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Abstract. A new class of exact solutions of the Einstein-Maxwell system is found in closed form 

for a static spherically symmetric anisotropic star in the presence of an electric field by 

generalizing earlier approaches. The field equations are integrated by specifying one of the 

gravitational potentials, the anisotropic factor and electric field which are physically reasonable. 

We demonstrate that it is possible to obtain a more general class of solutions to the 

Einstein-Maxwell system in the form of series with anisotropic matter.  For specific parameter 

values it is possible to find new exact models for the Einstein-Maxwell system in terms of 

elementary functions from the general series solution.   Our results contain particular solutions 

found previously including models of Thirukkanesh and Maharaj (2009) and Komathiraj and 

Maharaj (2007) charged relativistic models. 
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1. Introduction 

To obtain an understanding of the gravitational dynamics of a general relativistic star it is 

necessary to solve the Einstein-Maxwell equations. The matter distribution may be 

anisotropic in the presence of an electromagnetic field. On physical grounds we should 

include an equation of state relating the radial pressure to the energy density in a barotropic 

distribution. In this way we can model relativistic compact objects including dark energy 

stars, quark stars, gravastars, neutron stars and ultradense matter. Since the pioneering 

paper by Bowers and Liang [3] there have been extensive investigations in the study of 

anisotropic relativistic matter distributions in general relativity to include the effects of 

spacetime curvature. The anisotropic interior spacetime matches to the Schwarzschild 

exterior model. Stellar models consisting of spherically symmetric distribution of matter 

with presence of anisotropy in the pressure have been widely considered in the frame of 

general relativity [24]. The existence of anisotropy within a star can be explained by the 

presence of a solid core, phase transitions, a type III super fluid, a pion condensation [33] 

or another physical phenomenon by the presence of an electrical field [40]. In such 

systems, the radial pressure is different from the tangential pressure. This generalization 

has been very used in the study of the balance and collapse of compact spheres [2,10,11]. 

Malaver [25] studied the effect of local anisotropy on the bulk properties of spherically 

symmetric static general relativistic compact objects. Tello-Ortiz et al. [36] found an 

anisotropic fluid sphere solution of the Einstein-Maxwell field equations with a modified 
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version of the Chaplygin equation. Also generalised  version of the Chaplygin equation of 

state was successfully used in the study of charged anisotropic matter [27]. More recently, 

Malaver and Kasmaei [28] obtained new exact solutions to the Einstein-Maxwell system 

of equations with a polytropic equation of state specifying particular forms for the 

gravitational potential and electric field intensity.  

Many researchers have used various analytical techniques to try in order to obtain 

solutions of Einstein field equations for relativistic stars as it has been shown by 

Thirukkanesh and Ragel [38], Feroze and Siddiqui [8], Pant et al. [32] and Malaver 

[23,26]. These studies suggest that the Einstein-Maxwell field equations are very 

important in the description of the stellar structures. In addition, it needs to be considered 

that Einstein Field Equations lie in the category of Systems of Differential equations and 

many new analytical and approximate methods can be suggested to solve these types of 

equations [1,5,13,30,31,34]. For some recent models investigating the properties of 

charged anisotropic stars see the treatments of Komathiraj et al. [19] and Komathiraj and 

Sharma [18], Thirukkanesh and Ragel [39], Malaver and Kasmaei [29]. 

Incorporation of electromagnetic field and anisotropy makes the system of field 

equations even more difficult to solve unless one adopts some simplifying techniques to 

make them tractable. In an earlier work, by identifying a conformal Killing vector, Mak 

and Harko [21] developed a relativistic model of an isotropic quark star. The work was 

later extended by Komathiraj and Maharaj [15] who provided a more general class of exact 

solutions by incorporating an electromagnetic field in the system of field equations. In a 

more recent work, Maharaj et al. [20] and Komathiraj [14] have made a further 

generalization of [15] model by incorporating anisotropic stress into the system. In a 

subsequent paper, Sunzu et al. [35] performed a detailed physical analysis of the solution 

obtained in [20] and discussed its relevance in the context of compact quark stars 

candidates.  

From the above motivation it is clear that both anisotropy and the electromagnetic field 

are important in astrophysical processes. However previous treatments have largely 

considered either anisotropy or electromagnetic field separately. The intention of this 

paper is to provide a general framework that admits the possibility of tangential pressures 

with a nonvanishing electric field intensity. We believe that this approach will allow for a 

richer family of solutions to the Einstein-Maxwell field equations and possibly provide a 

deeper insight into the behaviour of the gravitational field. 

The objective of this treatment is to generate exact solutions to the Einstein-Maxwell 

system, that may be utilised to describe a charged anisotropic relativistic body. In Section 

2, we express the Einstein-Maxwell system as a new system of differential equations using 

a coordinate transformation. We choose particular forms for one of the gravitational 

potentials, anisotropic factor and the electric field intensity, which enables us to obtain the 

condition of pressure isotropy in the remaining gravitational potential in Section 3. This is 

the master equation which determines the integrability of the system. We integrate this 

equation using the method of Frobenius and the solution is given in terms of series. We 

demonstrate that it is possible to find two categories of solutions in terms of elementary 

functions by placing certain restriction on the parameters in Section 4. The advantage of 

this approach is that one can regain the charged isotropic stellar model simply by setting 

the anisotropy to zero. It is interesting to note that many previously found explicit solutions 

of the Einstein-Maxwell system with anisotropic stress e.g., solutions obtained by [4, 7, 9, 

12, 22] do not have their corresponding isotropic analogues. In Section 5, we discuss the 

physical features of the solutions found. Finally, some concluding remarks are made in 

Section 6. 
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2. Field equations 

The gravitational field should be static and spherically symmetric for describing the 

internal structure of a dense compact relativistic sphere which is charged. For describing 

such a configuration, we utilise coordinates (𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙), such that the generic form 

of the line element is given by 

𝑑𝑠2 = −𝑒2𝜇(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2), (1) 

where 𝜇(𝑟) and 𝜆(𝑟) are yet to be determined. The Einstein-Maxwell system of field 

equations corresponding to the line element (1) can be written in the form 

1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜆′

𝑟
𝑒−2𝜆 = 𝜌 +

1

2
𝐸2, (2) 

−
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜇′

𝑟
𝑒−2𝜆 = 𝑝𝑟 −

1

2
𝐸2, (3) 

𝑒−2𝜆 (𝜇′′ + 𝜇′2 +
𝜇′

𝑟
− 𝜇′𝜆′ −

𝜆′

𝑟
) = 𝑝𝑡 +

1

2
𝐸2, (4) 

1

𝑟2
𝑒−𝜆(𝑟2𝐸)′ = 𝜎. (5) 

In the above 𝜌 is the energy density, 𝑝𝑟 is the radial pressure, 𝑝𝑡  is the tangential 

pressure, 𝐸 is the electric field intensity and 𝜎  is the proper charge density, and a prime 
(′) denotes derivative with respect to the radial coordinate 𝑟.  

A different but equivalent form of the field equations is generated if we introduce new 

variables  

𝐴2𝑦2(𝑥) = 𝑒2𝜇(𝑟),    𝑍(𝑥) = 𝑒−2𝜆(𝑟),   𝑥 = 𝐶𝑟2, (6) 

where A and C are arbitrary constants. Under the transformation (6) due to Durgapal and 

Bannerji [6], the system (2)-(5) becomes 

1 − 𝑍

𝑥
− 2�̇� =  

𝜌

𝐶
+

1

2
 𝐸2, (7) 

4𝑍
�̇�

𝑦
   +

𝑍 − 1

𝑥
 =

𝑝𝑟

𝐶
−

1

2𝐶
  𝐸2, (8) 

4𝑍𝑥2�̈� + 2�̇�𝑥2�̇�  + (�̇�𝑥 − 𝑍 + 1 −
∆𝑥

𝐶
−

𝐸2𝑥

𝐶
) 𝑦 = 0, (9) 

𝜎2 =    
4𝐶𝑍

𝑥
  (𝑥�̇� + 𝐸)

2
, (10) 

where  Δ = 𝑝𝑡 − 𝑝𝑟 represents the measure of anisotropy which is required to vanish at 

the center and dots denote derivative with respect to the new coordinate 𝑥. The system of 

equation (7)-(10) governs the gravitational behavior of a charged star with anisotropic 

pressure. 

The mass of a self-gravitating object for a given radius is an important measure for 

comparison with observational data. In this case, the mass contained within a radius 𝑥 of 

the sphere is obtained as 
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𝑚(𝑥) =
1

4𝐶
3
2

∫ √𝑥𝜌(𝑥)𝑑𝑥.  
𝑥

0

 (11) 

3. Exact models 

We have a nonlinear system of four equations (7)-(10) in seven unknowns 𝑍, 𝑦, 𝜌,  𝑝𝑟 , ∆,
𝐸  and 𝜎. To integrate the system (7)-(10) it is necessary to specify three of the variables. 

In our approach we choose 𝑍, ∆ and 𝐸 on physical grounds. The remaining quantities 

are then obtained from the rest of the system. 

In the integration procedure we make the specific choices: 

𝑍(𝑥) =
(1 + 𝑘𝑥)2

1 + 𝑚𝑥
, (12) 

∆

𝐶
=

𝛼𝑚(𝑘 − 𝑚)𝑥

(1 + 𝑚𝑥)2
, (13) 

𝐸2

𝐶
=

𝛽𝑘(𝑚 − 𝑘)𝑥

(1 + 𝑚𝑥)2
, (14) 

where 𝑘 , 𝑚, 𝛼 and  𝛽  are constants. The choice (12) ensures that the metric function is 

regular at the center and is well behaved within the stellar interior. A similar choice has 

been used by Komathiraj and Maharaj [16] and Thirukkanes and Maharaj [37]. As far as 

the second choice is concerned, it is a reasonable assumption in the sense that ∆ vanishes 

at the center (i.e., 𝑝𝑟 = 𝑝𝑡 at the origin) which is consistent with the physical requirement 

for a realistic stellar model. The form 𝐸2  in (14) is physically palatable because 𝐸 

remains regular and continuous throughout the sphere. 

Substitution of (12)-(14) into (9) gives 

4𝑋2[𝑚𝑋 − (𝑚 − 𝑘)]
𝑑2𝑌

𝑑𝑋2
 + 2𝑋[𝑚𝑋 − 2(𝑚 − 𝑘)]

𝑑𝑌

𝑑𝑋

+ (𝑚 − 𝑘) [
𝑚(1 + 𝛼)

𝑘
− (1 + 𝛽)] 𝑌 = 0, 

(15) 

which is the second order differential equation in terms of the dependent variable 𝑌 and 

independent variable 𝑋, where we have set 

1 + 𝑘𝑥 = 𝑋, 𝑦(𝑥) = 𝑌(𝑋) (16) 

Once (15) is integrated we can directly find the remaining quantities 𝜌,  𝑝𝑟 , 𝑝𝑡 from 

the system (7)-(9) as ∆ and 𝐸 are known from (13) and (14) respectively. It is difficult to 

obtain a closed form solution to the equation (15). However, one can transform it to a 

differential equation which can be integrated by the method of Frobenius. This can be done 

in the following way. We introduce a new function 𝑈(𝑋) such that 

𝑌(𝑋) = 𝑋𝑎𝑈(𝑋), (17) 

where 𝑎 is a constant. A similar kind of transformation was utilised earlier by Komathiraj 

and Sharma [17] for generating charged stellar models. With the help of (17), differential 

equation (15) can be written as 
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4𝑋2[𝑚𝑋 − (𝑚 − 𝑘)]
𝑑2𝑈

𝑑𝑋2
 + 2𝑋[𝑚(4𝑎 + 1)𝑋 − 2(2𝑎 + 1)(𝑚 − 𝑘)]

𝑑𝑈

𝑑𝑋

+ [2𝑚𝑎(2𝑎 − 1)𝑋 − (𝑚 − 𝑘) (
𝑚(1 + 𝛼)

𝑘
− 1 − 𝛽 − 4𝑎2)] 𝑈

= 0 

(18) 

A substantial simplification of the equation can be achieved if we set 

𝑚(1 + 𝛼)

𝑘
− 𝛽 − 1 = 4𝑎2 (19) 

Equation (18) then reduces to 

2𝑋 [𝑋 −
(𝑚 − 𝑘)

𝑚
]

𝑑2𝑈

𝑑𝑋2
 + [(4𝑎 + 1)𝑋 − 2(2𝑎 + 1)

(𝑚 − 𝑘)

𝑚
]

𝑑𝑈

𝑑𝑋
+ 𝑎(2𝑎 − 1)𝑈

= 0                                     
(20) 

We can utilise the method of Frobenius about  𝑋 =
𝑚−𝑘

𝑚
 , since this is a regular 

singular point of the differential equation (20). We write the solution of the differential 

equation (20) in the series form 

𝑈 = ∑ 𝑏𝑖 [𝑋 −
(𝑚 − 𝑘)

𝑚
]

𝑖+𝑑

,   𝑏0 ≠ 0,

∞

𝑖=0

 (21) 

where 𝑏𝑖 are the coefficients of the series and 𝑑 is a constant. For a legitimate solution we 

need to determine the coefficients 𝑏𝑖 as well as the parameter 𝑑. On substituting (21) in to 

(20) we obtain the indicial equation as: 

𝑏0𝑑(2𝑑 − 3) = 0 which determines the value of the parameter 𝑑 = 0, 𝑑 = 3/2 as 

𝑏0 ≠ 0. 
It is possible to express the coefficient in terms of the leading coefficient 𝑏0  by 

establishing a general structure for the coefficients by considering the leading terms. These 

coefficients generate the pattern 

𝑏𝑖 = (
𝑚

𝑚 − 𝑘
)

𝑖

∏
(𝑝 + 𝑑 − 1)(2𝑝 + 2𝑑 + 4𝑎 − 3) + 𝑎(2𝑎 − 1)

(𝑝 + 𝑑)(2𝑝 + 2𝑑 − 3)

𝑖

𝑝=1

𝑏0, 𝑏0 ≠ 0 (22) 

Now it is possible to generate two linearly independent solutions to the differential 

equation (20) with the help of (21) and (22). For the parameter value 𝑑 = 0, the first 

solution can be written as: 

𝑈1(𝑋) = 𝑏0 [1 + ∑ (
1

𝛾
)

𝑖

∏
(𝑝 − 1)(2𝑝 + 4𝑎 − 3) + 𝑎(2𝑎 − 1)

𝑝(2𝑝 − 3)
× [𝑋 − 𝛾]𝑖

𝑖

𝑝=1

∞

𝑖=1

] (23) 

For the parameter value  𝑑 = 3/2, the second solution can be written as: 

𝑈2(𝑋) = 𝑏0[𝑋 − 𝛾]
3
2 

× [1 + ∑ (
1

𝛾
)

𝑖

∏
(2𝑝 + 1)(𝑝 + 2𝑎) + 𝑎(2𝑎 − 1)

𝑝(2𝑝 + 3)
× [𝑋 − 𝛾]𝑖

𝑖

𝑝=1

∞

𝑖=1

], 
(24) 
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where we let  𝛾 =
(𝑚−𝑘)

𝑚
  for convenience. With the help of (16) and (17) we obtain the 

equivalent expressions for 𝑈1(𝑋) and 𝑈2(𝑋) given in (23) and (24) in terms of the 

original variable 𝑥 = 𝐶𝑟2 as: 

𝑦1(𝑥) = 𝑏0(1 + 𝑘𝑥)𝑎 

× [ 1 + ∑ (
1

𝛾
)

𝑖

∏
(𝑝 − 1)(2𝑝 + 4𝑎 − 3) + 𝑎(2𝑎 − 1)

𝑝(2𝑝 − 3)
 

 

𝑖

𝑝=1

∞

𝑖=1

[(1 + 𝑘𝑥) − 𝛾]𝑖] 
(25) 

and 

𝑦2(𝑥)

= 𝑏0(1 + 𝑘𝑥)𝑎[(1 + 𝑘𝑥) − 𝛾]
3
2

× [1 + ∑ (
1

𝛾
)

𝑖

∏
(2𝑝 + 1)(𝑝 + 2𝑎) + 𝑎(2𝑎 − 1)

𝑝(2𝑝 + 3)
 [(1 + 𝑘𝑥) − 𝛾]𝑖

 

𝑖

𝑝=1

∞

𝑖=1

]

 

 

(26) 

Thus, the general solution to the differential equation (20), for the choice of the 

anisotropic factor (13) and the electric field (14), is given by 

𝑦(𝑥) = 𝐴1𝑦1(𝑥) + 𝐴2𝑦2(𝑥), (27) 

where 𝐴1  and 𝐴2  are arbitrary constants, 𝑎2 =
𝑚(1+𝛼)

4𝑘
−

𝛽+1

4
,   𝛾 =

(𝑚−𝑘)

𝑚
 and 𝑦1(𝑥)  

and 𝑦2(𝑥) are given by (25) and (26) respectively. It is clear that the quantities 𝑦1(𝑥)  

and 𝑦2(𝑥)  are linearly independent functions. From equations (7)-(10), the general 

solution to the Einstein-Maxwell system can be written as 

𝑒2 𝜆 =
1 + 𝑚𝑥

(1 + 𝑘𝑥)2
, (28) 

𝑒2𝜇 = 𝐴2𝑦2, (29) 

𝜌

𝐶
=

(3 + 𝑚𝑥)(𝑚 − 2𝑘)

(1 + 𝑚𝑥)2
−

𝑘2𝑥(5 + 3𝑚𝑥)

(1 + 𝑚𝑥)2
−

𝛽𝑘(𝑚 − 𝑘)𝑥

(1 + 𝑚𝑥)2
, (30) 

𝑝𝑟

𝐶
= 4

(1 + 𝑘𝑥)2

1 + 𝑚𝑥

�̇�

𝑦
+

𝑘(2 + 𝑘𝑥) − 𝑚

1 + 𝑚𝑥
+

𝛽𝑘(𝑚 − 𝑘)𝑥

(1 + 𝑚𝑥)2
, (31) 

𝑝𝑡 = 𝑝𝑟 + ∆, (32) 

∆

𝐶
=

𝛼𝑚(𝑘 − 𝑚)𝑥

(1 + 𝑚𝑥)2
, (33) 

𝐸2

𝐶
=

𝛽𝑘(𝑚 − 𝑘)𝑥

(1 + 𝑚𝑥)2
, (34) 

where 𝑦 is given in (27). The result in (28)-(34) is a new solution to the Einstein-Maxwell 

field equations. Note that if we set 𝛽 = 0, (28)-(34) reduce to models for charged stars 

with isotropic matter which may contain new solutions to the Einstein-Maxwell field 

equations (7)-(10). 
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4. Elementary solutions 

The general solution (28)-(34) can be expressed in terms of polynomial and algebraic 

functions. This is possible in general because the series (25) and (26) terminate for 

restricted values of the parameters 𝑘, 𝑚, 𝛼   and 𝛽  so that elementary functions are 

possible. Consequently, we obtain two sets of general solutions in terms of elementary 

functions, by determining the specific restriction on the quantity   
𝑚(1+𝛼)

𝑘
− 𝛽 − 1 for a 

terminating series. The elementary functions found using this method, can be written as 

polynomials and polynomials with algebraic functions.  The first category of solution can 

be written as 

𝑦1(𝑥) = −
𝐴1

(1 + 𝑘𝑥)𝑛
∑ (−

1

𝛾
)

𝑖 (2𝑖 − 1)

(2𝑖)! (2𝑛 − 2𝑖 + 1)!

𝑛

𝑖=0

[(1 + 𝑘𝑥) − 𝛾]𝑖

+
𝐴2

(1 + 𝑘𝑥)𝑛
∑ (−

1

𝛾
)

𝑖 (𝑖 + 1)

(2𝑖 + 3)! (2𝑛 − 2𝑖 − 2)!

𝑛−1

𝑖=0

[(1 + 𝑘𝑥)

− 𝛾]𝑖+
3
2 

(35) 

for  
𝑚(1+𝛼)

𝑘
− 𝛽 − 1 = 4𝑛2. The second category of solutions can be written as 

𝑦2(𝑥) = −
𝐴1

(1 + 𝑘𝑥)𝑛−
1
2

∑ (−
1

𝛾
)

𝑖 (2𝑖 − 1)

(2𝑖)! (2𝑛 − 2𝑖)!

𝑛

𝑖=0

[(1 + 𝑘𝑥) − 𝛾]𝑖

+
𝐴2

(1 + 𝑘𝑥)𝑛−
1
2

∑ (−
1

𝛾
)

𝑖 (𝑖 + 1)

(2𝑖 + 3)! (2𝑛 − 2𝑖 − 3)!

𝑛−2

𝑖=0

[(1 + 𝑘𝑥)

− 𝛾]𝑖+
3
2 

(36) 

for  
𝑚(1+𝛼)

𝑘
− 𝛽 − 1 = 4𝑛(𝑛 − 1). 

 It is remarkable to observe that the solutions (35) and (36) are expressed completely in 

terms of elementary functions only. This does not happen often considering the 

nonlinearity of the gravitational interaction in the presence of charge. We have given our 

solutions in a simple form which has the advantage of facilitating the analysis of the 

physical features of the stellar models. Observe that our approach has combined both the 

charged and uncharged cases for a relativistic star: when 𝛽 = 0 we obtain the solutions 

for the uncharged case directly. It is important to observe that the Einstein-Maxwell 

solutions (35) and (36) apply to both isotropic and anisotropic relativistic stars. We regain 

exact solutions with isotropic pressure, which may be possibly new, by setting  𝛼 = 0 

It is interesting to observe that we can regain a number of physically reasonable models 

from the general class of solutions found in this paper. We demonstrate that this is possible 

in the following cases of physical interest. If we take 𝑘 = 𝑎, 𝑚 = 𝑏  and 𝛼 = 0 then it is 

easy to verify that the equations (35) and (36) correspond to the Thirukkanesh and Maharaj 

[37] model for a compact sphere in electric fields in the absence of anisotropic matter. 

When 𝑚 = 1 and 𝛼 = 0 we easily obtain the result of Komathiraj and Maharaj [16] 

charged models from (35) and (36) after some manipulation.   

We, thus, have provided two different class of solutions for 
𝑚(1+𝛼)

𝑘
− 𝛽 − 1 = 4𝑛2 

(Case I) and  
𝑚(1+𝛼)

𝑘
− 𝛽 − 1 = 4𝑛(𝑛 − 1) (Case II). We note that all the solutions are 
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regular. One, however, needs to examine the physical viability of the solutions which can 

be analyzed by utilizing the junction conditions and systematically fixing the values of the 

model parameters. An interesting feature of the class of solutions is that they provide a 

mechanism to examine the impact of anisotropy on the physical properties of a relativistic 

star simply by using the parameter 𝛼 as an ‘anisotropic switch’. 

5. Physical analysis 

Let us now analyse the physical viability of the class of solutions (28)-(34) obtained in this 

paper. We need to consider only those values of 𝑘 and 𝑚 for which the energy density 𝜌, 

the radial pressure 𝑝𝑟, the tangential pressure 𝑝𝑡 and the electric field intensity 𝐸 remain 

finite and positive. The choices of 𝑘 and 𝑚 must ensure that the gravitational potential 

𝑒  2𝜆 remains positive; the other potential 𝑒  2𝜇 is necessarily positive. In (28) and (29), we 

note that  

𝑒  2𝜆(𝑟 = 0) = 1,   (𝑒  2𝜆)
′
(𝑟 = 0) = 0, 

𝑒  2𝜇(𝑟 = 0) = 𝐴2𝑦2(𝑟 = 0),   (𝑒  2𝜇)′(𝑟 = 0) = (𝐴2𝑦2)′(𝑟 = 0), 

where 𝑦 is given by (25)-(27). Obviously, the gravitational potentials are regular at the 

origin. Using eq. (30), we obtain the central density 𝜌0 = 𝜌(𝑟 = 0) = 3𝐶(𝑚 − 2𝑘), 
which implies that we must have 𝑚 > 2𝑘. Using eq. (31) at the center of the star (𝑟 = 0), 

we must have 

𝑝𝑟(𝑟 = 0) = 𝑝𝑡(𝑟 = 0) = 4𝐶 (
�̇�

𝑦
) (𝑟 = 0) + 𝐶(2𝑘 − 𝑚) > 0 (37) 

The radial pressure and the tangential pressure will be positive if we choose our model 

parameters in such a manner that the condition (37) is satisfied. 

For a charged and anisotropic system, the anisotropic factor ∆ and the electric field 𝐸 

should be finite and positive. Hence, using (33) and (34) we obtain 𝛼𝐶𝑚(𝑘 − 𝑚) > 0 and 

𝛽𝐶𝑘(𝑚 − 𝑘) > 0. 
For a realistic star of finite radius, the radial pressure should also vanish at some finite 

radial distance 𝑟 = 𝑅 which yields  

4(1 + 𝑘𝐶𝑅2)2 (
�̇�

𝑦
) (𝑟 = 𝑅) + 𝑘(2 + 𝑘𝐶𝑅2) − 𝑚 +

𝛽𝑘(𝑚 − 𝑘)𝐶𝑅2

(1 + 𝑚𝐶𝑅2)
= 0 

This will constrain the values of 𝑘, 𝑚, 𝛼 and 𝛽. The solution of the Einstein-Maxwell 

system for 𝑟 > 𝑅 is given by the Reissner-Nordstrom metric 

𝑑𝑠2 = − (1 −
2𝑀

𝑟
+

𝑄2

𝑟2
) 𝑑𝑡2 + (1 −

2𝑀

𝑟
+

𝑄2

𝑟2
)

−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜙2), (38) 

where 𝑀 = 𝑚(𝑅) and 𝑄 = 𝐸(𝑅)𝑅2 are the total mass and charge of the star. Matching 

the line element (1) with Equation (38) across the boundary 𝑅, we have 

𝐴2[𝐴1𝑦1(𝐶𝑅2) + 𝐴2𝑦2(𝐶𝑅2) ]2 = (1 −
2𝑀

𝑅
+

𝑄2

𝑅2
) (39) 

1 + 𝑚𝐶𝑅2

(1 + 𝑘𝐶𝑅2)2
= (1 −

2𝑀

𝑅
+

𝑄2

𝑅2
)

−1

 (40) 

The matching conditions (39) and (40) place restrictions on the metric coefficients, 

however there are sufficient free parameters to satisfy the necessary conditions that arise 
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for the model under study. Since these conditions are satisfied by the constants in the 

solution a relativistic star of radius 𝑅 is realisable. By providing the necessary bounds on 

the model parameters, we can examine the physical viability of the solution. 

6. Conclusion 

In this paper, a new class of solutions to the Einstein-Maxwell system is presented in terms 

of an infinite series by making use of known transformation. This is achieved with the 

particular choices for one of the gravitational potentials, the anisotropic factor and electric 

field intensity. Moreover, we have demonstrated that for the specific set of model 

parameters, it is possible to obtain closed-form solutions from the general series solution. 

The solutions are expressed in terms of elementary functions which facilitate its physical 

study. Two class of solutions obtained previously have been shown to be contained in the 

general class of solutions. The anisotropic factor/electromagnetic field may vanish in the 

solutions and we can regain isotropic/uncharged solutions. A different choice, would 

perhaps enable us to regain other previously known stellar solutions. A paper in this 

direction is under preparation. 
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