
International Journal of

Mathematical Modelling & Computations

Vol. 09, No. 04, Fall 2019, 283- 295

Approximate Solution of the Second Order Initial Value Problem

by Using Epsilon Modified Block–Pulse Function

M. Mohammadia,∗, A. R. Vahidib and S. Khezerlooc

a,cDepartment of Mathematics, Islamic Azad university–south Tehran Branch, Tehran,

Iran,
bDepartment of Mathematics, Yadgar–e–Emam khomeyni (Rah) shahr–e–rey Branch,

Islamic Azad University, Tehran, Iran.

Abstract. The present work approaches the problem of achieving the approximate solution
of the second order initial value problems (IVPs) via its conversion into a Volterra integral
equation of the second kind (VIE2). Therefore, we initially solve the IVPs using Runge–Kutta
of the forth–order method (RK), and then convert it into VIE2, and apply the εmodified
block–pulse functions (εMBPFs) and their operational matrix for solving VIE2, which can
be transformed to a lower triangular system of algebric equations. Numerical examples showe
that the proposed scheme has a suitable degree of accuracy.

Received: 10 June 2019, Revised: 01 August 2019, Accepted: 15 September 2019.

Keywords: Initial value problems; Runge–Kutta method; Volterra integral equation;
εmodified block–pulse function.

Index to information contained in this paper

1 Introduction

2 Differential equation of the second–order

3 εModified block–pulse function (εMBPFs)

4 Main idea

5 Error analysis

6 Numerical examples

7 Conclusion

1. Introduction

As shown by the studies, differential equation is widely used for solving many
problems in mathematics [1, 16], physics [3], biology, and engineering in [12, 13].
A majority of the mentioned problems need an IVP solution; this means that
the solution to a differential equation should be provided to satisfy specific initial

∗Corresponding author. Email: st ma.mohammadi@azad.ac.ir

c⃝ 2019 IAUCTB
http://ijm2c.iauctb.ac.ir



284 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

condition. In recent years, many different methods have been used to estimate the
solution of ordinary differential equation(ODE).
For example, Mastorakis et al. [12] combined the genetic algorithm with the

Neider–Mead method to solve the second–order. In addition, IVP of the form y′′ =
f(x, y) Mateescu [13] used the classical genetic algorithm to achieve approximate
solution of second order IVPs. Another research also introduced adaptating neural
networks to solve the second order IVPs [8]. Moreover, Fatimah et al. [5] proposed
adapting differential evolution algorithm to solve the second order IVPs of the
form y′′ + a1(x)y

′ + a0(x)y = b(x). Bilesanmi et al. [3] obtained the approximate
solution of the second order IVPs via its conversion into an optimization problem.
In another study, Edeki et al. [4] applied the DTM method for solving linear and
nonlinear IVPs of second order ODE. Furthermore, Fatimah et al. [5] proposed
that the differential evolution (DE) algorithm could be utilized for finding highly
precise approximate solution of second order IVPs. Finally, Hasan in [6] studied
scientific computation of IVP. Given the differential equation of the second order:

y′′ = f(x, y, y′) (1)

an IVPs for a second order differential eqation is the problem of finding a solution
y(x) to Eq. (1) that satisfies an initial conditions y(x0) and y′(x0) are the fixed
states. We cosider the IVP as follows:{

y′′ = f(x, y, y′)

y(x0) = y0, y
′(x0) = y1

(2)

The present paper intended to solve Eq. (2) via Runge–Kutta of the forth–order
method [1, 2]. For this purpose, IVP of the second order is converted into a VIE2
and this equation is solved by applying the basis function εmodified block-pulse
[15]. One of the reasons for adopting this approach is that some problems of ODEs
via analytical methods of ODE like the Euler method [14], Taylor method [14],
Runge–Kutta method and so, did not give a good approximate; therefore, the
problems were converted into VIE2 to improve the approximate solution.
It should be mentioned that section 2 reviews differential equation and RK

method and section 3 reviews the εmodified block-pulse function. In addition, sec-
tion 4 deals with the proposed method and section 5 presents Error analysis. Then,
section 6 gives the numerical results, and we show the results of Theorem 5.2 for
all examples in Table 5 and section 7 concludes the study.

2. Differential equation of the second–order

This section reviews differential eqation [3] and Rung–Kutta method [1] that we
used for obtaining the approximate solution of differential equation of the second
kind.

Definition 2.1 ([2]) It is widely accepted that a second order linear differential
equation for function y would be

y′′ + a1(x)y
′ + a0(x)y = b(t) (3)

so that a1, a0, b refer to the functions on the interval I ⊂ R. In addition, Eq. (3)
(a) would be homogeneos iff the source b(x) = 0 for all x ∈ R.



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 285

(b) would have constant coefficients if a1 and a0 are constants, and
(c) would have variable coefficients if either a1 or a0 is not constant.

2.1 Runge–Kutta of forth–order method [1, 2]

The RK scheme is a method with the greatest utilization to solve the differential
equation with numerical procedures. In order to compute the solution of a first
order IVP. The following relations were utilized for a RK method of the forth–
order [1] 

k1 = hf(xn, yn)

k2 = hf(xn + h
2 , yn + k1

2 )

k3 = hf(xn + h
2 , yn + k2

2 )

k4 = hf(xn + h, yn + k3)

yn+1 = yn + 1
6(k1 + 2K2 + 2K3 + k4) +O(h5)

Moreover, the RK method could be utilized for the second order differential equa-
tion of the form

y′′ = f(x, y, y′)

for the second order differential equations, thus, the forth–order formulas would be
[2] 

k′1 = hf(xn, yn, y
′
n)

k′2 = hf(xn + h
2 , yn + k1

2 , y
′
n + k′

1

2 )

k′3 = hf(xn + h
2 , yn + k2

2 , y
′
n + k′

2

2 )

k′4 = hf(xn + h, yn + k3, y
′
n + k′3)

y′n+1 = y′n + 1
6(k

′
1 + 2k′2 + 2k′3 + k′4) +O(h5)

3. εModified block–pulse function (εMBPFs)

It is notable that many authors investigated and reviewed the block–pulse functions
(BPFs) method and used it to solve many problems, definition, vector forms, BPFs
expansion and operational matrix [7, 11]. This section presents a review of εMBPFs.

Definition 3.1 ([10]) A (n + 1)–set of εMBPFs ϕi(t), i = 0, . . . , n − 1 on the
interval [0, T ) is defined as:

ϕ0(t) =

{
1 , t ∈

[
0, Tn − ε

)
= I0

0 , o.w

ϕn(t) =

{
1 , t ∈ [T − ε, T ) = In

0 , o.w
(4)

ϕi(t) =

{
1 , t ∈

[
iT
n − ε, (i+1)T

n − ε
)
= Ii, 0 < i < n

0 , o.w

Therefore, there are some properties for εMBPFs as follows:



286 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

εMBPFs are disjoint and orthogonal

ϕi(t)ϕj(t) =

{
ϕi(t) , i = j

0 , i ̸= j
, i, j = 0, . . . , n

∫ 1

0
ϕi(t)ϕj(t)dt = hδij ,

and εMBPFs like BPFs are complete:

∫ 1

0
f2(t)dt =

∞∑
i=0

f2
i ∥ϕi(t)∥2.

Using notation Φn(t) = [ϕ0(t), . . . , ϕn(t)]
T , the following properties are achieved:

Φn+1(t)Φ
T
n+1(t) =


ϕ0(t) 0 0 . . . 0
0 ϕ1(t) 0 . . . 0
...

. . . 0
0 . . . 0 . . . ϕn(t)


ΦT
n+1(t)Φn+1(t) = 1

Φn+1(t)Φ
T
n+1(t)V = Ṽ Φn+1(t) (5)

ΦT
n+1(t)BΦn+1(t) = B̂TΦn+1(t), (6)

if h = T
n then the operational matrix of εMBPFs would be defined in this way:

P(n+1)×(n+1) =



h−ε
2 h− ε h− ε . . . h− ε h− ε

0 h
2 h . . . h h

0 0 h
2 . . . h h

...
...

...
. . .

...
...

0 0 0 . . . h
2 h

0 0 0 . . . 0 ε
2


, (7)

and it has features and usage similar to the operational matrix BPFs in [3, 11].

Definition 3.2 ([10]) εMBPFs expansion of continuous function f(t) ∈ L2([0, 1))
based on ϕi, i = 0, . . . , n would be defined as:

f(t) ≃ f̂n+1 =
n∑

i=0

fiϕi(t),

where

fi =
1

∆(Ii)

∫ 1

0
f(t)ϕi(t)dt,

and ∆(Ii) is the length of interval Ii defined (4).



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 287

4. Main idea

Let {
y′′ = f(x, y, y′)

y(x0) = α, y′(x0) = β

or

{
y′′ + a1(x)y

′ + a0(x)y = b(x)

y(x0) = α, y′(x0) = β
(8)

where α and β are the given constants.
For this work, we transform Eq. (8) into VIE2. Therefore, we consider

y′′(x) = q(x). (9)

Then, both sides of Eq. (9) from 0 to x is integrated and yielded∫ x

0
y′′(x)dx =

∫ x

0
q(t)dt

y′(x)− y′(x0) =

∫ x

0
q(t)dt

=⇒y′(x) = β +

∫ x

0
q(t)dt. (10)

Again, both side of the Eq. (10) would be integrated based on x from 0 to x so
that:

∫ x

0
y′(x)dx =

∫ x

0
βdx+

∫ x

0

∫ x1

0
q(t)dtdx1

=⇒y(x) = α+ βx+

∫ x

0
(x− t)q(t)dt. (11)

Then, substituting Eq. (9), Eq. (10), and Eq. (11) into Eq. (8) gives

q(x) + a1(x)(β +

∫ x

0
q(t)dt) + a0(x)(α+ βx+

∫ x

0
(x− t)q(t)dt) = b(x)

Then,

q(t) = b(x)− βa1(x)− αa0(x)− βxa0(x)−
∫ x

0
(a1(x)− a0(x)(x− t))q(t)dt.

Finally, we obtain the VIE2 as follows:

q(x) = f(x) +

∫ x

0
k(x, t)q(t)dt, (12)



288 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

so that

f(x) = b(x)− βa1(x)− αa0(x)− βxa0(x), k(x, t) = −(a1(x) + a0(x)(x− t)).

Then, applying εMBPFs method for solving Eq. (12) and approximating functions
f , q and k with respect to εMBPFs would give:

k(x, t) ≃ ΦT (x)KΦ(t)

f(x) ≃ F tΦ(x) = ΦT (x)F (13)

q(x) ≃ QTΦ(x) = ΦT (x)Q

Here, m–vectors F , Q, and m×m matrix K respectively stand for εMBPFs coef-
ficients of f , q and k. Note that Q in Eq. (13) is the unknown vector and should
be obtained. Therefore, substituting (13) into (12) gives

QTΦ(x) ≃ F TΦ(x) +

∫ t

0
ΦT (x)KΦ(t)ΦT (t)Qds

= F TΦ(x) + ΦT (x)K

∫ t

0
Φ(t)ΦT (t)Qds. (14)

Using (5) and operational matrix P in (7), we have

QTΦ(x) ≃ F TΦ(x) + ΦT (x)KQ̃PΦ(x), (15)

where, KQ̃P represets (n+1)× (n+1) matrix. Thus, if ε equals to 0, just n BPFs
would exist and the vectors dimension and matrices decline to n.
By Eq. (6), we can write:

QTΦ(x) ≃ F TΦ(x) + Q̂TΦ(x),

where Q̂ refers to (n+1)–vector with the components equivalent to diagonal entries
of the matrix KQ̃P . Finally,

Q− Q̂ = F.

Therefore, the vector Q̂ could be written as follows:

Q̂ =


h−ε
2 k0,0q0

(h− ε)k1,0q0 +
h
2k1,1q1

(h− ε)k2,0q0 + hk2,1q1 +
h
2k2,2q2

...
(h− ε)kn,0q0 + hkn,1q1 + · · ·+ hkn,(n−1)qn−1 +

ε
2kn,nqn

 .



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 289

Now, substituting (15) into Eq. (14) would give:

G=


1−

(
h−ε
2

)
k0,0 0 0 . . . 0

−(h− ε)k1,0 1−
(
h
2

)
k1,1 0 . . . 0

−(h− ε)k2,0 −hk2,1 1−
(
h
2

)
k2,2 . . . 0

...
...

...
. . .

...
−(h− ε)kn,0 −hkn,1 −hkn,2 . . . 1−

(
ε
2

)
kn,n




q0
q1
q2
...
qn

 .

Now, replacing ≃ with =, Eq. (11) reduces to a linear lower triangular system as:

G = F

Cosequently, unknown cofficients Qj , j = 0, 1, . . . , n are calculated by solving this

linear equation system. Now, if εj = jh
k , j = 0, 1, . . . , n − 1, there would be k

numerical answers of f̂εj , j = 0, . . . , n − 1 so that based on theorem 5.2, we can
estimate the error of:

f̄(t) =

(
1

k

) n−1∑
j=0

f̂εj (t).

5. Error analysis

This section addresses error analysis. For simplicity we assume T = 1 and h = 1
n

in the following theorem.

Theorem 5.1 If f̂n =
∑n

i=0 fiϕi(t) and fi = 1
∆(Ii)

∫ 1
0 f(t)ϕi(t)dt, i = 0, . . . , n,

then:

(i) δ =
∫ 1
0 (f(t)−

∑n
i=0 fiϕi(t))

2dt, achieves its minimum value.

(ii) {f̂n(t)} approaches f(t) point wise.

(iii)
∫ 1
0 f2(t)dt =

∑∞
i=0 f

2
i ∥ϕi∥2.

Proof See [9]. ■

Theorem 5.2 Suppose that

(1 ) f(t) is continuous and could be differentiated in [−h, 1+h] with bounded deriva-
tive so that |f ′(t)| < M .

(2 ) f̂ ih

k
(t), i = 0, 1, . . . , n− 1 are correspondingly BPFs.

h
k MBPs, . . . , (k−1)h

k MBPs expansions of f(t) base on (m+1) εMBPFs over
internal [0, 1).

(3 ) f̄(t) =
(
1
k

)∑n−1
i=0 f̂ ih

k
(t),

then, ∥f(t)− f̂ ih

k
(t)∥ = O(h), and ∥f(t)− f̄(t)∥ = O

(
h
k

)
in [h, 1− h].

Proof See [10]. ■



290 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

6. Numerical examples

The εMBPFs, is applied for examples. As seen in the examples below, n refers to
the number of the block–pulse function and represents the times of modification if k
is equal to 0. Moreover, expansion was on the basis BPF; in other ways, expansion
was on the basis of εMBPFs. In these examples, the approximate solution presented
method was compared with the exact solution and RK method. Tables 1–4 presents
the numerical results of Examples 1–4, respectively. Moreover, Table 5 reports the
results of Theorem 5.2. For each example, we have two figures, one of the figures
compared the approximate solution by RK method with the exact solution, and the
other figure made a comparison between the approximate solution of the present
method with the exact solution. The computations related to the examples were
performed using Matlab R2017a.

Example 6.1 Consider the following IVP:

{
y′′(x) + y′(x) = −e−x

y(0) = 0, y′(0) = 1
(16)

with the exact solution y(x) = xe−x. We converted Eq. (16) into VIE2 and consid-
ered y′′(x) = q(x) by integrating both sides. Finally, we have:

q(x) = 1− e−x +

∫ x

0
−q(t)dt.

Table 1 reports the numerical results. Moreover, Figure 1 shows the results of the
exact and approximate solution by RK4 method and Figure 2 depicts the result of
the present method.

Table 1. Numerical results for Example 6.1.

Value Exact Approximate n = 128, k = 0 n = 128, k = 3
x solution solution Present Present

by RK4 method method
0 0.000000 0.000000 0.003881 0.002915
0.1 0.090484 0.090325 0.088562 0.093328
0.2 0.163746 0.162999 0.163228 0.161943
0.3 0.222245 0.220562 0.222645 0.221632
0.4 0.268128 0.265234 0.269064 0.268281
0.5 0.303265 0.298945 0.304440 0.303853
0.6 0.329287 0.323378 0.328768 0.330052
0.7 0.347610 0.339994 0.347492 0.347199
0.8 0.359463 0.350058 0.359532 0.359357
0.9 0.365913 0.354667 0.366006 0.365928



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 291

Figure 1. The result solution by RK4
method (Example 6.1).

Figure 2. The result solution of the pro-
posed scheme for n = 128, k = 3 (Exam-
ple 6.1).

Example 6.2 Consider the following IVP:

{
y′′(x) + y(x) = −2 + x− x2

y(0) = 0, y′(0) = 1
(17)

with the exact solution y(x) = x − x2. Therefore, we converted of Eq. (17) into
VIE2 and considered y′′(x) = q(x) by integrating both sides in order to have:

q(x) = x− x2 +
x3

6
− x4

12
+

∫ x

0
(t− x)q(t)dt.

Table 2 peresents the numerical results. Moreover, Figure 3 shows the results
of the exact and approximate solutions by RK4 method and Figure 4 depicts the
results of the present method.

Table 2. Numerical result for Example 6.2.

Value Exact Approximate n = 128, k = 0 n = 128, k = 3
x solution solution Present Present

by RK4 method method
0 0.000000 0.000000 0.003886 0.002918
0.1 0.090000 0.089842 0.088115 0.092796
0.2 0.160000 0.159252 0.159526 0.158348
0.3 0.210000 0.208337 0.210308 0.209526
0.4 0.240000 0.237205 0.240459 0.240074
0.5 0.250000 0.245968 0.249981 0.249992
0.6 0.240000 0.234738 0.240459 0.239281
0.7 0.210000 0.203627 0.210308 0.211082
0.8 0.160000 0.152747 0.159526 0.160697
0.9 0.090000 0.082205 0.088115 0.089682



292 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

Figure 3. The result solution by RK4
method (Example 6.2).

Figure 4. The result solution of the pro-
posed scheme for n = 128, k = 3 (Exam-
ple 6.2).

Example 6.3 This example consists of the following IVP:

{
y′′(x) + y′(x) = ex

y(0) = 0, y′(0) = 1
(18)

with the exact solution y(x) = sinh(x). Therefore, we converted of Eq. (18) into
VIE2 and considered y′′(x) = q(x) , by integrating the both sides in order to have:

q(x) = ex − 1 +

∫ x

0
−q(t)dt.

Table 3 presents the numerical results. Moreover, Figure 5 shows the results
of the exact and approximate solution by RK4 method and Figure 6 depicts the
results of the present method.

Table 3. Numerical results for Example 6.3.

Value Exact Approximate n = 128, k = 0 n = 128, k = 3
x solution solution Present Present

by RK4 method method
0 0.000000 0.000000 0.003901 0.002927
0.1 0.100167 0.100000 0.097807 0.103696
0.2 0.201336 0.200509 0.200535 0.198544
0.3 0.304520 0.302532 0.305334 0.303292
0.4 0.410752 0.407091 0.413285 0.411172
0.5 0.521095 0.515233 0.525502 0.523296
0.6 0.636654 0.628039 0.633875 0.640823
0.7 0.758584 0.746638 0.757602 0.755153
0.8 0.888106 0.872219 0.889150 0.886538
0.9 1.026517 1.006036 1.029877 1.027075



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 293

Figure 5. The result solution by RK4
method (Example 6.3).

Figure 6. The result solution of the pro-
posed scheme for n = 128, k = 3 (Exam-
ple 6.3).

Example 6.4 Consider the following IVP [14]

{
y′′(x)− 0.1y′(x) = −x

y(0) = 0, y′(0) = 1
(19)

with the exact solution y(x) = 100x−5x2+990(e−0.1x−1). Therefore, we converted
of Eq. (19) into VIE2 and considered y′′(x) = q(x) , by integrating the both sides
in order to have:

q(x) = −1

6
x3 + x+

∫ x

0
−0.1q(t)dt.

Table 4 presented the numerical results. Moreover, Figure 7 depicts the results of
the exact and approximate solution by RK4 method and Figure 8 shows the result
of the present method.

Table 4. Numerical results for Example 6.4.

Value Exact Approximate n = 128, k = 0 n = 128, k = 3
x solution solution Present Present

by RK4 method method
0 0.000000 0.000000 0.003905 0.002929
0.1 0.099335 0.100502 0.097025 0.102796
0.2 0.196687 0.201512 0.195935 0.194058
0.3 0.291078 0.302030 0.291800 0.289991
0.4 0.381545 0.401047 0.383609 0.381888
0.5 0.467130 0.497543 0.470359 0.468745
0.6 0.546888 0.590486 0.545091 0.549573
0.7 0.619882 0.678837 0.619338 0.617982
0.8 0.685183 0.761544 0.685658 0.684463
0.9 0.741873 0.837546 0.743089 0.742074



294 M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295.

Figure 7. The result solution by RK4
method (Example 6.4).

Figure 8. The result solution of the pro-
posed scheme for n = 128, k = 3 (Exam-
ple 6.4).

Table 5. Bound of error.

Example Bound of error ∥f − f̄∥
n = 128, k = 0 n = 128, k = 3

1 3.9× 10−3 2.9× 10−3

2 3.9× 10−3 2.9× 10−3

3 4.4× 10−3 4.2× 10−3

4 3.9× 10−3 3.5× 10−3

7. Conclusion

The present research solved an initial value problem by transformation into Volterra
integral equation of the second type. It was found that the numerical solution of
these equations using the expansion based on εMBPFs would be better than the
numerical solution of the Runge–Kutta of the fourth–order method. Consequently,
the results obtained in Tables 1–4 and bound of errors in Table 5 confirmed that
method is efficient.

References

[1] A. O. Anidu, S. A. Arekete, A. O. Adedayo and A. O. Adekoya, Dynamic computation of rung–
kutta forth order algorithm for first and second order ordinary differential equation using java,
International Journal of Computer Science, 12 (3) (2015) 211–218.

[2] K. Atkinson, W. Han and D. Stewart, Numerical solution of ordinary differential equations, John
Wiley and Sons, (2009).

[3] A. A. Bilesanmi, A.Senapon-wusu, A. L. Olutimo, Solution of second–order ordinary differential
equations via simulated annealing, Open Journal of Optimization, 8 (1) (2019) 32–38.

[4] S. O. Edeki, H. I. Okagbue, A. A. Opanuga and S. A. Adeosun, A semi–analytical method for
solutions of a certain class of second order ordinary differential equations, Journal of Applied Math-
ematics, 5 (2014) 2034–2041.

[5] B. O. Fatimah, W. A. Senapon and A. M. Adebowale, Solving ordinary differential equations with
evolutionary algorithms, Journal of Optimization, 4 (3) (2015) 69–73.

[6] A. Hasan, Numerical computation of initial value problem by various techniques, Journal of Science
and Art, 1 (42) (2018) 19–32.

[7] J. Jiange and W. Schaufelberger, Block Pulse Functions and Their Applications in Control Sys-
tems, Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin Heidelberg, Berlin,
Germany, (1992).

[8] A. Junaid, A. Z. Raja and I. M. Qureshi, Evolutionary computing approach for the solution of
initial value problems in ordinary differential equations, World Academic of Science, Engineering
and Technology, 31 (2009) 574–577.



M. Mohammadi et al./ IJM2C, 09 - 04 (2019) 283-295. 295

[9] K. Maleknejad, M. Khodabin and F. Hosseini Shekarabi, Modified block-pulse functions for numerical
solution of stachastic Volterra integral equations, Journal of Applied Mathematics, 2014 (2014),
doi: 10.1155/2014/469308.

[10] K. Maleknejad and B. Rahimi, Modification of block–pulse functions and their application to solve
numbering Volterra integral of the first kind, Communications in Nonlinear Science and Numerical
Simulation, 16 (6) (2011) 2469–2477.

[11] Z. Masouri, Numerical expansion–iterative method for solving second kind Volterra and fredholm
integral equationss using block–pulse functions, Advanced Computational Techniques in Electro-
magnetics, 2012 (2012), doi: 10.5899/2012/acte-00108.

[12] N. E. Mastorakis, Numerical solution of non–linear ordinary differential equation via collocation
method (finite elements) and genetic algorithms, Proceedings of the 6th WSEAS International Con-
ference on Evolutionary Computing, (2005) 36–42.

[13] G. D. Mateescu, On the application of genetic algorithms to differential equations, Romanian Journal
of Economic Forecasting, 7 (2) (2006) 5–9.

[14] M. R. Nadir and A. Rahmoune, Initial value problems between Taylor and Volterra integral equa-
tions, MATLAB Journal, 1 (1) (2018) 1-12.

[15] A. M. Wazwaz, Linear and nonlinear integral equations, Methods and Applications, Springer Berlin
Heidelberg, (2011).

[16] N. Yizengaw, Numerical solution of initial value ordinary differential equations using finite difference
method, Open Access Library Journal, 2 (2015) 1-7, doi: 10.4236/oalib.1101614.


