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Abstract. Complex systems and information flow such as command, control, communication, 

computer intelligence, inference, and expert systems exhibit an increasing dependence on the 
system's nature and information flow. For this reason, it is both the flow exchange of information 

in the system and the emergent information properties of the system, which are central to the 

definition, design and analysis of such systems. Besides, the achievement of human-level machine 

intelligence has long been one of the principal objectives of Artificial Intelligence (AI). Machine 

intelligence methods have gained many orders of magnitude in computational capability in the last 

decade, especially in cognitive science and cognitive informatics. This research discussed the 
difference between Human IQ and Machine Intelligence Quotient (MIQ). Also, we show that MIQ 

is an abstract intelligence and soft concept of artificial intelligence. Finally, we conclude that the 

fuzzy sets can better represent MIQ instead of probabilistic and numerical methods. 
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1. Introduction 

Humans have many remarkable capabilities, including two primary capabilities. First, the 

capability to converse, reason, and make rational decisions in an uncertain environment 

and partiality of truth. Second, perform various physical and mental tasks such as driving 

a car in city traffic without any measurements and any computations [1]. IQ and MIQ's 

fundamental difference is that IQ is more or less constant. In contrast, MIQ changes with 

time and is machine-specific. Furthermore, the dimensions of MIQ and IQ are not the 

same. For example, speech recognition might be an essential dimension of MIQ. However, 

in the case of IQ, it is taken for granted. Underlying these capabilities is the human brain's 

capability to process and reason with perception-based information. It should be noted that 

a natural language is a system for describing perceptions [2]. Cognitive Informatics (CI) is 

a transdisciplinary inquiry of the internal information processing mechanisms and 

processes of the brain and abstract intelligence and their cognitive computing and cognitive 

engineering applications. These systems include computational intelligence, which is an 

autonomous system that mimicking the brain's mechanisms. CI and CC emerged from 

transdisciplinary studies in both natural intelligence in cognitive brain sciences. CI 

recognized that the brain might be explained by a hierarchical structure at the logical, 

cognitive, and neurological levels from the bottom up. This representation is known as the 

abstract intelligence or brain informatics system.
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The synergy of multidisciplinary studies at all levels leads to the theory of CI for 

explaining the brain. The fundamental theories underpinning the framework of the brain 

and intelligence sciences are abstract intelligence [3]. Informally, Human-level machine 

intelligence (HLMI) is a machine with a human brain. A machine has human-level machine 

intelligence if it has human-like capabilities to Understand, Learn, Reason, Recall, 

Remember, Inference, and Answer questions [4]. A machine may have superhuman 

intelligence in some respects and subhuman intelligence in other respects like Google or 

Siri. So, the MIQ of a machine is relative to the MIQ of other machines in the same 

category. For example, the MIQ of Google should be compared with the MIQ of other 

search engines. 

2. Theoretical background 

This section will overview relevant aspects of machine intelligence, fuzzy logic theory, 

and computing with words. After a short introduction to corporate events' 

institutionalization, the section is concerned with Machine Intelligence in Subsection 2.1. 

Second, it will focus on Computing with Words (CWW) in Subsection 2.2. In Subsection 

2.3, we introduced the role of fuzzy Logic in MIQ systems. 

2.1 Machine intelligence  

Albus once insisted that a useful de3nition of intelligence should span a wide range of 

capabilities. We shall not attempt to define the notion of "machine intelligence" explicitly. 

Instead, we shall confine the target machines of interest to a class of engineering products 

and consider machine intelligence in a limited sense. Some mobile robot systems can plan 

their paths autonomously, avoiding obstacles based on information obtained. 

Simultaneously, some washing machines can discriminate ordinary clothes from dirty 

clothes to decide the washing time and the amount of detergent. These systems are said to 

have intelligence. All those systems can process input information to give a proper decision 

with their controllers, processors, or computers, which correspond to a human's brain. The 

other component of machine intelligence is interfaced intelligence. Interface intelligence 

indicates the degree of intelligence of the human-computer interaction (HCI). Recently, 

HCI has become more and more critical in complex control systems. Such as the control 

room of nuclear power plants or Aeroplan's, since control systems designed as user-

friendly can reduce human errors and effectively utilize human ingenuity. We are going to 

formulate control intelligence and interface intelligence using the CWW and equations. 

We face many products and various forms of, called system intelligence. The meaning of 

intelligence seems to be different from one system to another, implying something in a 

non-unique way. To make this point clear, we review several definitions of machine 

intelligence and consider some essential questions.  

A) Define the MIQ Theory: The following sentences show the attributes intelligent 

machines should have: 1) Machine intelligence is analyzing, organizing, and converting 

data into knowledge. Machine knowledge is defined as the structured information acquired 

and applied to remove ignorance and uncertainty about the intelligent machine's specific 

task. 2) For a human-made intelligent system to act appropriately, it may emulate living 

creatures' functions and, ultimately, human mental faculties. 3) Intelligent control is the 

discipline in which control algorithms are developed by emulating intelligent biological 

systems' specific characteristics. 4) An intelligent control system is a control system with 

the highest degree of autonomy in self-learning, self reconfigurability, reasoning, planning, 

and decision-making. 5) Intelligent machines are designed to perform anthropomorphic 

tasks with minimum interaction with a human operator. 

B) Several Questions About Measuring the MIQ: to develop a practical procedure for 
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measuring a MIQ, the following problems must be resolved. Question 1: Machine 

intelligence can be divided into two components—control intelligence and interface 

intelligence, as illustrated in Figure 1. Control intelligence is required to perform control 

in response to unanticipated events in uncertain environments.  Question 2: The method 

of measuring the MIQ should be designed with a human orientation. The MIQ represents 

the degree of machine intelligence as closely as users feel. Question 3: The concept of 

question 3 is depicted in Figure 1. In most cases, the entire control system is made up of 

human supervisors and machines. Therefore, computer controllers cannot complete the 

overall control job without a human supervisor. The boundary between humans and 

machines is not clearly defined because they must complement each other. Unanticipated 

events are exceptional or randomly occurring conditions such as machine faults and plant 

abnormalities.  

 

Figure 1. Human-Machine cooperation model. 

2.2 Computing with words (CWW) 

Computing with Words relates to computation with the information described in a natural 

language [6]. More concretely, in CWW, computation objects, computation words, 

propositions are drawn from a natural language. The importance of computing with words 

derives from the fact that most human knowledge is mostly world knowledge described in 

natural language. What is needed for this purpose is the methodology of Computing with 

Words (CWW). There is a vast literature on propositions in natural languages. Underlying 

CWW are two postulates and two concomitant rationales: 

A. Words are less precise than numbers 

B. Precision carriers a cost  

C. When numerical information is not available or too costly, CWW becomes necessary  
D. CWW's advantages can be exploited to reduce cost, simplify design, and enhance 

robustness when there is a tolerance for imprecision. 

Table 1. Level of uncertainty analysis. 

Order Methodology 

Probability events Probability theory: inaccurate and/or incomplete data or partially true. 

First-order uncertainty Possibility Theory: fuzzy probability approaches 

Vague information. Fuzzy logic: imperfect information and approximate reasoning 

High-order 

Imprecision 

Type-2 fuzzy logic: Handling the imprecision and uncertainty about 

uncertainty 

Real-world 

applications 

Hybrid Intelligent with HLMI: Decision analysis under real-world 

uncertainty 
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2.3 Fuzzy logic 

The fuzzy logic theory is based on the notion of relative graded membership, as inspired 

by the processes of human perception and cognition. Lotfi A. Zadeh published his first 

famous research paper on fuzzy sets in 1965. Fuzzy logic (1988) deals with computational 

perception and cognition: uncertain, imprecise, vague, partially true, or without sharp 

boundaries. Fuzzy logic allows for the inclusion of preliminary human assessments in 

computing problems. Also, it provides an effective means for conflict resolution of 

multiple criteria and better assessment of options. In fuzzy logic, everything is or is allowed 

to be granulated.  Granulation involves the partitioning of an object into granules. A 

fundamental concept in fuzzy logic that plays a crucial role in many applications, 

especially in fuzzy control and fuzzy expert systems, is a linguistic variable. As its name 

suggests, a linguistic variable is a variable whose values are words or sentences in a natural 

or synthetic language. New computing methods based on fuzzy logic can develop 

intelligent systems for decision making, identification, pattern recognition, optimization, 

and control [10]. 

 

Figure 2. Model space of machine intelligence for a large-scaled system. 

The centrality of information in almost everything that we do is that few would care to 

challenge it. Much less visible, but potentially of equal or even greater importance, might 

be called the intelligent systems revolution. The artifacts of this revolution are human-

made systems that exhibit reason, learn from experience and make rational decisions 

without human intervention. Professor Zadeh coined the term MIQ (machine intelligence 

quotient) to describe a measure of intelligence of human-made systems. In this perspective, 

an intelligent system is a system that has a high MIQ. For example, we may make 

granulation of MIQ-scale in numbers between 0, and 200 into a fuzzy term set consisting 

of {Very Low, Low, Medium, High, Very High} as shown in Figure 3. It may be enough 

to say, for example, that the MIQ of the given robot is High, rather than MIQ = 143 (out 

of 200). 

 

 

Figure 3. A fuzzy set representation of MIQ. 
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3. Theory of the Z-numbers 

In the real world, uncertainty is a pervasive phenomenon. Much of the information on 

which decisions are based is uncertain. Humans have a remarkable capability to make 

rational decisions based on uncertain, imprecise, and/or incomplete information. 

Formalization of this capability, at least to some degree, is a challenge that is hard to meet. 

It is this challenge that motivates the concepts and ideas outlined in this note. A Z-number 

is an ordered pair of fuzzy numbers (A, B). A restriction may be viewed as a generalized 

constraint [11,14]. 

𝑅(𝑋) = 𝑋 𝑖𝑠 𝐴, (1) 

is referred to as a possibilistic restriction (constraint), with A playing the possibility 

distribution of X. More specifically, 

𝑅(𝑋) = 𝑋 is 𝐴 → 𝑃𝑜𝑠𝑠(𝑋 = 𝑢) = 𝜇𝐴(𝑢) (2) 

where 𝜇𝐴 is the membership function of 𝐴, and 𝑢 is a generic value of 𝑋. 𝜇𝐴 may be 

viewed as a constraint that is associated with 𝑅(𝑋), meaning that 𝜇𝐴(𝑢) is the degree to 

which u satisfies the constraint. When 𝑋 is a random variable, the probability distribution 

of 𝑋  plays the role of a probabilistic restriction on 𝑋 . A probabilistic restriction is 

expressed as: 

𝑅(𝑋) = 𝑋 is𝑝 𝑝, (3) 

where 𝑝 is the probability density function of 𝑋. In this case, 

𝑅(𝑋) = 𝑋 is𝑝 𝑝 → 𝑃𝑟𝑜𝑏(𝑢 ≤ 𝑋 ≤ 𝑢 + 𝑑𝑢) = 𝑝(𝑢)𝑑𝑢 (4) 

The ordered triple (𝑋, 𝐴, 𝐵) is referred to as a Z-valuation. In a related way, uncertain 

computation is a computation system in which computation objects are not values of 

variables. But restrictions on the values of variables. In this note, unless stated to the 

contrary, 𝑋 is assumed to be a random variable. For convenience, 𝐴 is referred to as 𝑋's 

value, strictly speaking, understanding [13]. Therefore, 𝐴  is not a value of 𝑋  but a 

restriction on the values which 𝑋 can take. The second component, 𝐵, is referred to as 

certainty. Closely related to certainty are the concepts of sureness, confidence, reliability, 

the strength of belief, probability, and possibility. When 𝑋 is a random variable, certainty 

may be equated to probability. 𝐴 and 𝐵 are described in a natural language, the meaning 

of them is graduated with membership functions, 𝜇𝐴 and 𝜇𝐵, respectively, Figure 3. 

 

 

Figure 4. Precipitation of middle-age through graduation with fuzzy logic [15]. 

The fuzzy set, 𝐴, may be interpreted as the possibility distribution of 𝑋. The concept of a 

Z-number may be generalized in various ways. In particular, 𝑋 can be assumed to take 
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values in 𝑅𝑛, in which case 𝐴 is a Cartesian product of fuzzy numbers. Simple examples 

of Z-valuations are [12]: 

(anticipated budget deficit, close to 8 million dollars, very likely) 
(population of UK, about 40 million, quite sure) 

 

It is important to note that many propositions in a natural language are expressible as Z-

valuations. Example: The proposition, p, p: Usually, it takes Robert about one hour to get 

home from work, is expressible as a Z-valuation: 

 

(David's travel time from office to home, about 1 h, usually)  

 

If 𝑋 is a random variable, then 𝑋 is 𝐴 represents a fuzzy event in 𝑅, the real line. The 

probability of this event, 𝑝, may be expressed as [11] 

𝑝 = ∫𝜇𝐴

 

𝑅

(𝑢)𝑝𝑋(𝑢)𝑑𝑢 (5) 

where 𝑝𝑋 is the underlying (hidden) probability density of 𝑋. In effect, the Z-valuation 

(𝑋, 𝐴, 𝐵) may be viewed as a restriction (generalized constraint) on 𝑋 defined by: 

𝑃𝑟𝑜𝑏(𝑋 is 𝐴) is 𝐵. (6) 

What should be underscored is that in a Z-number, (𝐴, 𝐵), the underlying probability 

distribution, 𝑝𝑋 , is not known. What is known is a restriction on 𝑝𝑋which may be 

expressed as: 

𝑝 = ∫𝜇𝐴

 

𝑅

(𝑢)𝑝𝑋(𝑢)𝑑𝑢 is 𝐵 (7) 

The subtle point is that 𝐵 restricts the probability measure of "𝐴" rather than on 𝐴's 

probability. Conversely, if 𝐵  is a restriction on 𝐴 's probability rather than on the 

probability measure of 𝐴, then (𝐴, 𝐵) is not a Z-number. An immediate consequence of 

the relation between 𝑝𝑋 Moreover, 𝐵 is the following: 

 

If 𝑍 = (𝐴, 𝐵) then 𝑍′ = (𝐴′, 1 − 𝐵), wherever 𝐴′ is the complement of 𝐴, and 𝑍′is the 

complement of 𝑍. 1 − 𝐵 is the antonym of 𝐵. For example, the complement of 𝑍 is: 

 

𝑍 = (𝐴, 𝑙𝑖𝑘𝑒𝑙𝑦) is 𝑍′ equals to (𝑛𝑜𝑡 𝐴, 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦) 
 

Therefore, according to the mentioned descriptions, an essential qualitative attribute of a 

Z-number is informativeness. Generally, but not always, a Z-number is informative if its 

value has high specificity. It is tightly constrained, and certainty is high. 

3.1 Type-2 fuzzy Z-numbers for MIQS 

Type-2 fuzzy sets are known as fuzzy-fuzzy sets [14]. Membership function (MF) of a 

Type-2 fuzzy set (T2FS) of a given element is itself a type-1 fuzzy set (T1FS). A T2FS 

represented as �̃�, is characterized through a type-2 MF 𝜇�̃�(𝑥,𝑢) where 𝑥 ∈ 𝑋 and  𝑢 ∈

𝐽𝑥 ⊆ [0,1] as follows: 

�̃� = {((𝑥, 𝑢), 𝜇�̃�(𝑥,𝑢)) |∀𝑥 ∈ 𝑋, ∀∈ 𝐽𝑥 ⊆ [0,1]} (8) 

In which 0 ≤ 𝜇�̃�(𝑥,𝑢) ≤ 1, 𝑋 is the domain of fuzzy set and 𝐽𝑥  is the domain of the 

secondary MF at 𝑥. �̃� is as follows: 
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�̃� =
∫  
𝑥∈𝑋

∫  
𝑢∈𝐽𝑥

𝜇�̃�(𝑥, 𝑢)

𝑥, 𝑢𝐽𝑥
⊆ [0,1] (9) 

where ∬  represents union over all admissible 𝑥 and 𝑢. 

�̃� =
∫  
𝑥∈𝑋

∫  
𝑢∈𝐽𝑥

1

𝑥, 𝑢
=
∫  
𝑥∈𝑋

[
∫  𝑢∈𝐽𝑥

1

𝑢
]

𝑥
 

(10) 

where 𝑥 is the primary variable, 𝐽𝑥, an interval in [0,1], is the primary MF of 𝑥, 𝑢 is the 

secondary variable, and ∫  
𝑢∈𝐽𝑥

is the secondary MF at 𝑥.  

A Gaussian IT2 fuzzy set. the UMF is defined as follows [16]: 

𝜇�̅�(𝑥) =

{
 

 𝑒−
(𝑥−𝑚1)

2

2𝜎2 ,     𝑥 < 𝑚1

1,     𝑚1 ≤ 𝑥 ≤ 𝑚2

𝑒−
(𝑥−𝑚2)

2

2𝜎2
,,     𝑥 > 𝑚2

 (11) 

Moreover, LMF defines as follows: 

𝜇𝑋(𝑥) = 𝑚𝑖𝑛 (𝑒
−
(𝑥−𝑚1)

2

2𝜎2 , 𝑒
−
(𝑥−𝑚2)

2

2𝜎2 ) (12) 

When the standard deviation of the Gaussian T1 fuzzy set is blurred to be an interval 
[𝜎1, 𝜎2], the UMF is: 

𝜇�̅�(𝑥) = 𝑒
−
(𝑥−𝑚)2

2𝜎2
2

 
(13) 

Moreover, the LMF is: 

𝜇𝑋(𝑥) = 𝑒
−
(𝑥−𝑚)2

2𝜎1
2

 (14) 

In order to compute more precise computation, we applied the concept of 𝑍+-number, 

which is closely related to the concept of a Type-2 Fuzzy. A 𝑍+-number, is a combination 

of a fuzzy number, A, and a random number, R, written as an ordered pair 𝑍+ = (𝐴, 𝑅). 
Informally, these distributions are compatible if the centroids of 𝜇𝐴 and 𝑝𝑋  are coincident 

as follows [5]: 

∫ 
𝑅

𝑢𝑝𝑋(𝑢)𝑑𝑢 =
∫  
𝑅
𝑢𝜇𝐴(𝑢)𝑑𝑢

∫  
𝑅
𝜇𝐴(𝑢)𝑑𝑢

 (15) 

The scalar product of 𝜇𝐴 and 𝑝𝑋 , 𝜇𝐴 . 𝑝𝑋 , is the probability measure 𝑃𝐴, of A, as follows: 

𝜇𝐴 ⋅ 𝑝𝑋 = 𝑃𝐴 = ∫ 
𝑅

𝜇𝐴(𝑢)𝑝𝑋(𝑢)𝑑𝑢 (16) 

It is this relation that links the concept of a Z-number to that of a 𝑍+-number as follows: 

𝑍(𝐴, 𝐵) = 𝑍+(A, 𝜇𝐴 ⋅ 𝑝𝑋 is B) (17) 

Computation with 𝑍+ -numbers are much simpler than computation with Z-numbers. 

Turning to computation with Z-numbers, assume for simplicity that * = sum. Assume that 

𝑍𝑋 = (𝐴𝑋, 𝐵𝑋) and 𝑍𝑌 = (𝐴𝑌, 𝐵𝑌). The main objective is to compute the sum 𝑍 = 𝑋 + 𝑌. 

Assume that the associated Z-valuations are (𝑋, 𝐴𝑋, 𝐵𝑋), (𝑌, 𝐴𝑌, 𝐵𝑌), and (𝑍, 𝐴𝑍, 𝐵𝑍). The 

first step involves the computation of 𝑝𝑍. To begin with, let us assume that 𝑝𝑋 and 𝑝𝑌 are 

known as follows: 
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𝑝𝑍(𝑣) = ∫  
𝑅

𝑝𝑋(𝑢)𝑝𝑌(𝑣 − 𝑢)𝑑𝑢 (18) 

In the case of Z-numbers, what we know are not 𝑝𝑋 and 𝑝𝑌 but restrictions on 𝑝𝑋 and 𝑝𝑌. 

∫ 
𝑅

𝜇𝐴𝑋(𝑢)𝑝𝑋(𝑢)𝑑𝑢 is 𝐵𝑋 (19) 

∫ 
𝑅

𝜇𝐴𝑌(𝑢)𝑝𝑌(𝑢)𝑑𝑢 is 𝐵𝑌 (20) 

In terms of the membership functions of 𝐵𝑋 and 𝐵𝑌, these restrictions may be expressed 

as: 

𝜇𝐵𝑋 (∫  
𝑅

𝜇𝐴𝑋(𝑢)𝑝𝑋(𝑢)𝑑𝑢) (21) 

𝜇𝐵𝑌 (∫ 
𝑅

𝜇𝐴𝑌(𝑢)𝑝𝑌(𝑢)𝑑𝑢) (22) 

Additional restrictions on 𝑝𝑋 and 𝑝𝑌 are: 

∫ 
𝑅

𝑝𝑋(𝑢)𝑑𝑢 = 1 (23) 

∫ 
𝑅

𝑝𝑌(𝑢)𝑑𝑢 = 1 (24) 

∫ 
𝑅

𝑢𝑝𝑋(𝑢)𝑑𝑢 =
∫  
𝑅
𝑢𝜇𝐴𝑋(𝑢)𝑑𝑢

∫  
𝑅
𝜇𝐴𝑋(𝑢)𝑑𝑢

 (compatibility) (25) 

∫ 
𝑅

𝑢𝑝𝑌(𝑢)𝑑𝑢 =
∫  
𝑅
𝑢𝜇𝐴𝑌(𝑢)𝑑𝑢

∫  
𝑅
𝜇𝐴𝑌(𝑢)𝑑𝑢

 (compatibility) (26) 

Applying the extension principle, the membership function of 𝑝𝑍 expressed as [9]: 

𝜇𝑝𝑍(𝑝𝑍) = 𝑠𝑢𝑝
𝑝𝑋,𝑝𝑌

 (𝜇𝐵𝑋 (∫ 
𝑅

𝜇𝐴𝑋(𝑢)𝑝𝑋(𝑢)𝑑𝑢) ∧ 𝜇𝐵𝑌 (∫  
𝑅

𝜇𝐴𝑌(𝑢)𝑝𝑌(𝑢)𝑑𝑢)) (27) 

subject to 

𝑝𝑍 = 𝑝𝑋 ∘ 𝑝𝑌 (28) 

∫ 
𝑅

𝑝𝑋(𝑢)𝑑𝑢 = 1 (29) 

∫ 
𝑅

𝑝𝑌(𝑢)𝑑𝑢 = 1 (30) 

∫ 
𝑅

𝑢𝑝𝑋(𝑢)𝑑𝑢 =
∫  
𝑅
𝑢𝜇𝐴𝑋(𝑢)𝑑𝑢

∫  
𝑅
𝜇𝐴𝑋(𝑢)𝑑𝑢

 (31) 

∫ 
𝑅

𝑢𝑝𝑌(𝑢)𝑑𝑢 =
∫  
𝑅
𝑢𝜇𝐴𝑌(𝑢)𝑑𝑢

∫  
𝑅
𝜇𝐴𝑌(𝑢)𝑑𝑢

 (32) 

The combined restriction on the arguments is expressed as a conjunction of their 
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restrictions, with ^ interpreted as min. In effect, the application of the extension principle 

reduces the computation of 𝑝𝑍 to a problem in functional optimization. 

4. A real-world application scenario: humanoid intelligence 

Humanoid robots are hybrid systems with symbolic knowledge representation and 

behavior-based action that consider sensory-motor physicality and environmental situation 

changes. Hybrid systems are controlled in a hierarchically layered approach: Complex 

behaviors at a higher-level control one or more behaviors at an underlying level. In nature, 

this hierarchy often corresponds to the development of a living being in phylogeny. The 

robot control architecture (Figure 3) is given to the modules' arrangement with their 

connections through the robot's actions. In a symbolically oriented architecture, the 

hardware's details are abstracted, and cognition is represented as symbol processing in the 

model. Humanoid cognition is divided into many sub-modules. Sensory data are thus 

interpreted, evaluated for linguistic representation, conceptual and situational knowledge 

to realize actions with sensor-motor skills. In this case, symbolic and sequential action 

planning is possible and quick reaction mainly without symbolic-cognitive instances. 

However, humanoid intelligence and adaptation will only develop if the artifacts have a 

body adapted and adaptable to their tasks and can also react to the situation autonomously. 

Since intelligence in living organisms such as humans develops and changes body-

dependently in a person's life, a growing body with highly flexible actuators will also 

become necessary. This requires cooperation with scientific disciplines until recently 

seemed utterly meaningless to the engineering sciences: cognitive science and brain 

research, Systems biology and synthetic biology, nano and materials sciences [8]. 

On the other hand, behavior-based architectures are based on an action-centered 

understanding of cognition. All physical details, situatedness by the environment and high 

adaptability play an essential role. Behavior-based controls ensure that the robot responds 

quickly to environmental changes by processing stimuli perceived by sensors. With 

symbolic processing, sensor inputs are first interpreted in an environmental model. A plan 

for the action to be performed by actuators (e.g., wheels, feet, legs, arms, hands, grippers) 

is defined. This plan compares different goals as optimally as possible. The behavior-based 

approach does without sequential programming. Instead, as in a living organism, parallel 

processes must be coordinated. Behavioral architectures are found more in simple mobile 

robots, while symbolically oriented architectures are realized in cognitive systems with 

symbolic knowledge representation. Like humans, humanoid robots should also have both 

properties [7]. 

4.1 Perception with convolutional neural nets 

An ordinary ANN does not take raw data as input; instead, it takes features as input and 

classifies it based on their features. The features are computed through a separated feature 

extraction process (handcrafted) and are given as an n-dimensional feature vector. The 

reason behind this separation of feature extraction and classification is that the data 

dimension is usually significantly more extensive, typically from tens of thousands to 

millions. Direct connection of raw data to an ANN would make the network too 

complicated and too expensive to compute with traditional computing power. Besides, the 

various data dimension is also a design issue for such a combined ANN. With the rapid 

increase of computation power, it is possible to combine both the feature extraction and 

classification processes into a single neural network. The idea is to integrate a feature 

extraction network in front of an ordinary ANN. The architecture of a CNNs can be 

demonstrated using the LeNet in Figure 5. A CNN consists of a convolution network in 

front and a fully connected MLP at the backend. Because each hidden unit in the 

convolutional network is only connected to a local neighborhood in the input image instead 
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of every pixel, it is also called a locally connected network. In contrast, in an ordinary 

ANN, each input data element is connected to each network's hidden unit, called a fully 

connected network. The convolutional network is a repeat process of convolution and 

pooling, as shown in Figure 5. Depending on the dimension of the input data, the 

repetitions can occur for several rounds. 

 

Figure 5. Architecture of a humanoid robot with behavior-based and symbolic cognitive 

modules. 

 

Figure 6. Architecture of a CNN for humanoid robot perception [7]. 

5. Conclusion 

In this research we conclude that there are three main reasons why MIQ is important in 

real world applications. First, until recently the principal tools in AI's armamentarium were 

centered on symbol manipulation and predicate logic, while the use of numerical 

techniques was looked upon with disfavor. Almost all decisions are made in an 
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environment of partial uncertainty, partial knowledge, and partial truth. As we move 

further into the age of machine intelligence and mechanized decision-making, the need for 

a better understanding of how to deal with uncertainty is growing in urgency and 

importance. The achievement of human-level machine intelligence has profound 

implications for our info-centric society. It has a vital role in enhancing the quality of life, 

but it is a challenge that is hard to meet. Our presentation articulated that human-level 

machine intelligence cannot be achieved by using theories based on classical, Aristotelian, 

bivalent logic. It is argued that to achieve human-level machine intelligence, what is 

needed is a paradigm shift, a shift from computing with numbers to computing with words. 

In particular, a critical problem that has to be addressed is that of precision of meaning. 

Resolution of this problem requires the use of concepts and techniques drawn from fuzzy 

logic and deep learnings. By adopting the clear definition and the logical estimating 

method that this paper proposed, the MIQ can be used as a theoretical measure and as a 

practical index that suggests the design goal and can be cited for comparing a product's 

intelligence superiority. 
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