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1. Introduction

Human Immunodeficiency Virus (HIV) is one of the most dangerous viruses in
the world that leads to Acquired Immunodeficiency Syndrome (AIDS). This virous
involves the ribonucleic acid (RNA) instead of the deoxyribonucleic acid (DNA)
and finally the HIV mechanism can be completed during 10-15 years [12]. In 1980,

∗Corresponding author. Email: samadnoeiaghdam@gmail.com; snoei@istu.edu; noiagdams@susu.ru

c⃝ 2019 IAUCTB
http://ijm2c.iauctb.ac.ir



268 S. Noeiaghdam & E. Khoshrouye Ghiasi/ IJM2C, 09 - 04 (2019) 267-281.

the first case of HIV infection was reported. According to the recent enumeration,
more than 35 million people have been died by HIV virous and more than 37 million
people carry this virous in their body and they are living as a menace on the world.
Also, they can transmit this threat by having unprotected sex, forwarding from
mother to child and other ways [33, 36, 46, 51].
In last decades, many mathematical models have been presented to identify the

behavior of natural and artificial phenomena such as mathematical model of HIV
infection [34, 40, 54], model of Malaria viruses [53], model of computer viruses
[38, 39, 44] and many other models [13]. Also, these models have been solved by
many numerical or semi-analytical methods.
The HAM is among of the semi-analytical methods which has been presented

by Liao [28–32]. In this method, we have an operator, parameters and functions
that we have freedom to choose them. Selecting prepare parameters can lead to
find the solution of problem faster and more accurate than other semi-analytical
methods. In last decade, many authors applied the HAM for solving mathematical
and bio-mathematical problems such as model of computer viruses [44], model
of HIV infection for CD4+ T-cells [40], ill-posed problems [6] and others [17–23].
Moreover, recently in [42] we applied the CESTAC method [7, 8, 41] and the
CADNA library [11, 43] based on the stochastic arithmetic to find the optimal
step, the optimal error and the optimal value of convergence control parameter of
the HAM.
In some schemes, by combining the HAM by other methods or operators we can

construct new methods such as combining the HAM and Laplace transformations
(HATM) [9, 27, 40, 45], optimal homotopy analysis method [37], discrete homo-
topy analysis method [55], predictor homotopy analysis method [1, 50], homotopy
analysis Sumudu transform method [26] and many others [2, 10, 47, 49].
The aim of this paper is to present the HATM to solve the following non-linear

bio-mathematical model [36]

dT (t)

dt
= λT − µTT (t)− χT (t)V (t)

dI(t)

dt
= χT (t)V (t)− µII(t)− αI(t)Za(t),

dV (t)

dt
= ϵV µII(t)− µV V (t),

dZ(t)

dt
= λZ − µZZ(t)− βZ(t)I(t),

dZa(t)

dt
= βZ(t)I(t)− µZa

Za(t),

(1)

where T (t) and I(t) show the condensation of the susceptible and infected CD4+

T-cells at any time t, V (t) is the condensation of infectious HIV viruses and finally
Z(t) and Za(t) are the condensation of the CD8+ T-cells and population of the
activated CD8+ T-cells at any time t. List of parameters and their values are
presented in Table 1 [3, 4, 33, 46, 51, 52]. Moreover, in Figures 1 and 2 the life
cycle of HIV infection and its model on CD8+ T-cells are demonstrated [36].
The HATM obtains by combining the HAM with Laplace transformations. Re-

cently, the HATM has been applied to solve the various problems such as solving
singular problems [45], fractional modeling for BBM-Burger equation [24], Klein-
Gordon equations [25], fractional diffusion problem [5], partial differential equations
[35], fuzzy problems [9, 48] and others [14–16].
This research is organized in the following form: Section 2 is the main idea for
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Figure 1. HIV life cycle.

Figure 2. Diagram of HIV infection model of CD8+ T-cells.

solving the non-linear bio-mathematical model 1. The convergence theorem for
solving presented model is illustrated in Section 3. In Section 4, the numerical
results for N = 5, 10 are presented. Also, several ℏ-curves are demonstrated to
show the convergence regions of this problem. Furthermore, the plots of residual
error functions are presented to show the precision of method. Finally, Section 5 is
conclusion.

Table 1. List of parameters and their values.

Parameters Meaning Values
λT Rate of recruiting the susceptible CD4+ T-cells per unit time. 10 cell/mm3/day
µT Rate of decaying for susceptible CD4+ T-cells. 0.01 day−1

χ Rate of infecting for CD4+ T-cells by the virus. 0.000024 mm3 vir−1 day−1

µI Rate of the natural death for infected CD4+ T-cells. 0.5 day−1

ϵV Rate of generation for HIV virions by infected CD4+ T-cells. 100 vir. cell−1 day−1

µV Rate of the death for infectious virus. 3 day−1

α Rate of eliminating the infected cells by the activated CD8+ T-cells. 0.02 day−1

λZ Rate of recruiting the CD8+ T-cells per unit time. 20 cell/mm3/day
µZ Rate of the death for CD8+ T-cells. 0.06 day−1

β Rate of activation for CD8+ T-cells due to the attendance the infected CD4+ T-cells. 0.004 day−1

µZa
Rate of decaying for activated defence cells decay per unit time. 0.004 day−1
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2. Homotopy analysis transform method

Defining the linear operators LT , LI , LV , LZ , LZa
as follows

LT = LI = LV = LZ = LZa
= L,

where L is the Laplace transformation. Applying this operator for non-linear system
of Eqs. (1) as

L[T (t)] = T (0)

s
+

L[λT ]

s
− µT

s
L[T (t)]− χ

s
L[T (t)V (t)],

L[I(t)] = I(0)

s
+

χ

s
L[T (t)V (t)]− µI

s
L[I(t)]− α

s
L[I(t)Za(t)],

L[V (t)] =
V (0)

s
+

ϵV µI

s
L[I(t)]− µV

s
L[V (t)],

L[Z(t)] =
Z(0)

s
+

L[λZ ]

s
+

µZ

s
L[Z(t)]− β

s
L[Z(t)I(t)],

L[Za(t)] =
Za(0)

s
+

β

s
L[Z(t)I(t)]− µZa

s
L[Za(t)].

Let 0 ⩽ q ⩽ 1 be an embedding parameter, ℏ is an auxiliary pa-
rameter, HT (t),HI(t),HV (t),HZ(t) and HZa

(t) are the auxiliary functions,
LT , LI , LV , LZ , LZa

are the linear operators and NT , NI , NV , NZ , NZa
are the non-

linear operators then the following Homotopy maps can be defined as

HT [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)]

= (1− q)LT [T̂ (t; q)− T0(t)]− qℏHT (t)NT [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)],

HI [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)]

= (1− q)LI [Î(t; q)− I0(t)]− qℏHI(t)NI [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)],

HV [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)]

= (1− q)LV [V̂ (t; q)− V0(t)]− qℏHV (t)NV [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)],

HZ [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)]

= (1− q)LZ [Ẑ(t; q)− Z0(t)]− qℏHZ(t)NZ [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)],

HZa
[T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)]

= (1− q)LZa
[Ẑa(t; q)− Za0(t)]− qℏHZa

(t)NZa
[T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)],

where the non-linear operators NT , NI , NV , NZ , NZa
are defined in the following
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forms

NT [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] =
∂T̂ (t; q)

∂t
− λT + µT T̂ (t; q) + χT̂ (t; q)V̂ (t; q),

NI [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] =
∂Î(t; q)

∂t
− χT̂ (t; q)V̂ (t; q) + µI Î(t; q) + αÎ(t; q)Ẑa(t; q),

NV [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] =
∂V̂ (t; q)

∂t
− ϵV µI Î(t; q) + µV V̂ (t; q),

NZ [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] =
∂Ẑ(t; q)

∂t
− λZ + µZẐ(t; q) + βẐ(t; q)Î(t; q),

NZa
[T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] =

∂Ẑa(t; q)

∂t
− βẐ(t; q)Î(t; q) + µZa

Ẑa(t; q).

Now, we can construct the following zero order deformation equations as

(1− q)LT [T̂ (t; q)− T0(t)]− qℏHT (t)NT [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] = 0,

(1− q)LI [Î(t; q)− I0(t)]− qℏHI(t)NI [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] = 0,

(1− q)LV [V̂ (t; q)− V0(t)]− qℏHV (t)NV [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] = 0,

(1− q)LZ [Ẑ(t; q)− Z0(t)]− qℏHZ(t)NZ [T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] = 0,

(1− q)LZa
[Ẑa(t; q)− Za0(t)]− qℏHZa

(t)NZa
[T̂ (t; q), Î(t; q), V̂ (t; q), Ẑ(t; q), Ẑa(t; q)] = 0.

Using the following Taylor expansions as

T̂ (t; q) = T0(t) +

∞∑
m=1

Tm(t)qm, Î(t; q) = I0(t) +

∞∑
m=1

Im(t)qm,

V̂ (t; q) = V0(t) +
∞∑

m=1

Vm(t)qm, Ẑ(t; q) = Z0(t) +
∞∑

m=1

Zm(t)qm,

Ẑa(t; q) = Za0(t) +

∞∑
m=1

Zam(t)qm,

where

Tm =
1

m!

∂mT̂ (t; q)

∂qm

∣∣∣∣
q=0

, Im =
1

m!

∂mÎ(t; q)

∂qm

∣∣∣∣
q=0

, Vm =
1

m!

∂mV̂ (t; q)

∂qm

∣∣∣∣
q=0

,

Zm =
1

m!

∂mẐ(t; q)

∂qm

∣∣∣∣
q=0

, Zam =
1

m!

∂mẐa(t; q)

∂qm

∣∣∣∣
q=0

.

Defining the following vectors

T̂m(t) =

{
T0(t), T1(t), . . . , Tm(t)

}
, Îm(t) =

{
I0(t), I1(t), . . . , Im(t)

}
,

V̂m(t) =

{
V0(t), V1(t), . . . , Vm(t)

}
, Ẑm(t) =

{
Z0(t), Z1(t), . . . , Zm(t)

}
,

Ẑam(t) =

{
Za0(t), Za1(t), . . . , Zam(t)

}
,
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to construct the m-th order deformation equations as follows

LT [Tm(t)− χmTm−1(t)] = ℏHT (t)ℜT
m

(
T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1

)
,

LI [Im(t)− χmIm−1(t)] = ℏHI(t)ℜI
m

(
T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1

)
,

LV [Vm(t)− χmVm−1(t)] = ℏHV (t)ℜV
m

(
T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1

)
,

LZ [Zm(t)− χmZm−1(t)] = ℏHZ(t)ℜZ
m

(
T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1

)
,

LZa
[Zam(t)− χmZam−1(t)] = ℏHZa

(t)ℜZa
m

(
T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1

)
,

(2)

where

ℜT
m = L[Tm−1]−

Tm−1(0)

s
− (1− χm)

L[λT ]

s
+

µT

s
L[Tm−1(t)] +

χ

s
L

m−1∑
j=0

Tj(t)Vm−1−j(t)

 ,

ℜI
m = L[Im−1]−

Im−1(0)

s
− χ

s
L

m−1∑
j=0

Tj(t)Vm−1−j(t)

+
µI

s
L[Im−1(t)] +

α

s
L

m−1∑
j=0

Ij(t)Zam−1−j(t)

 ,

ℜV
m = L[Vm−1]−

Vm−1(0)

s
− ϵV µI

s
L[Im−1(t)] +

µV

s
L[Vm−1(t)],

ℜZ
m = L[Zm−1]−

Zm−1(0)

s
− (1− χm)

L[λZ ]

s
+

µZ

s
L[Zm−1(t)] +

β

s
L

m−1∑
j=0

Zj(t)Im−1−j(t)

 ,

ℜZa
m = L[Zam−1]−

Zam−1(0)

s
− β

s
L

m−1∑
j=0

Zj(t)Im−1−j(t)

+
µZa

s
L[Zam−1(t)],

and

χm =

0, m ⩽ 1

1, m > 1.

Applying the inverse Laplace transformation L−1 for Eqs. (2) we get

Tm(t) = χmTm−1(t) + ℏL−1
[
ℜT
m(t)

]
, Im(t) = χmIm−1(t) + ℏL−1

[
ℜI
m(t)

]
,

Vm(t) = χmVm−1(t) + ℏL−1
[
ℜV
m(t)

]
, Zm(t) = χmZm−1(t) + ℏL−1

[
ℜZ
m(t)

]
,

Zam(t) = χmZam−1(t) + ℏL−1
[
ℜZa
m (t)

]
,

and finally the approximate solutions can be obtained by
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Tm(t) =
m∑
j=0

Tj(t), Im(t) =
m∑
j=0

Ij(t), Vm(t) =
m∑
j=0

Vj(t),

Zm(t) =

m∑
j=0

Zj(t), Zam(t) =
m∑
j=0

Zaj(t).

(3)

3. Convergence theorem

By proving the following theorem, we can show the capabilities of the HATM to
solve the non-linear system of Eqs. (1).

Theorem 3.1 Let series solutions (3) be convergent that are constructed by the
m-th order deformation Eqs. (2). They must be the exact solution of system (1).

Proof Let the series solutions (3) be convergent. Hence, if

P1(t) =

∞∑
m=0

Tm(t), P2(t) =

∞∑
m=0

Im(t), P3(t) =

∞∑
m=0

Vm(t),

P4(t) =

∞∑
m=0

Zm(t), P5(t) =

∞∑
m=0

Zam(t),

then

limm→∞ Tm(t) = 0, limm→∞ Im(t) = 0,

limm→∞ Vm(t) = 0, limm→∞ Zm(t) = 0,

limm→∞ Zam(t) = 0.

(4)

So, we can write

N∑
m=1

[
Tm(t)− χmTm−1(t)

]
= TN (t),

N∑
m=1

[
Im(t)− χmIm−1(t)

]
= IN (t),

N∑
m=1

[
Vm(t)− χmvm−1(t)

]
= VN (t),

N∑
m=1

[
Zm(t)− χmZm−1(t)

]
= ZN (t),

N∑
m=1

[
Zam(t)− χmZam−1(t)

]
= ZaN (t),

(5)
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where Eqs. (4) and (5) are applied to construct the following relations as follows

N∑
m=1

[
Tm(t)− χmTm−1(t)

]
= lim

N→∞
TN (t) = 0,

N∑
m=1

[
Im(t)− χmIm−1(t)

]
= lim

N→∞
IN (t) = 0,

N∑
m=1

[
Vm(t)− χmVm−1(t)

]
= lim

N→∞
VN (t) = 0,

N∑
m=1

[
Zm(t)− χmZm−1(t)

]
= lim

N→∞
ZN (t) = 0,

N∑
m=1

[
Zam(t)− χmZam−1(t)

]
= lim

N→∞
ZaN (t) = 0.

Applying the linear operators LT , LI , LV , LZ and LZa
as

∞∑
m=1

LT

[
Tm(t)− χmTm−1(t)

]
= LT

[ ∞∑
m=1

Tm(t)− χmTm−1(t)

]
= 0,

∞∑
m=1

LI

[
Im(t)− χmIm−1(t)

]
= LI

[ ∞∑
m=1

Im(t)− χmIm−1(t)

]
= 0,

∞∑
m=1

LV

[
Vm(t)− χmVm−1(t)

]
= LV

[ ∞∑
m=1

Vm(t)− χmVm−1(t)

]
= 0,

∞∑
m=1

LZ

[
Zm(t)− χmZm−1(t)

]
= LZ

[ ∞∑
m=1

Zm(t)− χmZm−1(t)

]
= 0,

∞∑
m=1

LZa

[
Zam(t)− χmZam−1(t)

]
= LZa

[ ∞∑
m=1

Zam(t)− χmZam−1(t)

]
= 0.

(6)

By using Eqs. (2) and (6) we get

ℏHT (t)
∞∑

m=1

ℜT
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

ℏHI(t)

∞∑
m=1

ℜI
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

ℏHV (t)
∞∑

m=1

ℜV
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

ℏHZ(t)
∞∑

m=1

ℜZ
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

ℏHZa
(t)

∞∑
m=1

ℜZa
m (T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0.

(7)

According to the base definitions of the HAM in Eqs. (7), ℏ ̸= 0,HS(t) ̸=
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0,HI(t) ̸= 0,HR(t) ̸= 0, thus

∞∑
m=1

ℜT
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

∞∑
m=1

ℜI
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

∞∑
m=1

ℜV
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

∞∑
m=1

ℜZ
m(T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0,

∞∑
m=1

ℜZa
m (T⃗m−1, I⃗m−1, V⃗m−1, Z⃗m−1, Z⃗am−1) = 0.

(8)

Substituting ℜT
m,ℜI

m,ℜV
m,ℜZ

m and ℜZa
m into Eqs. (8) and assuming (.)′ = d

dt the
following formulas are obtained as

∞∑
m=1

ℜT
m =

∞∑
m=1

T ′
m−1 − (1− χm)λT + µTTm−1(t) + χ

m−1∑
j=0

Tj(t)Vm−1−j(t)


=

∞∑
m=0

T ′
m − λT + µT

∞∑
m=0

Tm(t) + χ
∞∑

m=1

m−1∑
j=0

Tj(t)Vm−1−j(t)

=
∞∑

m=0

T ′
m − λT + µT

∞∑
m=0

Tm(t) + χ
∞∑
j=0

∞∑
m=j+1

Tj(t)Vm−1−j(t)

=

∞∑
m=0

T ′
m − λT + µT

∞∑
m=0

Tm(t) + χ

∞∑
j=0

Tj(t)

∞∑
m=0

Vm(t)

= P ′
1(t)− λT + µTP1(t) + χP1(t)P3(t),

(9)

and

∞∑
m=1

ℜI
m =

∞∑
m=1

I ′m−1 − χ
m−1∑
j=0

Tj(t)Vm−1−j(t) + µIIm−1(t) + α
m−1∑
j=0

Ij(t)Zam−1−j(t)


=

∞∑
m=0

I ′m − χ
∞∑

m=1

m−1∑
j=0

Tj(t)Vm−1−j(t) + µI

∞∑
m=0

Im(t) + α
∞∑

m=1

m−1∑
j=0

Ij(t)Zam−1−j(t)

=
∞∑

m=0

I ′m − χ
∞∑
j=0

∞∑
m=j+1

Tj(t)Vm−1−j(t) + µI

∞∑
m=0

Im(t) + α
∞∑
j=0

∞∑
m=j+1

Ij(t)Zam−1−j(t)

=

∞∑
m=0

I ′m − χ

∞∑
j=0

Tj(t)

∞∑
m=0

Vm(t) + µI

∞∑
m=0

Im(t) + α

∞∑
j=0

Ij(t)

∞∑
m=0

Zam(t)

= P ′
2(t)− χP1(t)P3(t) + µIP2(t) + αP2(t)P5(t),

(10)
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and

∞∑
m=1

ℜV
m =

∞∑
m=1

[
V ′
m−1 − ϵV µIIm−1(t) + µV Vm−1(t)

]
=

∞∑
m=0

V ′
m − ϵV µI

∞∑
m=0

Im(t) + µV

∞∑
m=0

Vm(t)

= P ′
3(t)− ϵV µIP2(t) + µV P3(t),

(11)

and

∞∑
m=1

ℜZ
m =

∞∑
m=1

Z ′
m−1 − (1− χm)λZ + µZZm−1(t) + β

m−1∑
j=0

Zj(t)Im−1−j(t)


=

∞∑
m=0

Z ′
m − λZ + µZ

∞∑
m=0

Zm(t) + β

∞∑
j=0

∞∑
m=j+1

Zj(t)Im−1−j(t)

=
∞∑

m=0

Z ′
m − λZ + µZ

∞∑
m=0

Zm(t) + β
∞∑
j=0

Zj(t)
∞∑

m=0

Im(t)

= P ′
4(t)− λZ + µZP4(t) + βP4(t)P2(t),

(12)

and

∞∑
m=1

ℜZa
m =

∞∑
m=1

Za
′
m−1 − β

m−1∑
j=0

Zj(t)Im−1−j(t) + µZa
Zam−1(t)


=

∞∑
m=0

Za
′
m − β

∞∑
m=1

m−1∑
j=0

Zj(t)Im−1−j(t) + µZa

∞∑
m=0

Zam(t)

=
∞∑

m=0

Za
′
m − β

∞∑
j=0

∞∑
m=j+1

Zj(t)Im−1−j(t) + µZa

∞∑
m=0

Zam(t)

=
∞∑

m=0

Za
′
m − β

∞∑
j=0

Zj(t)
∞∑

m=0

Im(t) + µZa

∞∑
m=0

Zam(t)

= P ′
5(t)− βP4(t)P2(t) + µZa

P5(t).

(13)

Eqs. (9), (10), (11), (12) and (13) show that the series solutions
P1(t), P2(t), P3(t), P4(t) and P5(t) must be the exact solutions of Eqs. (1). ■

4. Numerical illustration

In this section, in order to show the flexibility of HATM to solve the non-linear
bio-mathematical model (1), the numerical solutions for N = 5 are presented as
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follows

T5(t) =1000 + 0.12ℏt+ 0.24ℏ2t+ 0.24ℏ3t+ 0.12ℏ4t+ 0.024ℏ5t+ 0.361203ℏ2t2

+ 0.722406ℏ3t2 + 0.541804ℏ4t2 + 0.144481ℏ5t2 + 0.409213ℏ3t3 + 0.613819ℏ4t3

+ 0.245528ℏ5t3 + 0.17452ℏ4t4 + 0.139616ℏ5t4 + 0.0238202ℏ5t5,

I5(t) =− 0.12ℏt− 0.24ℏ2t− 0.24ℏ3t− 0.12ℏ4t− 0.024ℏ5t− 0.420003ℏ2t2

− 0.840006ℏ3t2 − 0.630004ℏ4t2 − 0.168001ℏ5t2 − 0.478009ℏ3t3 − 0.717014ℏ4t3

− 0.286805ℏ5t3 − 0.203898ℏ4t4 − 0.163119ℏ5t4 − 0.0278351ℏ5t5,

V5(t) =1 + 15ℏt+ 30.ℏ2t+ 30.ℏ3t+ 15.ℏ4t+ 3.ℏ5t+ 51.ℏ2t2 + 102.ℏ3t2

+ 76.5ℏ4t2 + 20.4ℏ5t2 + 58.ℏ3t3 + 87.0001ℏ4t3 + 34.8ℏ5t3

+ 24.7376ℏ4t4 + 19.7901ℏ5t4 + 3.37631ℏ5t5,

Z5(t) =500 + 50.ℏt+ 100.ℏ2t+ 100.ℏ3t+ 50.ℏ4t+ 10.ℏ5t+ 2.76ℏ2t2 + 5.52ℏ3t2

+ 4.14ℏ4t2 + 1.104ℏ5t2 − 0.228002ℏ3t3 − 0.342003ℏ4t3 − 0.136801ℏ5t3

− 0.123345ℏ4t4 − 0.0986763ℏ5t4 − 0.0169991ℏ5t5,

Za5(t) =0.24ℏ2t2 + 0.48ℏ3t2 + 0.36ℏ4t2 + 0.096ℏ5t2 + 0.283522ℏ3t3 + 0.425283ℏ4t3

+ 0.170113ℏ5t3 + 0.121777ℏ4t4 + 0.0974217ℏ5t4 + 0.0167226ℏ5t5,

The regions of convergence are shown by several ℏ-curves for N = 5, 10 and t = 1
in Figures 3 and 4. These regions are parallel parts of ℏ-curves with axiom x. So
for N = 5 and t = 1 the convergence regions are

−0.9 ⩽ ℏT ⩽ −0.2,
−0.8 ⩽ ℏI ⩽ −0.2,
−0.8 ⩽ ℏV ⩽ −0.2,
−1.2 ⩽ ℏZ ⩽ −0.6,
−0.8 ⩽ ℏZa

⩽ −0.4,

and for N = 10 we get

−0.9 ⩽ ℏT ⩽ −0.4,
−1 ⩽ ℏI ⩽ −0.2,
−1 ⩽ ℏV ⩽ −0.3,
−1.2 ⩽ ℏZ ⩽ −0.4,
−1 ⩽ ℏZa

⩽ −0.4.

Also, the following residual error functions are applied to show the accuracy of
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presented method as

EN,T (t) =
dT (t)

dt
− λT + µTT (t) + χT (t)V (t)

EN,I(t) =
dI(t)

dt
− χT (t)V (t) + µII(t) + αI(t)Za(t),

EN,V (t) =
dV (t)

dt
− ϵV µII(t) + µV V (t),

EN,Z(t) =
dZ(t)

dt
− λZ + µZZ(t) + βZ(t)I(t),

EN,Za
(t) =

dZa(t)

dt
− βZ(t)I(t) + µZa

Za(t),

and the plots of error functions are demonstrated in Figure 5 for N = 5, 10 and
ℏ = −0.8.
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Figure 3. ℏ-curves of T (t), I(t), V (t), Z(t) and Za(t) for N = 5, t = 1.
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Figure 4. ℏ-curves of T (t), I(t), V (t), Z(t) and Za(t) for N = 10, t = 1.
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Figure 5. Residual error functions for N = 5, 10 and ℏ = 0.8.

5. Conclusion

The HATM is among of the accurate semi-analytical methods for solving linear
and non-linear problems based on its capabilities such as operators, functions and
parameters that we have freedom to chose them. In this research, the HATM was
applied to solve the bio-mathematical model of HIV infection for CD8+ T-cells.
Furthermore, the convergence theorem was proved that shows the competency
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of HATM for solving non-linear problems. Based on the numerical solutions for
N = 5, 10 several ℏ-curves were plotted that show the convergence regions of
solutions. The precision of method were demonstrated by plotting the residual
error functions.
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