 0 rs ra −µ

 (30)

We investigate the possibility of backward bifurcation at ℜ0 = 1 using the Centre
Manifold theorem [4, 32], and show that the Jacobian (Jβ0) at β = β0 of the

system (23 - 27) possesses right eigenvectors given as u = [u1, u2, u3, u4, u5]
T by

multiplying the Jacobian matrix (30) with u.We further express each of the vectors
in terms u2 as

u1 = − u2
µ(v + µ)

ℜ0 (31)

u3 =
(1− p)v

(αs + rs + µ)
u2 (32)

u4 =
pv

(αa + ra + µ)
u2 (33)

u5 =
v

µ

(
rs(1− p)

(αs + rs + µ)
+

rap

(αa + ra + µ)

)
u2 (34)

Similarly, we show that the Jacobian (Jβ0) at β = β0 of the system (23 - 27)
possesses left eigenvectors given as w = [w1, w2, w3, w4, w5] by multiplying the
Jacobian matrix (30) with w, we further express each of the vectors in terms w2 as

w1 = 0, w3 =
β

(αs + rs + µ)
w2, w4 =

β

(αa + ra + µa)
w2, w5 = 0. (35)
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Following the work of [5] for computation of a and b, the corresponding non-zero
partial derivatives are

a =

n∑
k,i,j=1

wkuiuj
∂2gk
∂xi∂xj

(0, 0) , b =

n∑
k,i=1

wkui
∂2gk
∂xi∂β

(0, 0) ,

and thus

a = (− (K1 +K2 +K3 +K4) + ψK4)w2u
2
2, and b =

(
(1− p)v

(αs + rs + µ)
+

pv

(αa + ra + µ)

)
w2u2 > 0

where

K1 =
2βµv

Λ

(
(1− p)

(αs + rs + µ)
+

p

(αa + ra + µ)

)
K2 =

4βµ(1− p)v2

Λ(αs + rs + µ)

(
(1− p)

(αs + rs + µ)
+

p

(αa + ra + µ)

)
K3 =

4βµp2v2

Λ(αa + ra + µ)

K4 =
2βv2

Λ

(
(1− p)

(αs + rs + µ)
+

p

(αa + ra + µ)

)(
rs(1− p)

(αs + rs + µ
+

rap

αa + ra + µ

)

and a > 0 if and only if

ψ > 1 +
K1 +K2 +K3

K4

but a < 0 if and only if

ψ < 1 +
K1 +K2 +K3

K4

Hence we establish these results with the following theorem:

Theorem 3.3 For ℜ0 = 1, where w1, w2, w3, w4, w5 and u1, u2, u3, u4, u5 are de-
fined as equations (35) and (31 - 34), then

(1) the system (25) undergoes a backward bifurcation if a > 0
(2) the system (25) undergoes a transcritical bifurcation if a < 0.
(3) the endemic equilibrium U∗ is locally asymptotically stable for ℜ0 > 1 and

a < 0.

3.3 Global asymptotic stability (GAS) of the disease-free equilibrium (DFE)

The Global asymptotic stability of the DFE is shown by considering the system (3 -
7) without re-infection (i.e ψ = 0), then we observe the last equation is independent
of the first four equations; therefore, we reduce the system of equations to
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S′ = Λ− λS − µS, (36)

E′ = λS − (v + µ)E, (37)

I ′s = (1− p)vE − (αs + rs + µ)Is, (38)

I ′a = pvE − (αa + ra + µ) Ia, (39)

where

λ =
β (Is + Ia)

N
(40)

Theorem 3.4 The disease-free equilibrium of the system (36 - 39), without re-
infection is globally asymptotically stable in D whenever ℜ0 ≤ 1.

Proof Consider the Lyapunov function associated with system (36 - 39)

L1 = A1E +A2Is +A3Ia, (41)

where

A1 = v ((1− p) (αa + ra + µ) + p (αs + rs + µ)) , (42)

A2 = (v + µ) (αa + ra + µ) , (43)

A3 = (v + µ) (αs + rs + µ) . (44)

The time derivative of the Lyapunov function of the system (38) at DFE is

L′
1 = A1E

′ +A2I
′
s +A3I

′
a. (45)

Substituting equation (36 - 39) and (43), we obtain

L′
1 = (v + µ) (αa + ra + µ) (αs + rs + µ) (Is + Ia)

×
[
β
S

N

(
v ((1− p) (αa + ra + µ) + p (αs + rs + µ))

(v + µ) (αa + ra + µ) (αs + ra + µ)

)
− 1

]
and since S ≤ N in the domain D that forms the invariant set, then

L′
1 ≤ (v + µ) (αa + ra + µ) (αs + rs + µ) (Is + Ia) (ℜ0 − 1) . (46)

Clearly, L′
1 ≤ 0, if ℜ0 ≤ 1. It follows that L1 is a Lyapunov function in the domain

D. Hence, according to Lasalle’s Invariance Principle [13] we have that

(E(t), Is(t), Ia(t)) → (0, 0, 0) as t→ ∞, (47)

and as a result, every trajectory produced by the system (36 - 39) tends to the
disease-free equilibrium point U0 with ψ = 0 and for ℜ0 ≤ 1. It is inferred from the
analysis above that, if the assumption excludes re-infection (i.e ψ = 0) then we
can conclude that the system (36 - 39) is globally asymptotically stable whenever
ℜ0 ≤ 1 at the DFE. This implies that eradication of COVID-19 from a population
of no re-infection is obtainable whenever ℜ0 ≤ 1,therefore , the ℜ0 ≤ 1 is required
and sufficient to effectively control COVID-19 in any population. ■
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3.4 Global asymptotic stability (GAS) of endemic equilibrium point (EEP)

Theorem 3.5 For the system (36 - 39), if ℜ0 > 1 then the unique endemic equi-
librium state U∗ = (S∗, E∗, I∗s , I

∗
a) is globally asymptotically stable in the domain

D .

Proof Consider the system (36 - 39) together with the force of infection and the
reproduction number ℜ0. Hence whenever ℜ0 > 1, the unique EEP (U∗) exist. We
represent the Lyapunov function L2 for the EEP as

L2 =

(
S − S∗ − S∗ ln

S

S∗

)
+

(
E − E∗ − E∗ ln

E

E∗

)
+R1

(
Is − I∗s − I∗s ln

Is
I∗s

)
+R2

(
Ia − I∗a − I∗a ln

Ia
I∗a

)
(48)

where,

R1 =
β̃

(αs + rs + µ)
S∗ R2 =

β̃

(αa + ra + µ)
S∗ (49)

and equation (40) is taken as

λ̃ = β̃(Is + Ia). (50)

Putting (36-39) and , (49) into the time derivative of L2, we have,

L′
2 = β̃S∗I∗s

(
3− S∗

S
− E

E∗
I∗s
Is

− S

S∗
E∗

E

Is
I∗s

)
+ β̃S∗I∗a

(
3− S∗

S
− E

E∗
I∗a
Ia

− S

S∗
E∗

E

Ia
I∗a

)
+ µS∗

(
2− S

S∗ − S∗

S

)
.

Since arithmetic mean is greater than or equal to geometric mean, we conclude
that the following inequalities hold

β̃S∗I∗s

(
3− S∗

S
− E

E∗
I∗s
Is

− S

S∗
E∗

E

Is
I∗s

)
≤ 0,

β̃S∗I∗a

(
3− S∗

S
− E

E∗
I∗a
Ia

− S

S∗
E∗

E

Ia
I∗a

)
≤ 0,

µS∗
(
2− S

S∗ − S∗

S

)
≤ 0

it then means that

L′
2 ≤ 0

if ℜ0 > 1 and the re-infection is negligible, then by Lassalle’s invariance principle,
U∗ is globally asymptotically stable. ■

4. Numerical simulation

In this section, a numerical simulation of the COVID-19 cases in Africa is investi-
gated. Data used are obtained from https://www.worldometers.info/coronavirus/
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which publishes daily updates on the cases of COVID-19 containing the number of
new cases, number of disease-induced death and the number of recovered individ-
uals. Over 1.3 billion people are living in Africa with increasing birth rate. Thus
we assume the influx rate Λ to be based on the number of births per day.
The governing system of equations (3-7) is solved numerically using the MAT-

LAB ode45 solver which implements the single step solver explicit Runge-Kutta
(4,5) formula, the Dormand-Prince pair. The time step-size is chosen as ∆t = 0.001
so as to satisfy the convergence criterion of 10−14. Following the data, as at May
25, the following parameter values are obtained; Λ = 19823210, β = 0.000085044,
µ = 0.0039, v = 0.167, w = 0.000000056, p = 0, 0.3, 0.9, αs = 0.0000017595,
αa = 0.00000075407, rs = 0.00032395, ra = 0.000010337 respectively.
Figure (1) shows the dynamics of the Exposed class, Symptomatic human class

and asymptomatic human class as the rate of re-infection increases. Considering
that re-infection is possible, then as the rate of re-infection increases, then both
the symptomatic and asymptomatic human classes continue to increase. More so,
the exposed class initial continues to increase but later starts to flatten out. The
impact of asymptomatic population on the spread of COIVD-19 is illustrated in
figure (2). It can be seen that as the p increases, the asymptomatic human class
increases whereas the symptomatic cases decrease.

0 10 20 30 40 50

time(days)

0

2

4

6

8

10

12

E
, I

s, I
a

108

 = 0

 = 1.51883  10-8

 =  3.10317  10-8

Figure 1. Graph of numerical solutions showing exposed population (black = E, blue=
Ia, red=Is).

5. Discussion and conclusion

We have presented a mathematical model to investigate the COVID-19 transmis-
sion dynamics in Africa. The impact of asymptomatic case detection (p) and possi-
ble re-infection rate on the dynamics of COVID-19 is incorporated into our model
to form a system of five (5) non-linear ordinary differential equations. The analysis
of this model is conducted by obtaining the reproduction number ℜ0. Existence
of backward bifurcation is tested and the local asymptotic stability of the disease
free equilibrium and the endemic equilibrium whenever the reproduction number
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Figure 2. Graph of numerical solutions showing asymptomatic infected population.

ℜ0 < 1 and ℜ0 > 1 respectively are established. The global asymptotic stability of
the disease free equilibrium and the endemic equilibrium for the model, without the
re-infection, is also established. The reproduction number is examined in respect
to some parameters.
The results here indicate that as the asymptomatic case detection p → 1, the

progression of COVID-19 is impacted positively. The impact of the asymptomatic
case detection rate (p) is also examined on the reproduction number, and it is
observed that ℜ0 is a decreasing function of p, which eventually have a positive
impact on the control of the disease. More so, as the rate of re-infection increases,
both the asymptomatic and symptomatic cases rise significantly.
Our numerical simulations results show that repeated and increase testing to de-

tect people living with the disease will be very effective in containing and reducing
the burden of COVID-19 in Africa. In addition, since it has not been confirmed
whether a recovered individual can be re-infected, then enforcing a living condition
where recovered individuals are not allowed to mix with the susceptible or exposed
individuals will help in containing the spread of COVID-19. However, from the
figures (1) and (2), it is clear that the disease may remain in Africa for a long time.
This supports what was speculated about this disease and we need to prepare for
a longer period to fight COVID-19 as we wait for new vaccines which is the most
feasible intervention to reduce and possibly eradicating the disease.
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