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aDepartment of Mathematics, Giresun University, Giresun, PO. Code 28100, Turkey,
bDepartment of Mathematics, Gazi University, Ankara, PO. Code 06500, Turkey.

Abstract. In this paper, we prove the existence and uniqueness of fixed points for cyclic
(α, β)-admissible type F -contraction and F−weak contraction under the setting of modular
spaces, where the modular is convex and satisfying the ∆2-condition. Later, we prove some
periodic point results for self-mappings on a modular space. We also give some examples to
support our results.

Received: 10 February 2019, Revised: 31 March 2019, Accepted: 10 June 2019.

Keywords: Modular space; Fixed point; F-contraction; Cyclic (α, β)-admissible mapping.

AMS Subject Classification: 47H10, 54H25.

Index to information contained in this paper

1 Introduction and preliminaries

2 Fixed point results for cyclic (α, β)-admissible type F -contractions

3 Periodic point results for cyclic (α, β)-admissible type F -contractions

1. Introduction and preliminaries

Banach has found the most fundamental contraction principle of fixed point theory,
which is widely used and considered one of the important issues of mathematics [2].
In its development process, some authors have generalized the concept of Banach
fixed point [1, 5–8].
Nakano [15, 16] initiated the notion of modulars on linear spaces and the cor-

responding theory of modular linear spaces and further it was generalized and
redefined by Musielak and Orlicz [13, 14]. In many areas, particularly in applica-
tions to integral operators, approximation and fixed point results, modular type
conditions have been used. Recently, many comprehensive applications related to
the fixed point theory in modular spaces are investigated. Khamsi et al presented
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102 M. Sangurlu Sezen & D. Türkoğlu/ IJM2C, 09 - 02 (2019) 101-111.

a strong interest to study the fixed point property in modular function spaces,
which are natural generalization of both function and sequence spaces [9]. Taleb
and Hanebaly proved a fixed point theorem and its application to integral equa-
tions in modular function spaces [17]. Mongkolkeha and Kumam, considered and
proved some fixed point and common fixed point results for generalized contrac-
tion mappings in modular spaces [11]. On the other hand, Hajji and Hanebaly
presented a generalization of Banach’s fixed point theorem in some classes of mod-
ular spaces, using some convenient constants in the contraction assumption [4].
For many years, a lot of fixed point theorems and applications have been made
in modular spaces and some authors have published many works on this concept
in different areas [10, 12]. In this paper, we prove some fixed point theorems in
modular spaces. Firstly, we introduce cyclic (α, β)-admissible type F -contraction
and F−weak contraction in modular spaces benefiting from the Wardowski and
Alizadeh et al.’s work [1]. Later, we establish fixed point and periodic point results
for such a contraction. We also state some examples to support our results.

Definition 1.1 [12, 15] Let X be an arbitrary vector space. A functional ρ : X →
[0,∞) is called a modular if, for any x, y in X, the following conditions hold:

(a) ρ(x) = 0 if and only if x = 0,
(b) ρ(−x) = ρ(x),
(c) ρ(αx+ βy) ⩽ ρ(x) + ρ(y), whenever α+ β = 1, and α, β ⩾ 0.

If (c) is replaced with ρ(αx+ βy) ⩽ αsρ(x) + βsρ(y) where αs + βs = 1, α, β ⩾ 0,
and
s ∈ (0, 1], then ρ is called s-convex modular. If s = 1, then we say that ρ is convex
modular.

The following are some consequences of condition (c).

Remark 1 [3]

(a) For a, b ∈ R with |a| < |b| we have ρ(ax) < ρ(bx) for all x ∈ X.,
(b) For a1, ..., an ∈ R+ with

∑n
i=1 ai = 1, we have

ρ(
n∑
i=1

aixi) = ρ(
n∑
i=1

xi) for any x1, ..., xn ∈ X.

Remark 2 [11] A modular ρ defines a corresponding modular space, i.e. the space
is given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0}.

Definition 1.2 [9] A sequence {xn} in modular space Xρ is said to be:

(a) ρ-convergent to x ∈ Xρ if ρ(xn − x) → 0 as n → ∞,,
(b) ρ-Cauchy if ρ(xn − xm) → 0 as n,m → ∞,
(c) Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent,
(d) ρ satisfies ∆2-condition if ρ(2xn) → 0 as n → ∞, whenever ρ(xn) → 0 as

n → ∞.

Definition 1.3 Let Xρ be a modular space and T : Xρ → Xρ be a self-map. We
say that T is ρ-continuous when if ρ(xn − x) → 0, then ρ(Txn − Tx) → 0 as
n → ∞.

Definition 1.4 [1] Let T : X → X be a mapping and α, β : X → [0,+∞) be two
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functions. We say that T is a cyclic (α, β)-admissible mapping if

(a) α(x) ⩾ 1 for some x ∈ X implies β(Tx) ⩾ 1,
(b) β(x) ⩾ 1 for some x ∈ X implies α(Tx) ⩾ 1.

Definition 1.5 [18] Let F be the family of all functions F : (0,+∞) −→ R such

that

(F1) F is strictly increasing, that is, for all γ, δ ∈ (0,+∞) if γ < δ then F (γ) <
F (δ),

(F2) For each sequence {αn} of positive numbers, the following holds:
lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Definition 1.6 [18] Let (X, d) be a metric space. A map T : X → X is said to
be an F−contraction on (X, d) if there exist F ∈ F and τ > 0 such that for all
x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ⩽ F (d(x, y)).

Definition 1.7 [19] Let (X, d) be a metric space. A map T : X → X is said to
be an F−weak contraction on (X, d) if there exist F ∈ F and τ > 0 such that for
all x, y ∈ X,

d(Tx, Ty) > 0 =⇒

τ + F (d(Tx, Ty)) ⩽ F (max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2
}).

In this paper, we use the following condition instead of the condition (F3) in
Definition 1.5:
(F3∗) F is continuous on (0,∞).

2. Fixed point results for cyclic (α, β)-admissible type F -contractions

Let Xρ be a nonempty set and T : Xρ → Xρ be an arbitrary mapping. We say that
x ∈ Xρ is a fixed point for T , if x = Tx. We denote by Fix(T ) the set of all fixed
points of T . We give the following conditions. In the sequel, suppose the modular
function ρ is convex and satisfies the ∆2-condition.

Definition 2.1 Let Xρ be a ρ-complete modular space. A cyclic (α, β)-admissible
mapping T : Xρ → Xρ is said to be cyclic (α, β)-admissible type F -contraction if
there exists τ > 0, F ∈ F and satisfying ρ(Tx− Ty) > 0 such that

τ + α(x)β(y)F (ρ(Tx− Ty)) ⩽ F (ρ(x− y)) (1)

for all x, y ∈ Xρ.

Definition 2.2 Let Xρ be a ρ-complete modular space. A cyclic (α, β)-admissible
mapping T : Xρ → Xρ is said to be cyclic (α, β)-admissible type F -weak contraction
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if there exists τ > 0, F ∈ F and satisfying ρ(Tx− Ty) > 0, such that

τ + α(x)β(y)F (ρ(Tx− Ty))

⩽ F (max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(12(x− Ty)) + ρ(12(y − Tx)

2
}) (2)

for all x, y ∈ Xρ.

Remark 1 Every cyclic (α, β)-admissible type F -contraction is a cyclic (α, β)-
admissible type F -weak contraction, but the converse is not necessarily true.

Example 2.3 Let Xρ = [0, 2] and ρ(x) = |x| for all x ∈ Xρ. Define T : Xρ → Xρ by

Tx =

{
0 if x ∈ [0, 2)
1
2 if otherwise.

Define α, β : Xρ → [0,∞) by

α(x) =

{
1 , x ∈ [0, 2)
0 , otherwise.

and β(x) = 1 for x ∈ [0, 2].

F : R+ → R be given by the formula F (a) = lna. It is clear that F satisfies
(F1)-(F3)-(F3∗) for any k ∈ (0, 1). Then for x = 7

4 , y = 2, we have

τ + α(
7

4
)β(2)F (ρ(T (

7

4
), T (2))) = τ + ln(

1

2
) and F (ρ(

7

4
, 2)) = ln

1

4
.

Then, we get

τ + ln(
1

2
) ≰ ln

1

4
.

So T is not a cyclic (α, β)-admissible type F -contraction. However, since for x ∈
[0, 2), y = 2

max{ρ(x− 2), ρ(x− 0), ρ(2− 1

2
),
ρ(12(x− 1

2)) + ρ(12(2− 0))

2
} =

3

2
.

Therefore, T is a cyclic (α, β)-admissible type F -weak contraction.

Remark 2 Definition 1.6 (respectively, Definition 1.7) reduces to an F -contraction
(respectively, an F -weak contraction) for α(x)β(y) = 1.

Theorem 2.4 Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic
(α, β)-admissible type F -weak contraction satisfying the following conditions:

(a) there exists x0 ∈ Xρ such that α(x0) ⩾ 1 and β(x0) ⩾ 1,
(b) if {xn} is a sequence in X such that xn → x and β(xn) ⩾ 1 for all n, then

β(x) ⩾ 1, or
(c) T is continuous,

then T has a fixed point. Moreover, if α(x) ⩾ 1 and β(y) ⩾ 1 for all x, y ∈ Fix(T ),
then T has a unique fixed point.

Proof Define a sequence {xn} by xn = Tnx0 = Txn−1 for all n ∈ N. Since T is
a cyclic (α, β)-admissible type F -weak contraction and α(x0) ⩾ 1 then β(x1) =
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β(Tx0) ⩾ 1 which implies α(x2) = α(Tx1) ⩾ 1. By continuing this process, we
get α(x2n) ⩾ 1 and β(x2n−1) ⩾ 1 for all n ∈ N. Again, since T is a cyclic (α, β)-
admissible type F -weak contraction and β(x0) ⩾ 1, by the similar method, we have
β(x2n) ⩾ 1 and α(x2n−1) ⩾ 1 for all n ∈ N. That is, α(xn) ⩾ 1 and β(xn) ⩾ 1 for
all n ∈ N ∪ {0}. Equivalently, α(xn−1)β(xn) ⩾ 1 for all n ∈ N. We assume that

0 < ρ(xn − Txn) = ρ(Txn−1 − Txn), ∀n ∈ N.

Since T is a cyclic (α, β)-admissible type F -weak contraction for any n ∈ N we
have

τ + F (ρ(Txn−1 − Txn)) ⩽ τ + α(xn−1)β(xn)F (ρ(Txn−1 − Txn))

⩽ F (max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(12(x− Ty)) + ρ(12(y − Tx)

2
}).

Repeating this process, we get

F (ρ(Txn − Txn−1))

⩽ F (max{ρ(xn − xn−1), ρ(xn − Txn), ρ(xn−1 − Txn−1)

,
ρ(12(xn − Txn−1)) + ρ(12(xn−1 − Txn))

2
})− τ

= F (max{ρ(xn − xn−1), ρ(xn − xn+1), ρ(xn−1 − xn)

,
ρ(xn − xn) + ρ(xn−1 − xn+1)

2
})− τ

= F (max{ρ(xn − xn−1), ρ(xn − xn+1)})− τ. (3)

If there exists n ∈ N such that max{ρ(xn − xn−1), ρ(xn − xn+1)} = ρ(xn − xn+1)
then (3) becomes

F (ρ(xn+1 − xn)) ⩽ F (ρ(x− xn))− τ < F (ρ(xn+1 − xn)).

It is a contradiction. Therefore,

max{ρ(xn − xn−1), ρ(xn − xn+1)} = ρ(xn − xn−1)

for all n ∈ N. Thus, from (3), we have

F (ρ(xn+1 − xn)) ⩽ F (ρ(xn − xn−1))− τ

for all n ∈ N. It implies that

F (ρ(xn+1 − xn)) ⩽ F (ρ(x1 − x0))− nτ (4)

for all n ∈ N. Taking the limit as n → ∞ in (14), we get

lim
n→∞

F (ρ(xn+1 − xn)) = −∞

that together with (F2) gives

lim
n→∞

ρ(xn+1 − xn) = 0. (5)
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Now, we want to show that {xn} is a Cauchy sequence. Suppose to the contrary,
that {xn} is not a Cauchy sequence. Then there are ε > 0 and sequences {m(k)}
and {n(k)} such that for all positive integers k, n(k) > m(k) > k,

ρ(xn(k) − xm(k)) ⩾ ε and ρ(2(xn(k)−1 − xm(k))) < ε. (6)

Now for all k ∈ N, we have

ε ⩽ ρ(xn(k) − xm(k))

⩽ ρ(2(xn(k) − xn(k)−1)) + ρ(2(xn(k)−1 − xm(k)))

< ρ(2(xn(k) − xn(k)−1)) + ε. (7)

Taking the limit as k → +∞ in (7), using (5) from ∆2-condition, we get

lim
k→∞

ρ(xn(k) − xm(k)) = ε. (8)

Then, we get

ρ(2(xn(k) − xm(k))) ⩽ ρ(2(xn(k) − xn(k)+1 + xn(k)+1 − xm(k)))

⩽ ρ(4(xn(k) − xm(k)) + ρ(4(xn(k)+1 − xm(k)+1 + xm(k)+1 − xm(k)))

⩽ ρ(4(xn(k) − xm(k)) + ρ(8(xn(k)+1 − xm(k)+1)) + ρ(8(xm(k)+1 − xm(k))). (9)

By taking the limit as k → +∞ in (9), using (5) and (8), we deduce that

lim
k→∞

ρ(xn(k)+1 − xm(k)+1) = ε. (10)

Now, by (2), we get

τ + F (ρ(xn(k)+1 − xm(k)+1)) ⩽ τ + α(xn(k))β(xm(k))F (ρ(xn(k)+1 − xm(k)+1))

⩽ F (max{ρ(xn(k) − xm(k))

, ρ(xn(k) − xn(k)+1), ρ(xm(k) − xm(k)+1)

,
ρ( 1

2
(xn(k) − xm(k)+1)) + ρ( 1

2
(xm(k) − xn(k)+1))

2
})}). (11)

where

ρ(
1

2
(xn(k) − xm(k)+1)) = ρ(

1

2
(xn(k) − xm(k) + xm(k) − xm(k)+1))

⩽ ρ((xn(k) − xm(k)) + ρ(xm(k) − xm(k)+1)

⩽ ε+ ρ(xm(k) − xm(k)+1) (12)

and

ρ(
1

2
(xm(k) − xn(k)+1) = ρ(

1

2
(xm(k) − xn(k) + xn(k) − xn(k)+1))

⩽ ρ(xm(k) − xn(k)) + ρ(xn(k) − xn(k)+1)

⩽ ε+ ρ(xn(k) − xn(k)+1). (13)

By taking the limsup on both sides of (11), applying (5), (10), (12), (13) and
from (F3∗), we obtain

τ + F (ε) ⩽ F (ε)
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which is a contradiction. Hence {xn} is a Cauchy sequence. Since Xρ is complete,
there exists x∗ is a point such that xn → x∗. Since Xρ is complete, there exists x∗is
a fixed point of T by two following cases.
F is continuous. In this case, we consider two following cases.
Case 1. For each n ∈ N, there exists in ∈ N such that xin+1 = Tx∗ and in > in−1

where i0 = 1. Then we have

x∗ = lim
n→∞

xin+1 = lim
n→∞

Tx∗ = Tx∗.

This proves that x∗ is a fixed point of T.
Case 2. There exists n0 ∈ N such that xn+1 ̸= Tx∗ for all n ⩾ n0. That is
ρ(Txn−Tx∗) > 0 for all n ⩾ n0. Assume that (c) is held. That is α(xn)β(x

∗) ⩾ 1.
It follows from (14) and (F1)

τ + F (ρ(xn+1 − Tx∗)) ⩽ τ + α(xn)β(x
∗)F (ρ(Txn − Tx∗))

⩽ F (max{ρ(xn − x∗), ρ(xn − Txn), ρ(x
∗ − Tx∗),

ρ(xn − Tx∗) + ρ(x∗ − Txn)

2
})

= F (max{ρ(xn − x∗), d(xn − xn+1), d(x
∗ − Tx∗),

ρ(xn − Tx∗) + ρ(x∗ − xn+1)

2
})

= F (max{ρ(xn − x∗), d(xn − xn+1), d(x
∗ − Tx∗),

ρ(xn − Tx∗) + ρ(x∗ − Tx∗) + ρ(x∗ − xn+1)

2
}). (14)

If ρ(x∗ − Tx∗) > 0 then by the fact

lim
n→∞

ρ(xn − x∗) = lim
n→∞

ρ(x∗ − xn+1) = 0,

there exists n1 ∈ N such that for all n ⩾ n1, we have

max{ρ(xn − x∗), ρ(xn − xn+1), ρ(x
∗ − Tx∗),

ρ(xn − Tx∗) + ρ(x∗ − Tx∗) + ρ(x∗ − xn+1)

2
}

= ρ(x∗ − Tx∗)).

From (14), we get

τ + F (ρ(xn+1 − Tx∗)) ⩽ τ + α(xn)β(x
∗)F (ρ(xn+1 − Tx∗)) ⩽ F (ρ(x∗ − Tx∗)),(15)

for all n ⩾ max{n0, n1}. Since F is continuous, taking the limit as n → ∞ in (15),
we obtain

τ + F (ρ(x∗ − Tx∗)) ⩽ τ + α(x∗)β(x∗)F (ρ(x∗ − Tx∗)) ⩽ F (ρ(x∗ − Tx∗)).

It is contradiction. Therefore, ρ(x∗ − Tx∗) = 0, that is, x∗ is a fixed point of T.
Now, if T is continuous, we have

ρ(x∗ − Tx∗) = lim
n→∞

ρ(xn − Txn) = lim
n→∞

ρ(xn − xn+1) = 0.

This proves that x∗ is a fixed point of T. By two above cases, T has a fixed point
x∗.
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Now, we prove that the fixed point of T is unique. Let x∗1, x
∗
2 be two fixed points of

T. Suppose to the contrary that x∗1 ̸= x∗2. Then Tx∗1 ̸= Tx∗2, therefore, ρ(Tx−Ty) =
ρ(x− y) > 0. Since α(x∗1)β(x

∗
2) ⩾ 1, it follows from (2) that

τ + F (ρ(x∗1 − x∗2)) ⩽ τ + α(x∗1)β(x
∗
2)F (ρ(x∗1 − x∗2)) = τ + α(x∗1)β(x

∗
2)F (ρ(Tx∗1 − Tx∗2))

⩽ F (max{ρ(x∗1 − x∗2), ρ(x
∗
1 − Tx∗1), ρ(x

∗
2 − Tx∗2),

ρ(x∗1 − Tx∗2), ρ(x
∗
2 − Tx∗1)

2
})

= F (max{ρ(x∗1 − x∗2), ρ(x
∗
1 − Tx∗1), ρ(x

∗
2 − Tx∗2),

ρ(x∗1 − x∗2), ρ(x
∗
2 − x∗1)

2
})

= F (ρ(x∗1 − x∗2)).

It is a contradiction. Then ρ(x∗1 − x∗2) = 0, that is x∗1 = x∗2. This proves that the
fixed point of T is unique. ■

Example 2.5 The map T in Example 2.3 satisfies all the hypotheses of Theorem
??, hence T has a unique fixed point x = 0.

Corollary 2.6 Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a
cyclic (α, β)-admissible type F -contraction satisfying the following conditions:

(a) there exists x0 ∈ Xρ such that α(x0) ⩾ 1 and β(x0) ⩾ 1,
(b) T is continuous,

then T has a fixed point. Moreover, if α(x) ⩾ 1 and β(y) ⩾ 1 for all x, y ∈ Fix(T ),
then T has a unique fixed point.

Proof The proof of Corollary 2.6 because of the Remark 2 is proved as in Theorem
??. ■

Corollary 2.7 Let Xρ be a ρ-complete modular space and T : Xρ → Xρ a cyclic
(α, β)-admissible mapping satisfying the following conditions:

(a) for all x, y ∈ Xρ where a, b, c ⩾ 0 and a+ b+ c+ 2e < 1

ρ(Tx− Ty) > 0 ⇒ τ + α(x)β(y)F (ρ(Tx− Ty))

⩽ aρ(x− y) + bρ(x− Tx)

+ cρ(y − Ty) + e[ρ(x− Ty) + ρ(y − Tx)], (16)

(b) there exists x0 ∈ Xρ such that α(x0) ⩾ 1 and β(x0) ⩾ 1, or
(c) T is continuous,

then T has a fixed point. Moreover, if α(x) ⩾ 1 and β(y) ⩾ 1 for all x, y ∈ Fix(T ),
then T has a unique fixed point.
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Proof For all x, y ∈ Xρ, we have

aρ(x− y) + bρ(x− Tx)

+cd(y − Ty) + e[ρ(x− Ty) + ρ(y − Tx)]

⩽ (a+ b+ c+ 2e)max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x− Ty), ρ(y − Tx)

2
}

⩽ max{ρ(x− y), d(x, Tx), ρ(y − Ty),
ρ(x− Ty), ρ(y − Tx)

2
}.

Then, by (F1) we see that (2) is a consequence of (16). Than the corollary is
proved. ■

3. Periodic point results for cyclic (α, β)-admissible type F -contractions

In this section, we prove some periodic point results for self-mappings on a modular
space.

Theorem 3.1 Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be is cyclic
(α, β)-admissible mapping satisfying the following conditions:

(a) there exists τ > 0, F ∈ F and satisfying ρ(Tx− Ty) > 0 such that

τ + α(x)β(Tx)F (ρ(Tx− T 2x)) ⩽ F (ρ(x− Tx))

hold for all x ∈ Xρ,
(b) there exists x0 ∈ Xρ such that α(x0) ⩾ 1 and β(x0) ⩾ 1,
(c) T is continuous,
(d) if x ∈ Fix(Tn) and x /∈ Fix(T ), then α(Tn−1x)β(Tnx) ⩾ 1.

Then Fix(Tn) = Fix(T ) for all n ∈ N.

Proof Define a sequence {xn} by xn = Tnx0 = Txn−1 for all n ∈ N. Since T is a
cyclic (α, β)-admissible mapping and α(x0) ⩾ 1 then β(x1) = β(Tx0) ⩾ 1 which
implies α(x2) = α(Tx1) ⩾ 1. By continuing this process, we get α(x2n) ⩾ 1 and
β(x2n−1) ⩾ 1 for all n ∈ N. Again, since T is a cyclic (α, β)-admissible mapping
and β(x0) ⩾ 1, by the similar method, we have β(x2n) ⩾ 1 and α(x2n−1) ⩾ 1 for
all n ∈ N. That is, α(xn) ⩾ 1 and β(xn) ⩾ 1 for all n ∈ N ∪ {0}. Equivalently,
α(xn−1)β(xn−1) ⩾ 1 for all n ∈ N.
We assume that

0 < ρ(Txn−1 − T 2xn−1), ∀n ∈ N.

From (a), we have

τ + F (ρ(xn − xn+1)) = τ + F (ρ(Txn−1 − T 2xn−1))

⩽ τ + α(xn−1)β(Txn−1)F (ρ(Txn−1 − T 2xn−1))

⩽ F (ρ(xn−1, Txn−1)),

or equivalently,

F (ρ(xn − xn+1)) ⩽ F (ρ(xn−1 − xn)− τ.
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By using a similar reasoning to the proof of Theorem 2.4, we see that the sequence
{xn} is a Cauchy sequence. By completeness of Xρ, {xn} converges to some point
x ∈ Xρ. By the condition (c), we have

ρ(x− Tx) = lim
n→∞

ρ(xn − Txn) = lim
n→∞

ρ(xn − xn+1) = 0.

That is, x = Tx. Hence, T has a fixed point and Fix(Tn) = Fix(T ) is true for
n = 1. Let n > 1 and assume, by contradiction, that x ∈ Fix(Tn) and x /∈ Fix(T ),
such that ρ(x− Tx) > 0. Now, applying (d) and (a), we have

τ + F (ρ(x− Tx)) ⩽ τ + F (ρ(T (Tn−1x)− T 2(Tn−1x)))

⩽ α(Tn−1x)β(Tnx)F (ρ(T (Tn−1x)− T 2(Tn−1x)))

⩽ F (ρ(Tn−1x− Tnx)))

Consequently we have

F (ρ(x− Tx)) ⩽ F (ρ(Tn−1x− Tnx)))− τ

⩽ F (ρ(Tn−2x− Tn−1x)))− 2τ

...

⩽ F (ρ(x− Tx)))− nτ.

By taking the limit as n → ∞ in the above inequality, we have F (ρ(x−Tx)) = −∞,
hence ρ(x − Tx) = 0, which is a contradiction. So, x = Tx. Hence Fix(Tn) =
Fix(T ). Taking α(x)β(y) = 1 for all x, y ∈ Xρ in Theorem 3.1, we get the following
result. ■

Corollary 3.2 Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a
continuous mapping satisfying ρ(Tx− T 2x) > 0 such that

τ + F (ρ(Tx− T 2x)) ⩽ F (ρ(x− Tx))

for some τ > 0 and for all x ∈ Xρ . Then Fix(Tn) = Fix(T ) for all n ∈ N.
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